Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
A
- a - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- ABSOLUTE - Enum constant in enum class org.tribuo.regression.sgd.fm.TrainTest.LossEnum
-
Uses
AbsoluteLoss
. - ABSOLUTE - Enum constant in enum class org.tribuo.regression.sgd.TrainTest.LossEnum
-
Uses
AbsoluteLoss
. - AbsoluteLoss - Class in org.tribuo.regression.sgd.objectives
-
Absolute loss (i.e., l1).
- AbsoluteLoss() - Constructor for class org.tribuo.regression.sgd.objectives.AbsoluteLoss
-
Constructs an absolute loss.
- AbstractCARTTrainer<T extends Output<T>> - Class in org.tribuo.common.tree
-
Base class for
Trainer
's that use an approximation of the CART algorithm to build a decision tree. - AbstractCARTTrainer(int, float, float, float, boolean, long) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer
-
After calls to this superconstructor subclasses must call postConfig().
- AbstractCARTTrainer.AbstractCARTTrainerProvenance - Class in org.tribuo.common.tree
-
Deprecated.
- AbstractCARTTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer.AbstractCARTTrainerProvenance
-
Deprecated.Deserialization constructor.
- AbstractCARTTrainerProvenance(AbstractCARTTrainer<T>) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer.AbstractCARTTrainerProvenance
-
Deprecated.Constructs a provenance for the host AbstractCARTTrainer.
- AbstractEvaluator<T extends Output<T>,
C extends MetricContext<T>, E extends Evaluation<T>, M extends EvaluationMetric<T, C>> - Class in org.tribuo.evaluation -
Base class for evaluators.
- AbstractEvaluator() - Constructor for class org.tribuo.evaluation.AbstractEvaluator
- AbstractFMModel<T extends Output<T>> - Class in org.tribuo.common.sgd
-
A quadratic factorization machine model trained using SGD.
- AbstractFMModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, FMParameters, boolean) - Constructor for class org.tribuo.common.sgd.AbstractFMModel
-
Constructs a factorization machine model trained via SGD.
- AbstractFMTrainer<T extends Output<T>,
U, V extends AbstractFMModel<T>> - Class in org.tribuo.common.sgd -
A trainer for a quadratic factorization machine model which uses SGD.
- AbstractFMTrainer() - Constructor for class org.tribuo.common.sgd.AbstractFMTrainer
-
For olcut.
- AbstractFMTrainer(StochasticGradientOptimiser, int, int, int, long, int, double) - Constructor for class org.tribuo.common.sgd.AbstractFMTrainer
-
Constructs an SGD trainer for a factorization machine.
- AbstractLinearSGDModel<T extends Output<T>> - Class in org.tribuo.common.sgd
-
A linear model trained using SGD.
- AbstractLinearSGDModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, LinearParameters, boolean) - Constructor for class org.tribuo.common.sgd.AbstractLinearSGDModel
-
Constructs a linear model trained via SGD.
- AbstractLinearSGDTrainer<T extends Output<T>,
U, V extends AbstractLinearSGDModel<T>> - Class in org.tribuo.common.sgd -
A trainer for a linear model which uses SGD.
- AbstractLinearSGDTrainer() - Constructor for class org.tribuo.common.sgd.AbstractLinearSGDTrainer
-
For olcut.
- AbstractLinearSGDTrainer(StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.common.sgd.AbstractLinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- AbstractSequenceEvaluator<T extends Output<T>,
C extends MetricContext<T>, E extends SequenceEvaluation<T>, M extends EvaluationMetric<T, C>> - Class in org.tribuo.sequence -
Base class for sequence evaluators.
- AbstractSequenceEvaluator() - Constructor for class org.tribuo.sequence.AbstractSequenceEvaluator
- AbstractSGDModel<T extends Output<T>> - Class in org.tribuo.common.sgd
-
A model trained using SGD.
- AbstractSGDModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, FeedForwardParameters, boolean, boolean) - Constructor for class org.tribuo.common.sgd.AbstractSGDModel
-
Constructs a linear model trained via SGD.
- AbstractSGDModel.PredAndActive - Class in org.tribuo.common.sgd
-
A nominal tuple used to capture the prediction and the number of active features used by the model.
- AbstractSGDTrainer<T extends Output<T>,
U, V extends Model<T>, X extends FeedForwardParameters> - Class in org.tribuo.common.sgd -
A trainer for a model which uses SGD.
- AbstractSGDTrainer(boolean) - Constructor for class org.tribuo.common.sgd.AbstractSGDTrainer
-
Base constructor called by subclass no-args constructors used by OLCUT.
- AbstractSGDTrainer(StochasticGradientOptimiser, int, int, int, long, boolean) - Constructor for class org.tribuo.common.sgd.AbstractSGDTrainer
-
Constructs an SGD trainer.
- AbstractTrainingNode<T extends Output<T>> - Class in org.tribuo.common.tree
-
Base class for decision tree nodes used at training time.
- AbstractTrainingNode(int, int, AbstractTrainingNode.LeafDeterminer) - Constructor for class org.tribuo.common.tree.AbstractTrainingNode
-
Builds an abstract training node.
- AbstractTrainingNode.LeafDeterminer - Class in org.tribuo.common.tree
-
Contains parameters needed to determine whether a node is a leaf.
- accuracy() - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
The overall accuracy of the evaluation.
- accuracy() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The accuracy.
- accuracy(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
The per label accuracy of the evaluation.
- accuracy(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the accuracy for this label.
- accuracy(EvaluationMetric.Average, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the accuracy using the specified average type and confusion matrix.
- accuracy(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the accuracy given this confusion matrix.
- accuracy(T, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates a per label accuracy given this confusion matrix.
- ACCURACY - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The accuracy.
- ADABOOST - Enum constant in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Creates an
AdaBoostTrainer
. - AdaBoostTrainer - Class in org.tribuo.classification.ensemble
-
Implements Adaboost.SAMME one of the more popular algorithms for multiclass boosting.
- AdaBoostTrainer(Trainer<Label>, int) - Constructor for class org.tribuo.classification.ensemble.AdaBoostTrainer
-
Constructs an adaboost trainer using the supplied weak learner trainer and the specified number of boosting rounds.
- AdaBoostTrainer(Trainer<Label>, int, long) - Constructor for class org.tribuo.classification.ensemble.AdaBoostTrainer
-
Constructs an adaboost trainer using the supplied weak learner trainer, the specified number of boosting rounds and the supplied seed.
- AdaDelta - Class in org.tribuo.math.optimisers
-
An implementation of the AdaDelta gradient optimiser.
- AdaDelta() - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
Sets rho to 0.95 and epsilon to 1e-6.
- AdaDelta(double) - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
Keeps rho at 0.95, passes through epsilon.
- AdaDelta(double, double) - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
It's recommended to keep rho at 0.95.
- ADADELTA - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The AdaDelta optimiser.
- ADADELTA - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The AdaDelta optimiser.
- AdaGrad - Class in org.tribuo.math.optimisers
-
An implementation of the AdaGrad gradient optimiser.
- AdaGrad(double) - Constructor for class org.tribuo.math.optimisers.AdaGrad
-
Creates an AdaGrad optimiser using the specified initial learning rate.
- AdaGrad(double, double) - Constructor for class org.tribuo.math.optimisers.AdaGrad
-
Creates an AdaGrad optimiser using the specified learning rate and epsilon.
- AdaGrad(double, double, double) - Constructor for class org.tribuo.math.optimisers.AdaGrad
-
Creates an AdaGrad optimiser using the specified learning rate, epsilon and initial accumulator value.
- ADAGRAD - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The AdaGrad optimiser.
- ADAGRAD - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The AdaGrad optimiser.
- ADAGRADDA - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The AdaGrad Dual Averaging optimiser.
- AdaGradRDA - Class in org.tribuo.math.optimisers
-
An implementation of the AdaGrad gradient optimiser with regularized dual averaging.
- AdaGradRDA(double, double) - Constructor for class org.tribuo.math.optimisers.AdaGradRDA
-
Creates an AdaGradRDA optimiser with the specified parameter values.
- AdaGradRDA(double, double, double, double, int) - Constructor for class org.tribuo.math.optimisers.AdaGradRDA
-
Creates an AdaGradRDA optimiser with the specified parameter values.
- ADAGRADRDA - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The AdaGrad Regularised Dual Averaging optimiser.
- Adam - Class in org.tribuo.math.optimisers
-
An implementation of the Adam gradient optimiser.
- Adam() - Constructor for class org.tribuo.math.optimisers.Adam
-
Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6.
- Adam(double, double) - Constructor for class org.tribuo.math.optimisers.Adam
-
Sets betaOne to 0.9 and betaTwo to 0.999
- Adam(double, double, double, double) - Constructor for class org.tribuo.math.optimisers.Adam
-
It's highly recommended not to modify these parameters, use one of the other constructors.
- ADAM - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The Adam optimiser.
- ADAM - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The Adam optimiser.
- ADAMAX - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The Adamax optimiser.
- add - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Adds the specified constant.
- add() - Static method in interface org.tribuo.util.Merger
-
A merger which adds the elements.
- add(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that adds the operand to each value.
- add(int) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Adds an index where the feature value occurs.
- add(int, double) - Method in class org.tribuo.math.la.DenseVector
- add(int, double) - Method in interface org.tribuo.math.la.SGDVector
-
Adds
value
to the element atindex
. - add(int, double) - Method in class org.tribuo.math.la.SparseVector
- add(int, int, double) - Method in class org.tribuo.math.la.DenseMatrix
- add(int, int, double) - Method in class org.tribuo.math.la.DenseSparseMatrix
- add(int, int, double) - Method in interface org.tribuo.math.la.Matrix
-
Adds the argument value to the value at the supplied index.
- add(int, Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- add(String) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a single feature with a value of 1.
- add(String, double) - Method in class org.tribuo.impl.ArrayExample
-
Adds a single feature.
- add(String, double) - Method in class org.tribuo.MutableFeatureMap
-
Adds an occurrence of a feature with a given name.
- add(Example<T>) - Method in class org.tribuo.ImmutableDataset
-
Adds an
Example
to the dataset, which will remove features with unknown names. - add(Example<T>) - Method in class org.tribuo.MutableDataset
-
Adds an example to the dataset, which observes the output and each feature value.
- add(Example<T>, Merger) - Method in class org.tribuo.ImmutableDataset
-
Adds a
Example
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids (merging duplicate ids). - add(Feature) - Method in class org.tribuo.Example
-
Adds a feature.
- add(Feature) - Method in class org.tribuo.impl.ArrayExample
- add(Feature) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a feature to this example.
- add(Feature) - Method in class org.tribuo.impl.IndexedArrayExample
- add(Feature) - Method in class org.tribuo.impl.ListExample
- add(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
Adds
other
to this vector, producing a newDenseVector
. - add(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Adds
other
to this vector, producing a newSGDVector
. - add(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
Adds
other
to this vector, producing a newSGDVector
. - add(SequenceExample<T>) - Method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Adds a
SequenceExample
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids. - add(SequenceExample<T>) - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Adds a
SequenceExample
to this dataset. - add(SequenceExample<T>, Merger) - Method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Adds a
SequenceExample
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids. - add(Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- ADD - Enum constant in enum class org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Adds the scores.
- ADD - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise addition with broadcasting.
- addAcrossDim1(int[], double) - Method in class org.tribuo.math.la.DenseMatrix
-
Adds the specified value to the specified elements across dimension 1.
- addAcrossDim2(int[], double) - Method in class org.tribuo.math.la.DenseMatrix
-
Adds the specified value to the specified elements across dimension 2.
- addAll(int, Collection<? extends Row<T>>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- addAll(Collection<? extends Example<T>>) - Method in class org.tribuo.MutableDataset
-
Adds all the Examples in the supplied collection to this dataset.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.Example
-
Adds a collection of features.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.ArrayExample
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a collection of features to this example.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.IndexedArrayExample
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.ListExample
- addAll(Collection<? extends Row<T>>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- addAll(Collection<SequenceExample<T>>) - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Adds all the SequenceExamples in the supplied collection to this dataset.
- addAllAttribute(Iterable<? extends OnnxMl.AttributeProto>) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAllDim(Iterable<? extends OnnxMl.TensorShapeProto.Dimension>) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addAllDims(Iterable<? extends Long>) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- addAllDims(Iterable<? extends Long>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- addAllDoubleData(Iterable<? extends Double>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- addAllExternalData(Iterable<? extends OnnxMl.StringStringEntryProto>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addAllFloatData(Iterable<? extends Float>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- addAllFloats(Iterable<? extends Float>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- addAllGraphs(Iterable<? extends OnnxMl.GraphProto>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addAllInitializationBinding(Iterable<? extends OnnxMl.StringStringEntryProto>) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addAllInitializer(Iterable<? extends OnnxMl.TensorProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addAllInput(Iterable<? extends OnnxMl.ValueInfoProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addAllInput(Iterable<String>) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addAllInt32Data(Iterable<? extends Integer>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- addAllInt64Data(Iterable<? extends Long>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- addAllInts(Iterable<? extends Long>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- addAllMetadataProps(Iterable<? extends OnnxMl.StringStringEntryProto>) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addAllNode(Iterable<? extends OnnxMl.NodeProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addAllOpsetImport(Iterable<? extends OnnxMl.OperatorSetIdProto>) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addAllOutput(Iterable<? extends OnnxMl.ValueInfoProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addAllOutput(Iterable<String>) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addAllQuantizationAnnotation(Iterable<? extends OnnxMl.TensorAnnotation>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addAllQuantParameterTensorNames(Iterable<? extends OnnxMl.StringStringEntryProto>) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addAllSparseInitializer(Iterable<? extends OnnxMl.SparseTensorProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addAllSparseTensors(Iterable<? extends OnnxMl.SparseTensorProto>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addAllStringData(Iterable<? extends ByteString>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- addAllStrings(Iterable<? extends ByteString>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- addAllTensors(Iterable<? extends OnnxMl.TensorProto>) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addAllTrainingInfo(Iterable<? extends OnnxMl.TrainingInfoProto>) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addAllUint64Data(Iterable<? extends Long>) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- addAllUpdateBinding(Iterable<? extends OnnxMl.StringStringEntryProto>) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addAllValueInfo(Iterable<? extends OnnxMl.ValueInfoProto>) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addAttribute(int, OnnxMl.AttributeProto) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAttribute(int, OnnxMl.AttributeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAttribute(OnnxMl.AttributeProto) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAttribute(OnnxMl.AttributeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAttributeBuilder() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addAttributeBuilder(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- addBias - Variable in class org.tribuo.common.sgd.AbstractSGDModel
- addBias - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- addChar() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Add a character to the buffer that we're building for a token.
- addDim(int, OnnxMl.TensorShapeProto.Dimension) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDim(int, OnnxMl.TensorShapeProto.Dimension.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDim(OnnxMl.TensorShapeProto.Dimension) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDim(OnnxMl.TensorShapeProto.Dimension.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDimBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDimBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- addDims(long) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- addDims(long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- addDoubleData(double) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- addExample(Example<T>) - Method in class org.tribuo.sequence.SequenceExample
-
Adds an
Example
to this sequence. - addExternalData(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addExternalData(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addExternalData(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addExternalData(OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addExternalDataBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addExternalDataBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- addFloatData(float) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- addFloats(float) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- addGraphs(int, OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addGraphs(int, OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addGraphs(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addGraphs(OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addGraphsBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addGraphsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- addInitializationBinding(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializationBinding(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializationBinding(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializationBinding(OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializationBindingBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializationBindingBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- addInitializer(int, OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInitializer(int, OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInitializer(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInitializer(OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInitializerBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInitializerBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- addInput(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInput(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInput(OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInput(OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInput(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addInputBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInputBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- addInputBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addInt32Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- addInt64Data(long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- addInts(long) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- addMetadataProps(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addMetadataProps(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addMetadataProps(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addMetadataProps(OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addMetadataPropsBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addMetadataPropsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- addNode(int, OnnxMl.NodeProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addNode(int, OnnxMl.NodeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addNode(OnnxMl.NodeProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addNode(OnnxMl.NodeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addNodeBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addNodeBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- addOpsetImport(int, OnnxMl.OperatorSetIdProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOpsetImport(int, OnnxMl.OperatorSetIdProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOpsetImport(OnnxMl.OperatorSetIdProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOpsetImport(OnnxMl.OperatorSetIdProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOpsetImportBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOpsetImportBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- addOutput(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutput(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutput(OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutput(OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutput(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addOutputBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutputBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- addOutputBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- addQuantizationAnnotation(int, OnnxMl.TensorAnnotation) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantizationAnnotation(int, OnnxMl.TensorAnnotation.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantizationAnnotation(OnnxMl.TensorAnnotation) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantizationAnnotation(OnnxMl.TensorAnnotation.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantizationAnnotationBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantizationAnnotationBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- addQuantParameterTensorNames(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addQuantParameterTensorNames(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addQuantParameterTensorNames(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addQuantParameterTensorNames(OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addQuantParameterTensorNamesBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addQuantParameterTensorNamesBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- addRepeatedField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- addSparseInitializer(int, OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseInitializer(int, OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseInitializer(OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseInitializer(OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseInitializerBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseInitializerBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- addSparseTensors(int, OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addSparseTensors(int, OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addSparseTensors(OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addSparseTensors(OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addSparseTensorsBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addSparseTensorsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- addStringData(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- addStrings(ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- addTensors(int, OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTensors(int, OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTensors(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTensors(OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTensorsBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTensorsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- addTrainingInfo(int, OnnxMl.TrainingInfoProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addTrainingInfo(int, OnnxMl.TrainingInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addTrainingInfo(OnnxMl.TrainingInfoProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addTrainingInfo(OnnxMl.TrainingInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addTrainingInfoBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addTrainingInfoBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- addUint64Data(long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- addUpdateBinding(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addUpdateBinding(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addUpdateBinding(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addUpdateBinding(OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addUpdateBindingBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addUpdateBindingBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- addValueInfo(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addValueInfo(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addValueInfo(OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addValueInfo(OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addValueInfoBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- addValueInfoBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- ADJUSTED_MI - Enum constant in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
The normalized mutual information adjusted for chance.
- adjustedMI() - Method in interface org.tribuo.clustering.evaluation.ClusteringEvaluation
-
Measures the adjusted normalized mutual information between the predicted ids and the supplied ids.
- adjustedMI(ClusteringMetric.Context) - Static method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Calculates the adjusted normalized mutual information between two clusterings.
- advance() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- advance() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Advances the tokenizer to the next token.
- advance() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- aggregate(List<Feature>) - Method in interface org.tribuo.data.text.FeatureAggregator
-
Aggregates feature values with the same names.
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.AverageAggregator
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.SumAggregator
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.UniqueAggregator
- AggregateConfigurableDataSource<T extends Output<T>> - Class in org.tribuo.datasource
-
Aggregates multiple
ConfigurableDataSource
s, usesAggregateDataSource.IterationOrder
to control the iteration order. - AggregateConfigurableDataSource(List<ConfigurableDataSource<T>>) - Constructor for class org.tribuo.datasource.AggregateConfigurableDataSource
-
Creates an aggregate data source which will iterate the provided sources in the order of the list (i.e., using
AggregateDataSource.IterationOrder.SEQUENTIAL
. - AggregateConfigurableDataSource(List<ConfigurableDataSource<T>>, AggregateDataSource.IterationOrder) - Constructor for class org.tribuo.datasource.AggregateConfigurableDataSource
-
Creates an aggregate data source using the supplied sources and iteration order.
- AggregateConfigurableDataSource.AggregateConfigurableDataSourceProvenance - Class in org.tribuo.datasource
-
Provenance for the
AggregateConfigurableDataSource
. - AggregateConfigurableDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.AggregateConfigurableDataSource.AggregateConfigurableDataSourceProvenance
-
Deserialization constructor.
- AggregateDataSource<T extends Output<T>> - Class in org.tribuo.datasource
-
Aggregates multiple
DataSource
s, usesAggregateDataSource.IterationOrder
to control the iteration order. - AggregateDataSource(List<DataSource<T>>) - Constructor for class org.tribuo.datasource.AggregateDataSource
-
Creates an aggregate data source which will iterate the provided sources in the order of the list (i.e., using
AggregateDataSource.IterationOrder.SEQUENTIAL
. - AggregateDataSource(List<DataSource<T>>, AggregateDataSource.IterationOrder) - Constructor for class org.tribuo.datasource.AggregateDataSource
-
Creates an aggregate data source using the supplied sources and iteration order.
- AggregateDataSource.AggregateDataSourceProvenance - Class in org.tribuo.datasource
-
Provenance for the
AggregateDataSource
. - AggregateDataSource.IterationOrder - Enum Class in org.tribuo.datasource
-
Specifies the iteration order of the inner sources.
- AggregateDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
-
Deserialization constructor.
- ai.onnx.proto - package ai.onnx.proto
- algorithm - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Type of learner (or base learner).
- algorithm - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
Type of SVR.
- algorithm - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
Choose the training algorithm (stepwise forward selection or least angle regression).
- ALGORITHM_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- ALL - Enum constant in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Selects all provenance stored in the model.
- ALL_OUTPUTS - Static variable in class org.tribuo.Model
-
Used in getTopFeatures when the Model doesn't support per output feature lists.
- AllClassificationOptions() - Constructor for class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- allProvenances() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- allProvenances() - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- allProvenances() - Method in class org.tribuo.provenance.DatasetProvenance
-
Returns a list of all the provenances.
- allProvenances() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- AllTrainerOptions - Class in org.tribuo.classification.experiments
-
Aggregates all the classification algorithms.
- AllTrainerOptions() - Constructor for class org.tribuo.classification.experiments.AllTrainerOptions
- AllTrainerOptions.AlgorithmType - Enum Class in org.tribuo.classification.experiments
-
Types of algorithms supported.
- alpha - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
Regularisation strength in the Elastic Net.
- alpha - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
L1 regularization term for weights (default 0).
- alpha - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
L1 regularization term for weights (default 0).
- alphas - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
-
The alpha values array from forward propagation.
- annotateGraph(Graph, Session) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
Annotates a graph with an extra placeholder and assign operation for each VariableV2.
- ANOMALOUS - Enum constant in enum class org.tribuo.anomaly.Event.EventType
-
An anomalous event, with id 1.
- ANOMALOUS_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The anomalous event.
- ANOMALY_DETECTION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Anomaly detection, maps to Tribuo's
Event
. - anomalyCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of anomalous events observed.
- AnomalyDataGenerator - Class in org.tribuo.anomaly.example
-
Generates three example train and test datasets, used for unit testing.
- AnomalyDataGenerator() - Constructor for class org.tribuo.anomaly.example.AnomalyDataGenerator
- AnomalyEvaluation - Interface in org.tribuo.anomaly.evaluation
-
An
Evaluation
for anomaly detectionEvent
s. - AnomalyEvaluator - Class in org.tribuo.anomaly.evaluation
- AnomalyEvaluator() - Constructor for class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- AnomalyFactory - Class in org.tribuo.anomaly
-
A factory for generating events.
- AnomalyFactory() - Constructor for class org.tribuo.anomaly.AnomalyFactory
- AnomalyFactory.AnomalyFactoryProvenance - Class in org.tribuo.anomaly
-
Provenance for
AnomalyFactory
. - AnomalyFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
-
Constructs an anomaly factory provenance from the marshalled form.
- AnomalyInfo - Class in org.tribuo.anomaly
-
The base class for tracking anomalous events.
- AnomalyInfo() - Constructor for class org.tribuo.anomaly.AnomalyInfo
-
Constructs a new empty anomaly info.
- AnomalyInfo(AnomalyInfo) - Constructor for class org.tribuo.anomaly.AnomalyInfo
-
Copies the supplied anomaly info.
- AnomalyMetric - Class in org.tribuo.anomaly.evaluation
-
A metric for evaluating anomaly detection problems.
- AnomalyMetric(MetricTarget<Event>, String, ToDoubleBiFunction<MetricTarget<Event>, AnomalyMetric.Context>) - Constructor for class org.tribuo.anomaly.evaluation.AnomalyMetric
-
Creates an anomaly detection metric, with a specific name, using the supplied evaluation function.
- AnomalyMetrics - Enum Class in org.tribuo.anomaly.evaluation
-
Default metrics for evaluating anomaly detection.
- apply(int, int, CharSequence) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer.SplitCharactersSplitterFunction
- apply(int, int, CharSequence) - Method in interface org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitFunction
-
Applies the split function.
- apply(E) - Method in interface org.tribuo.evaluation.EvaluationRenderer
-
Convert the evaluation to a string.
- apply(ONNXOperators) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String)
, using this ONNXRef as the argument toinputs
. - apply(ONNXOperators, String) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String)
, using this ONNXRef as the argument toinputs
. - apply(ONNXOperators, List<String>, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, List, Map)
, using this ONNXRef as the argument toinputs
. - apply(ONNXOperators, List<ONNXRef<?>>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String, Map)
, using this ONNXRef as the first argument toinputs
, withotherInputs
append as subsequent arguments. - apply(ONNXOperators, List<ONNXRef<?>>, String) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String, Map)
, using this ONNXRef as the argument toinputs
, withotherInputs
append as subsequent arguments. - apply(ONNXOperators, List<ONNXRef<?>>, List<String>, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, List, Map)
, using this ONNXRef as the first argument toinputs
, withotherInputs
append as subsequent arguments. - apply(ONNXOperators, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String, Map)
, using this ONNXRef as the argument toinputs
. - apply(ONNXOperators, ONNXRef<?>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String, Map)
, passing this ONNXRef andother
as a length 2 list toinputs
. - apply(ONNXOperators, ONNXRef<?>, String) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String)
, passing this ONNXRef andother
as a length 2 list toinputs
. - apply(ONNXOperators, ONNXRef<?>, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.operation(ONNXOperators, List, String, Map)
, passing this ONNXRef andother
as a length 2 list toinputs
. - applyCase(String) - Method in enum class org.tribuo.data.text.impl.CasingPreprocessor.CasingOperation
-
Apply the appropriate casing operation.
- applyOptimiser(Graph, Operand<T>, Map<String, Float>) - Method in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Applies the optimiser to the graph and returns the optimiser step operation.
- applyTransformerList(double, List<Transformer>) - Static method in class org.tribuo.transform.TransformerMap
-
Applies a
List
ofTransformer
s to the supplied double value, returning the transformed value. - APPROX - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
Approximate greedy algorithm, using a quantile sketch of the data and a gradient histogram.
- ARCH_STRING - Static variable in class org.tribuo.provenance.ModelProvenance
- archString - Variable in class org.tribuo.provenance.ModelProvenance
- argmax(List<R>, Function<R, Double>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied evaluations.
- argmax(List<T>) - Static method in class org.tribuo.util.Util
-
Find the index of the maximum value in a list.
- argmax(EvaluationMetric<T, C>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).
- argmax(EvaluationMetric<T, C>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied datasets.
- argmin(List<T>) - Static method in class org.tribuo.util.Util
-
Find the index of the minimum value in a list.
- array - Variable in class org.tribuo.common.tree.impl.IntArrayContainer
-
The array of ints.
- array(String, double[]) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a float tensor for this ONNXContext, populated according to parameters.
- array(String, double[], boolean) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a tensor for this ONNXContext, populated according to parameters.
- array(String, float[]) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a float tensor for this ONNXContext, populated according to parameters.
- array(String, int[]) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an int tensor for this ONNXContext, populated according to parameters.
- array(String, long[]) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a long tensor for this ONNXContext, populated according to parameters.
- ARRAY_FEATURE_EXTRACTOR - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Array feature extractor, selects the indices specified by the second tensor from the last dimension of the first tensor.
- arrayBuilder(ONNXContext, String, double[]) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the array.
- arrayBuilder(ONNXContext, String, double[], boolean) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the array.
- arrayBuilder(ONNXContext, String, float[]) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the array.
- arrayBuilder(ONNXContext, String, int[]) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the array.
- arrayBuilder(ONNXContext, String, long[]) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the array.
- ArrayExample<T extends Output<T>> - Class in org.tribuo.impl
-
An
Example
backed by two arrays, one of String and one of double. - ArrayExample(Example<T>) - Constructor for class org.tribuo.impl.ArrayExample
-
Copy constructor.
- ArrayExample(T) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output.
- ArrayExample(T, float) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a weight.
- ArrayExample(T, float, int) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a weight, with an initial size for the feature arrays.
- ArrayExample(T, float, Map<String, Object>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output, a weight and the metadata.
- ArrayExample(T, String[], double[]) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output, an array of names and an array of values.
- ArrayExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a list of features.
- ArrayExample(T, Map<String, Object>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and the metadata.
- ArrayExample(T, Example<U>, float) - Constructor for class org.tribuo.impl.ArrayExample
-
Clones an example's features, but uses the supplied output and weight.
- asMap() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- asMap() - Method in interface org.tribuo.evaluation.Evaluation
-
Get a map of all the metrics stored in this evaluation.
- asMap() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- asMap() - Method in interface org.tribuo.sequence.SequenceEvaluation
-
Get a map of all the metrics stored in this evaluation.
- ASSIGN_OP - Static variable in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
The name of the assignment op.
- ASSIGN_PLACEHOLDER - Static variable in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
The name given to the assignment operation from the placeholders.
- assignTo(Ret) - Method in class org.tribuo.util.onnx.ONNXRef
-
Convenience method that calls
ONNXContext.assignTo(ONNXRef, ONNXRef)
, using this ONNXRef as the argument toinput
. - assignTo(RHS, LHS) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an
ONNXOperators.IDENTITY
node connectinginput
tooutput
, effectively permitting assignment of values. - ATTENTION_MASK - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Input name for the attention mask.
- ATTRIBUTE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- attributes - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The operator attributes.
- auc(double[], double[]) - Static method in class org.tribuo.util.Util
-
Calculates the area under the curve, bounded below by the x axis.
- AUCROC - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The area under the receiver-operator curve (ROC).
- AUCROC(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Area under the ROC curve.
- AUCROC(Label, List<Prediction<Label>>) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Area under the ROC curve.
- AUCROC(MetricTarget<Label>, List<Prediction<Label>>) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Area under the ROC curve.
- AUTO - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
XGBoost chooses between
XGBoostTrainer.TreeMethod.EXACT
andXGBoostTrainer.TreeMethod.APPROX
depending on dataset size. - AverageAggregator - Class in org.tribuo.data.text.impl
-
A feature aggregator that averages feature values across a feature list.
- AverageAggregator() - Constructor for class org.tribuo.data.text.impl.AverageAggregator
- averageAUCROC(boolean) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Area under the ROC curve averaged across labels.
- AVERAGED_PRECISION - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The averaged precision.
- averagedExplainedVariance() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average explained variance across all dimensions.
- averagedPrecision(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Summarises a Precision-Recall Curve by taking the weighted mean of the precisions at a given threshold, where the weight is the recall achieved at that threshold.
- averagedPrecision(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Summarises a Precision-Recall Curve by taking the weighted mean of the precisions at a given threshold, where the weight is the recall achieved at that threshold.
- averagedPrecision(Label, List<Prediction<Label>>) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
- averagedPrecision(MetricTarget<Label>, List<Prediction<Label>>) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
- averageMAE() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average Mean Absolute Error across all dimensions.
- averageR2() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average R2 across all dimensions.
- averageRMSE() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average RMSE across all dimensions.
- AveragingCombiner - Class in org.tribuo.regression.ensemble
-
A combiner which performs a weighted or unweighted average of the predicted regressors independently across the output dimensions.
- AveragingCombiner() - Constructor for class org.tribuo.regression.ensemble.AveragingCombiner
-
Constructs an averaging combiner.
B
- b - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- backRef - Variable in class org.tribuo.util.onnx.ONNXRef
- BAGGING - Enum constant in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Creates a
BaggingTrainer
. - BaggingTrainer<T extends Output<T>> - Class in org.tribuo.ensemble
-
A Trainer that wraps another trainer and produces a bagged ensemble.
- BaggingTrainer() - Constructor for class org.tribuo.ensemble.BaggingTrainer
-
For the configuration system.
- BaggingTrainer(Trainer<T>, EnsembleCombiner<T>, int) - Constructor for class org.tribuo.ensemble.BaggingTrainer
-
Constructs a bagging trainer with the supplied parameters using
Trainer.DEFAULT_SEED
as the RNG seed. - BaggingTrainer(Trainer<T>, EnsembleCombiner<T>, int, long) - Constructor for class org.tribuo.ensemble.BaggingTrainer
-
Constructs a bagging trainer with the supplied parameters.
- BALANCED_ERROR_RATE - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The balanced error rate, i.e., the mean of the per class recalls.
- BALANCED_ERROR_RATE - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The balanced error rate, i.e., the mean of the per class recalls.
- balancedErrorRate() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the balanced error rate, i.e., the mean of the per label recalls.
- balancedErrorRate() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the balanced error rate.
- balancedErrorRate() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- balancedErrorRate(ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the balanced error rate, i.e., the mean of the recalls.
- bandwidth - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Model bandwidth in MBps.
- bandwidth - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The bandwidth for the load balancer in MBps.
- BasicPipeline - Class in org.tribuo.data.text.impl
-
An example implementation of
TextPipeline
. - BasicPipeline(Tokenizer, int) - Constructor for class org.tribuo.data.text.impl.BasicPipeline
-
Constructs a basic text pipeline which tokenizes the input and generates word n-gram features in the range 1 to
ngram
. - batchSize - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- batchSize - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Minibatch size.
- begin - Variable in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
The subsequence start index.
- begin - Variable in class org.tribuo.classification.sgd.crf.Chunk
-
The starting point of this chunk.
- BEGIN_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- beliefPropagation(ChainHelper.ChainCliqueValues) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs belief propagation on a linear chain CRF.
- bert - Variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.BERTFeatureExtractorOptions
-
BERTFeatureExtractor instance
- BERTFeatureExtractor<T extends Output<T>> - Class in org.tribuo.interop.onnx.extractors
-
Builds examples and sequence examples using features from BERT.
- BERTFeatureExtractor(OutputFactory<T>, Path, Path) - Constructor for class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Constructs a BERTFeatureExtractor.
- BERTFeatureExtractor(OutputFactory<T>, Path, Path, BERTFeatureExtractor.OutputPooling, int, boolean) - Constructor for class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Constructs a BERTFeatureExtractor.
- BERTFeatureExtractor.BERTFeatureExtractorOptions - Class in org.tribuo.interop.onnx.extractors
-
CLI options for running BERT.
- BERTFeatureExtractor.OutputPooling - Enum Class in org.tribuo.interop.onnx.extractors
-
The type of output pooling to perform.
- BERTFeatureExtractorOptions() - Constructor for class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.BERTFeatureExtractorOptions
- betas - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
-
The beta values array from backward propagation.
- BFLOAT16 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Non-IEEE floating-point format based on IEEE754 single-precision floating-point number truncated to 16 bits.
- BFLOAT16_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Non-IEEE floating-point format based on IEEE754 single-precision floating-point number truncated to 16 bits.
- BIAS_FEATURE - Static variable in class org.tribuo.Model
-
Used to denote the bias feature in a linear model.
- binarise - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Binarises the output around 1.0.
- binarise() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that sets negative and zero values to zero and positive values to one.
- BINARISED_CATEGORICAL - Enum constant in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Categoricals binarised into separate features.
- BINARY_CLASSIFICATION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Binary classification.
- binaryAUCROC(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the area under the receiver operator characteristic curve, i.e., the AUC of the ROC curve.
- BinaryCrossEntropy - Class in org.tribuo.multilabel.sgd.objectives
-
A multilabel version of binary cross entropy loss which expects logits.
- BinaryCrossEntropy() - Constructor for class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
-
Constructs a BinaryCrossEntropy objective.
- BinaryFeaturesExample<T extends Output<T>> - Class in org.tribuo.impl
-
An
Example
backed by a single array of feature names. - BinaryFeaturesExample(Example<T>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Copy constructor.
- BinaryFeaturesExample(T) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output.
- BinaryFeaturesExample(T, float) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a weight.
- BinaryFeaturesExample(T, float, int) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a weight, with an initial size for the feature arrays.
- BinaryFeaturesExample(T, float, Map<String, Object>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output, a weight and the metadata.
- BinaryFeaturesExample(T, String[]) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and an array of names.
- BinaryFeaturesExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a list of features.
- BinaryFeaturesExample(T, Map<String, Object>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and the metadata.
- BinaryFeaturesExample(T, Example<U>, float) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Clones an example's features, but uses the supplied output and weight.
- BinaryResponseProcessor<T extends Output<T>> - Class in org.tribuo.data.columnar.processors.response
-
A
ResponseProcessor
that takes a single value of the field as the positive class and all other values as the negative class. - BinaryResponseProcessor(String, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- BinaryResponseProcessor(List<String>, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- BinaryResponseProcessor(List<String>, List<String>, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- BinaryResponseProcessor(List<String>, List<String>, OutputFactory<T>, boolean) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- BinaryResponseProcessor(List<String>, List<String>, OutputFactory<T>, String, String, boolean) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- binarySearch(List<? extends Comparable<? super T>>, T) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySearch(List<? extends Comparable<? super T>>, T, int, int) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySearch(List<? extends T>, int, ToIntFunction<T>) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySparseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets with sparse features and unknown features in the test data.
- binarySparseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets with sparse features and unknown features in the test data.
- BinningTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which bins values.
- BinningTransformation.BinningTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
BinningTransformation
. - BinningTransformation.BinningType - Enum Class in org.tribuo.transform.transformations
-
The allowed binning types.
- BinningTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
-
Deserialization constructor.
- BOOL - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
bool
- BOOL_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
bool
- BREAK_ITERATOR - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
BreakIteratorTokenizer
. - breakIteratorOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
-
Options for the break iterator tokenizer.
- BreakIteratorTokenizer - Class in org.tribuo.util.tokens.impl
-
A tokenizer wrapping a
BreakIterator
instance. - BreakIteratorTokenizer(Locale) - Constructor for class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
-
Constructs a BreakIteratorTokenizer using the specified locale.
- BreakIteratorTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
BreakIteratorTokenizer
. - BreakIteratorTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
- broadcastIntersectAndAddInPlace(SGDVector, boolean) - Method in class org.tribuo.math.la.DenseMatrix
-
Broadcasts the input vector and adds it to each row/column of the matrix.
- buff - Variable in class org.tribuo.util.tokens.universal.Range
-
The character buffer.
- build() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- build() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- build(Object) - Method in class org.tribuo.util.onnx.ONNXAttribute
-
Builds the attribute proto using the supplied value.
- build(ONNXContext, String[], String) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and output.
- build(ONNXContext, String[], String[]) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and outputs.
- build(ONNXContext, String[], String[], Map<String, Object>) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and outputs.
- build(ONNXContext, String[], String, Map<String, Object>) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and output.
- build(ONNXContext, String, String) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and output.
- build(ONNXContext, String, String[]) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied input and outputs.
- build(ONNXContext, String, String[], Map<String, Object>) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied input and outputs.
- build(ONNXContext, String, String, Map<String, Object>) - Method in enum class org.tribuo.util.onnx.ONNXOperators
-
Builds this node based on the supplied inputs and output.
- BUILD_TIMESTAMP - Static variable in class org.tribuo.Tribuo
-
The build timestamp.
- buildGraph() - Method in class org.tribuo.util.onnx.ONNXContext
-
Builds the ONNX graph represented by this context.
- buildLeNetGraph(String, int, int, int) - Static method in class org.tribuo.interop.tensorflow.example.CNNExamples
-
Builds a LeNet 5 style CNN (usually used for MNIST).
- buildMLPGraph(String, int, int[], int) - Static method in class org.tribuo.interop.tensorflow.example.MLPExamples
-
Builds an MLP which expects the supplied number of inputs, has hiddenSizes.length hidden layers, before emitting numOutput outputs.
- buildModel(ONNXContext, String, long, M) - Static method in interface org.tribuo.ONNXExportable
-
Creates an ONNX model protobuf for the supplied context.
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- buildPartial() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- buildRandomTree(int[], SplittableRandom) - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
-
Builds a CART tree with randomly chosen split points.
- buildRuntimeYaml(String, String) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Builds the runtime.yaml String from the supplied arguments, throwing
IllegalArgumentException
if they are invalid. - buildTensorTypeNode(ONNXShape, OnnxMl.TensorProto.DataType) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a type proto for the specified shape and tensor type.
- buildTree(int[], SplittableRandom, boolean) - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- buildTree(int[], SplittableRandom, boolean) - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
Builds next level of a tree.
- buildTree(int[], SplittableRandom, boolean) - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- buildTree(int[], SplittableRandom, boolean) - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- BYTE - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
A signed byte.
C
- c - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- C_SVC - Enum constant in enum class org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Original SVM algorithm.
- CachedPair<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
A pair of things with a cached hashcode.
- CachedPair(T1, T2) - Constructor for class org.tribuo.util.infotheory.impl.CachedPair
-
Constructs a CachedPair.
- CachedTriple<T1,
T2, T3> - Class in org.tribuo.util.infotheory.impl -
A triple of things.
- CachedTriple(T1, T2, T3) - Constructor for class org.tribuo.util.infotheory.impl.CachedTriple
-
Constructs a CachedTriple.
- cacheProvenance() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- cacheProvenance() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- calculateCountDist(List<T>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Generate the counts for a single vector.
- calculateEntropy(DoubleStream) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy of a stream, assuming each element of the stream is an element of the same probability distribution.
- calculateEntropy(Stream<Double>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy of a stream, assuming each element of the stream is an element of the same probability distribution.
- calculateHashCode() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Overridden hashcode.
- calculateWeightedCountDist(ArrayList<T>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Generate the counts for a single vector.
- CALENDAR_QUARTER - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The calendar quarter of the year.
- canonicalise(FeatureMap) - Method in class org.tribuo.sequence.SequenceExample
-
Reassigns feature name Strings in each Example inside this SequenceExample to point to those in the
FeatureMap
. - canonicalize(FeatureMap) - Method in class org.tribuo.Example
-
Reassigns feature name Strings in the Example to point to those in the
FeatureMap
. - canonicalize(FeatureMap) - Method in class org.tribuo.impl.ArrayExample
- canonicalize(FeatureMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- canonicalize(FeatureMap) - Method in class org.tribuo.impl.ListExample
- CART - Enum constant in enum class org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
-
Builds a CART model.
- CART - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
CARTClassificationTrainer
. - CART_INDEPENDENT - Enum constant in enum class org.tribuo.regression.rtree.TrainTest.TreeType
-
Creates a
CARTRegressionTrainer
which treats each regression dimension independently. - CART_JOINT - Enum constant in enum class org.tribuo.regression.rtree.TrainTest.TreeType
-
Creates a
CARTJointRegressionTrainer
which jointly minimises the impurity across all output dimensions. - CARTClassificationOptions - Class in org.tribuo.classification.dtree
-
Options for building a classification tree trainer.
- CARTClassificationOptions() - Constructor for class org.tribuo.classification.dtree.CARTClassificationOptions
- CARTClassificationOptions.ImpurityType - Enum Class in org.tribuo.classification.dtree
-
The impurity algorithm.
- CARTClassificationOptions.TreeType - Enum Class in org.tribuo.classification.dtree
-
Type of decision tree algorithm.
- CARTClassificationTrainer - Class in org.tribuo.classification.dtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTClassificationTrainer() - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART trainer.
- CARTClassificationTrainer(int, float, boolean, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int, float, float, float, boolean, LabelImpurity, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int, float, float, float, LabelImpurity, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int, float, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- cartImpurity - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Impurity measure to use.
- CARTJointRegressionTrainer - Class in org.tribuo.regression.rtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTJointRegressionTrainer() - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int, boolean) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int, float, float, float, boolean, RegressorImpurity, boolean, long) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int, float, float, float, RegressorImpurity, boolean, long) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- cartMaxDepth - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Maximum depth in the decision tree.
- cartMinChildWeight - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Minimum child weight.
- cartMinImpurityDecrease - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Minimum impurity decrease.
- cartOptions - Variable in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
-
The CART trainer options.
- cartOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for CART trainers.
- cartPrintTree - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Prints the decision tree.
- cartRandomSplit - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Whether to choose split points for features at random.
- CARTRegressionTrainer - Class in org.tribuo.regression.rtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTRegressionTrainer() - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART trainer.
- CARTRegressionTrainer(int) - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART trainer.
- CARTRegressionTrainer(int, float, float, float, boolean, RegressorImpurity, long) - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART Trainer.
- CARTRegressionTrainer(int, float, float, float, RegressorImpurity, long) - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART Trainer.
- cartSeed - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
RNG seed.
- cartSplitFraction - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Fraction of features in split.
- cartTreeAlgorithm - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
-
Tree algorithm to use (options are CART).
- CasingPreprocessor - Class in org.tribuo.data.text.impl
-
A document preprocessor which uppercases or lowercases the input.
- CasingPreprocessor(CasingPreprocessor.CasingOperation) - Constructor for class org.tribuo.data.text.impl.CasingPreprocessor
-
Construct a casing preprocessor.
- CasingPreprocessor.CasingOperation - Enum Class in org.tribuo.data.text.impl
-
The possible casing operations.
- cast(Class<?>) - Method in class org.tribuo.util.onnx.ONNXRef
-
Casts this ONNXRef to a different type using the
ONNXOperators.CAST
operation, and returning the output node of that op. - CAST - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Cast input to specified type.
- castDataset(Dataset<?>, Class<T>) - Static method in class org.tribuo.Dataset
-
Casts the dataset to the specified output type, assuming it is valid.
- castModel(Class<U>) - Method in class org.tribuo.Model
-
Casts the model to the specified output type, assuming it is valid.
- CATEGORICAL - Enum constant in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Unordered categorical features with the values converted into doubles.
- CategoricalIDInfo - Class in org.tribuo
-
Same as a
CategoricalInfo
, but with an additional int id field. - CategoricalIDInfo(CategoricalInfo, int) - Constructor for class org.tribuo.CategoricalIDInfo
-
Constructs a categorical id info copying the information from the supplied info, with the specified id.
- CategoricalInfo - Class in org.tribuo
-
Stores information about Categorical features.
- CategoricalInfo(String) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a new empty categorical info for the supplied feature name.
- CategoricalInfo(CategoricalInfo) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a deep copy of the supplied categorical info.
- CategoricalInfo(CategoricalInfo, String) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a deep copy of the supplied categorical info, with the new feature name.
- CC_NEGATIVE - Static variable in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
The string used in the feature name for negative labels.
- CC_POSITIVE - Static variable in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
The string used in the feature name for positive labels.
- CC_PREFIX - Static variable in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
The prefix for classifier chain added features.
- CC_SEPARATOR - Static variable in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
The joiner character for classifier chain added features.
- CCEnsembleTrainer - Class in org.tribuo.multilabel.ensemble
-
A trainer for an ensemble of randomly ordered Classifier Chains.
- CCEnsembleTrainer(Trainer<Label>, int, long) - Constructor for class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
-
Constructs a classifier chain ensemble trainer.
- cdf - Variable in class org.tribuo.CategoricalInfo
-
The CDF to sample from.
- centroids - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
-
Number of centroids in K-Means.
- centroids - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
Number of clusters to infer.
- ChainHelper - Class in org.tribuo.classification.sgd.crf
-
A collection of helper methods for performing training and inference in a CRF.
- ChainHelper.ChainBPResults - Class in org.tribuo.classification.sgd.crf
-
Belief Propagation results.
- ChainHelper.ChainCliqueValues - Class in org.tribuo.classification.sgd.crf
-
Clique scores within a chain.
- ChainHelper.ChainViterbiResults - Class in org.tribuo.classification.sgd.crf
-
Viterbi output from a linear chain.
- charAt(int) - Method in class org.tribuo.util.tokens.universal.Range
- CheckerboardDataSource - Class in org.tribuo.classification.example
-
Creates a data source using a 2d checkerboard of alternating classes.
- CheckerboardDataSource(int, long, int, double, double) - Constructor for class org.tribuo.classification.example.CheckerboardDataSource
-
Creates a checkboard with the required number of squares per dimension, where each feature value lies between min and max.
- checkIsBinary(Feature) - Static method in class org.tribuo.impl.BinaryFeaturesExample
-
Checks if the supplied feature is binary, if not throw an
IllegalArgumentException
. - CHECKPOINT - Enum constant in enum class org.tribuo.interop.tensorflow.TensorFlowTrainer.TFModelFormat
-
Saves the model state inside a TensorFlow checkpoint, emits a
TensorFlowCheckpointModel
. - checkpointPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Path to the checkpoint base directory.
- Chunk - Class in org.tribuo.classification.sgd.crf
-
Chunk class used for chunk level confidence prediction in the
CRFModel
. - Chunk(int, int[]) - Constructor for class org.tribuo.classification.sgd.crf.Chunk
-
Constructs a chunk.
- Classifiable<T extends Classifiable<T>> - Interface in org.tribuo.classification
-
A tag interface for multi-class and multi-label classification tasks.
- CLASSIFICATION_TOKEN - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Default classification token name.
- ClassificationEnsembleOptions - Class in org.tribuo.classification.ensemble
-
Options for building a classification ensemble.
- ClassificationEnsembleOptions() - Constructor for class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- ClassificationEnsembleOptions.EnsembleType - Enum Class in org.tribuo.classification.ensemble
-
The type of ensemble.
- ClassificationOptions<TRAINER extends Trainer<Label>> - Interface in org.tribuo.classification
-
An
Options
that can produce a classificationTrainer
based on the provided arguments. - ClassifierChainModel - Class in org.tribuo.multilabel.baseline
-
A Classifier Chain Model.
- ClassifierChainTrainer - Class in org.tribuo.multilabel.baseline
-
A trainer for a Classifier Chain.
- ClassifierChainTrainer(Trainer<Label>, long) - Constructor for class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
Builds a classifier chain trainer using the specified member trainer and seed.
- ClassifierChainTrainer(Trainer<Label>, List<String>) - Constructor for class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
Builds a classifier chain trainer using the specified member trainer and seed.
- ClassifierEvaluation<T extends Classifiable<T>> - Interface in org.tribuo.classification.evaluation
-
Defines methods that calculate classification performance, used for both multi-class and multi-label classification.
- ClassifierTrainingNode - Class in org.tribuo.classification.dtree.impl
-
A decision tree node used at training time.
- ClassifierTrainingNode(LabelImpurity, Dataset<Label>, AbstractTrainingNode.LeafDeterminer) - Constructor for class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
-
Constructor which creates the inverted file.
- className - Variable in class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
The tensor class name.
- className - Variable in class org.tribuo.provenance.ModelProvenance
- clear() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- clear() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- clear() - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- clear() - Method in class org.tribuo.classification.MutableLabelInfo
- clear() - Method in class org.tribuo.clustering.MutableClusteringInfo
- clear() - Method in class org.tribuo.impl.ListExample
-
Clears the features from this example.
- clear() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- clear() - Method in class org.tribuo.MutableDataset
-
Clears all the examples out of this dataset, and flushes the FeatureMap, OutputInfo, and transform provenances.
- clear() - Method in class org.tribuo.MutableFeatureMap
-
Clears all the feature observations.
- clear() - Method in interface org.tribuo.MutableOutputInfo
-
Clears the OutputInfo, removing all things it's observed.
- clear() - Method in class org.tribuo.regression.MutableRegressionInfo
- clear() - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Clears all the examples out of this dataset, and flushes the FeatureMap, OutputInfo, and transform provenances.
- clear() - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- clearAlgorithm() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- clearAttribute() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- clearBegin() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 begin = 1;
- clearDataLocation() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- clearDataType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The data type of the tensor.
- clearDenotation() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- clearDenotation() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- clearDim() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- clearDimParam() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- clearDims() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- clearDims() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- clearDimValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
int64 dim_value = 1;
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- clearDocString() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- clearDomain() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- clearDomain() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- clearDomain() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- clearDomain() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- clearDoubleData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- clearElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- clearElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- clearElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- clearEnd() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 end = 2;
- clearExternalData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- clearF() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
Exactly ONE of the following fields must be present for this version of the IR
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- clearField(Descriptors.FieldDescriptor) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- clearFloatData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- clearFloats() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- clearG() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- clearGraph() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- clearGraphs() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- clearI() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
int
- clearIndices() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- clearInitialization() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- clearInitializationBinding() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- clearInitializer() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- clearInput() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- clearInput() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- clearInt32Data() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- clearInt64Data() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- clearInts() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- clearIrVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the IR this model targets.
- clearKey() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- clearKeyType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- clearMapType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- clearMetadataProps() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- clearModelVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the graph encoded.
- clearName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- clearName() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- clearName() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- clearName() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- clearName() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- clearName() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- clearNode() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- clearOneof(Descriptors.OneofDescriptor) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- clearOpaqueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- clearOpsetImport() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- clearOpType() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- clearOutput() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- clearOutput() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- clearProducerName() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- clearProducerVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- clearQuantizationAnnotation() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- clearQuantParameterTensorNames() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- clearRawData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- clearRefAttrName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- clearS() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
UTF-8 string
- clearSegment() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- clearSequenceType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- clearShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- clearShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- clearSparseInitializer() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- clearSparseTensor() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- clearSparseTensors() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- clearSparseTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- clearStringData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- clearStrings() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- clearT() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- clearTensorName() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- clearTensors() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- clearTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- clearTrainingInfo() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- clearType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The type field MUST be present for this version of the IR.
- clearType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- clearUint64Data() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- clearUpdateBinding() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- clearValue() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- clearValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- clearValue() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- clearValueInfo() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- clearValues() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- clearValueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- clearVersion() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The version of the operator set being identified.
- clone() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- clone() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- clone() - Method in class org.tribuo.Feature
- clone() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.WhitespaceTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- clone() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Clones a tokenizer with it's configuration.
- clone() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- close() - Method in class org.tribuo.data.csv.CSVIterator
- close() - Method in class org.tribuo.data.sql.SQLDataSource
- close() - Method in class org.tribuo.interop.oci.OCIModel
- close() - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
- close() - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- close() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
-
Close the session and graph if they exist.
- close() - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
- close() - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
- close() - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
- close() - Method in class org.tribuo.interop.tensorflow.TensorMap
- close() - Method in class org.tribuo.json.JsonFileIterator
- closed - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- closeTensorCollection(Collection<Tensor>) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
Closes a collection of
Tensor
s. - CLS - Enum constant in enum class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.OutputPooling
-
Returns the CLS embedding.
- CLS_AND_MEAN - Enum constant in enum class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.OutputPooling
-
Takes the average of the token embeddings and the CLS token.
- CLS_OUTPUT - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Output name for the classification token output.
- clusterCounts - Variable in class org.tribuo.clustering.ClusteringInfo
- ClusterID - Class in org.tribuo.clustering
-
A clustering id.
- ClusterID(int) - Constructor for class org.tribuo.clustering.ClusterID
-
Creates a ClusterID with the sentinel score of
Double.NaN
. - ClusterID(int, double) - Constructor for class org.tribuo.clustering.ClusterID
-
Creates a ClusterID with the specified id number and score.
- CLUSTERING - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Clustering, maps to Tribuo's
ClusterID
. - ClusteringDataGenerator - Class in org.tribuo.clustering.example
-
Generates three example train and test datasets, used for unit testing.
- ClusteringDataGenerator() - Constructor for class org.tribuo.clustering.example.ClusteringDataGenerator
- ClusteringEvaluation - Interface in org.tribuo.clustering.evaluation
-
An
Evaluation
for clustering tasks. - ClusteringEvaluator - Class in org.tribuo.clustering.evaluation
- ClusteringEvaluator() - Constructor for class org.tribuo.clustering.evaluation.ClusteringEvaluator
- ClusteringFactory - Class in org.tribuo.clustering
-
A factory for making ClusterID related classes.
- ClusteringFactory() - Constructor for class org.tribuo.clustering.ClusteringFactory
-
ClusteringFactory is stateless and immutable, but we need to be able to construct them via the config system.
- ClusteringFactory.ClusteringFactoryProvenance - Class in org.tribuo.clustering
-
Provenance for
ClusteringFactory
. - ClusteringFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
-
Rebuilds a clustering factory provenance from the marshalled form.
- ClusteringInfo - Class in org.tribuo.clustering
-
The base class for a ClusterID OutputInfo.
- ClusteringMetric - Class in org.tribuo.clustering.evaluation
-
A metric for evaluating clustering problems.
- ClusteringMetric(MetricTarget<ClusterID>, String, BiFunction<MetricTarget<ClusterID>, ClusteringMetric.Context, Double>) - Constructor for class org.tribuo.clustering.evaluation.ClusteringMetric
-
Constructs a clustering metric using the supplied parameters.
- ClusteringMetrics - Enum Class in org.tribuo.clustering.evaluation
-
Default metrics for evaluating clusterings.
- cmi(List<T1>, List<T2>, Set<List<T3>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the conditional mutual information between first and second conditioned on the set.
- CNNExamples - Class in org.tribuo.interop.tensorflow.example
-
Static factory methods which produce Convolutional Neural Network architectures.
- coeff - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Intercept in kernel function.
- COLUMNAR - Enum constant in enum class org.tribuo.data.DataOptions.InputFormat
-
A CSV file parsed using a configured
RowProcessor
. - ColumnarDataSource<T extends Output<T>> - Class in org.tribuo.data.columnar
-
A
ConfigurableDataSource
base class which takes columnar data (e.g., csv or DB table rows) and generatesExample
s. - ColumnarDataSource() - Constructor for class org.tribuo.data.columnar.ColumnarDataSource
-
For OLCUT.
- ColumnarDataSource(OutputFactory<T>, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.columnar.ColumnarDataSource
-
Constructs a columnar data source with the specified parameters.
- ColumnarExplainer<T extends Output<T>> - Interface in org.tribuo.classification.explanations
-
An explainer for data using Tribuo's columnar data package.
- ColumnarFeature - Class in org.tribuo.data.columnar
-
A Feature with extra bookkeeping for use inside the columnar package.
- ColumnarFeature(String, double) - Constructor for class org.tribuo.data.columnar.ColumnarFeature
-
Constructs a
ColumnarFeature
from the field name. - ColumnarFeature(String, String, double) - Constructor for class org.tribuo.data.columnar.ColumnarFeature
-
Constructs a
ColumnarFeature
from the field name, column entry and value. - ColumnarFeature(String, String, String, double) - Constructor for class org.tribuo.data.columnar.ColumnarFeature
-
Constructs a
ColumnarFeature
which is the conjunction of features from two fields. - ColumnarIterator - Class in org.tribuo.data.columnar
-
An abstract class for iterators that read data in to a columnar format, usually from a file of some kind.
- ColumnarIterator() - Constructor for class org.tribuo.data.columnar.ColumnarIterator
-
Constructs a ColumnarIterator wrapped around a buffering spliterator.
- ColumnarIterator(int, int, long) - Constructor for class org.tribuo.data.columnar.ColumnarIterator
-
Constructs a ColumnarIterator wrapped around a buffering spliterator.
- ColumnarIterator.Row - Class in org.tribuo.data.columnar
-
A representation of a row of untyped data from a columnar data source.
- columnSum() - Method in class org.tribuo.math.la.DenseMatrix
-
Returns the dense vector containing each column sum.
- columnSum(int) - Method in class org.tribuo.math.la.DenseMatrix
-
Calculates the sum of the specified column.
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.ensemble.VotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>, float[]) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>, float[]) - Method in class org.tribuo.classification.ensemble.VotingCombiner
- combine(ImmutableOutputInfo<MultiLabel>, List<Prediction<MultiLabel>>) - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
- combine(ImmutableOutputInfo<MultiLabel>, List<Prediction<MultiLabel>>, float[]) - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
- combine(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- combine(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>, float[]) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- combine(ImmutableOutputInfo<T>, List<Prediction<T>>) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Combine the predictions.
- combine(ImmutableOutputInfo<T>, List<Prediction<T>>, float[]) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Combine the supplied predictions.
- combiner - Variable in class org.tribuo.ensemble.BaggingTrainer
- combiner - Variable in class org.tribuo.ensemble.WeightedEnsembleModel
- COMMA - Enum constant in enum class org.tribuo.data.DataOptions.Delimiter
-
Comma separator.
- compareTo(Feature) - Method in class org.tribuo.Feature
- compareTo(MatrixIterator) - Method in interface org.tribuo.math.la.MatrixIterator
- compareTo(VectorIterator) - Method in interface org.tribuo.math.la.VectorIterator
- compareTo(InvertedFeature) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- compartmentID - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Compartment ID.
- compartmentID - Variable in class org.tribuo.interop.oci.OCIUtil.OCIDSConfig
-
OCI compartment ID.
- CompletelyConfigurableTrainTest - Class in org.tribuo.data
-
Build and run a predictor for a standard dataset.
- CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.data
-
Command line options.
- COMPLEX128 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
complex with float64 real and imaginary components
- COMPLEX128_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
complex with float64 real and imaginary components
- COMPLEX64 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
complex with float32 real and imaginary components
- COMPLEX64_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
complex with float32 real and imaginary components
- compute(C) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Compute the result of this metric from the input context.
- compute(AnomalyMetric.Context) - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- compute(LabelMetric.Context) - Method in class org.tribuo.classification.evaluation.LabelMetric
- compute(ClusteringMetric.Context) - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- compute(MultiLabelMetric.Context) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- compute(RegressionMetric.Context) - Method in class org.tribuo.regression.evaluation.RegressionMetric
- computeDepth(int, Node<T>) - Static method in class org.tribuo.common.tree.TreeModel
- computeResults(C, Set<? extends EvaluationMetric<T, C>>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Computes each metric given the context.
- computeResults(C, Set<? extends EvaluationMetric<T, C>>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Computes each metric given the context.
- CONCAT - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Concatenates tensors.
- ConcentricCirclesDataSource - Class in org.tribuo.classification.example
-
A data source for two concentric circles, one per class.
- ConcentricCirclesDataSource(int, long, double, double) - Constructor for class org.tribuo.classification.example.ConcentricCirclesDataSource
-
Constructs a data source for two concentric circles, one per class.
- condaName - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
OCI DS conda environment name.
- condaName - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The Conda environment name.
- condaPath - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
OCI DS conda environment path in object storage.
- condaPath - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The Conda environment path in object storage.
- conditionalEntropy(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional entropy of two arrays, using histogram probability estimators.
- conditionalMI(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- conditionalMI(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted conditional mutual information, using histogram probability estimators.
- conditionalMI(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- conditionalMI(TripleDistribution<T1, T2, T3>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted conditional mutual information, using histogram probability estimators.
- conditionalMI(WeightedTripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted conditional mutual information, using histogram probability estimators.
- conditionalMIFlipped(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- ConfidencePredictingSequenceModel - Class in org.tribuo.classification.sequence
-
A Sequence model which can provide confidence predictions for subsequence predictions.
- ConfidencePredictingSequenceModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>) - Constructor for class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
-
Constructs a ConfidencePredictingSequenceModel with the supplied parameters.
- ConfidencePredictingSequenceModel.Subsequence - Class in org.tribuo.classification.sequence
-
A range class used to define a subsequence of a SequenceExample.
- ConfigurableDataSource<T extends Output<T>> - Interface in org.tribuo
-
It's a
DataSource
that's alsoConfigurable
. - ConfigurableTestOptions() - Constructor for class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- ConfigurableTrainTest - Class in org.tribuo.classification.experiments
-
Build and run a classifier for a standard dataset.
- ConfigurableTrainTest - Class in org.tribuo.data
-
Build and run a predictor for a standard dataset.
- ConfigurableTrainTest() - Constructor for class org.tribuo.classification.experiments.ConfigurableTrainTest
- ConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.classification.experiments
-
Command line options.
- ConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.data
-
Command line options.
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- configured - Variable in class org.tribuo.data.columnar.RowProcessor
- ConfiguredDataSourceProvenance - Interface in org.tribuo.provenance
-
A tag interface for configurable data source provenance.
- confusion(Label, Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- confusion(Label, Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Note: confusion is not stored in the underlying map, so it won't show up in aggregation.
- confusion(MultiLabel, MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- confusion(MultiLabel, MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- confusion(T, T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of times label
truth
was predicted as labelpredicted
. - confusion(T, T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of times the supplied predicted label was returned for the supplied true class.
- ConfusionMatrix<T extends Classifiable<T>> - Interface in org.tribuo.classification.evaluation
-
A confusion matrix for
Classifiable
s. - ConfusionMetrics - Class in org.tribuo.classification.evaluation
-
Static functions for computing classification metrics based on a
ConfusionMatrix
. - confusionString() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns a confusion matrix formatted String for display.
- CONJUNCTION - Static variable in class org.tribuo.data.columnar.ColumnarFeature
-
The string used as the field name of conjunction features.
- connString - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
Connection string to the SQL database
- constant(String, float) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a float scalar constant for this ONNXContext.
- constant(String, long) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a long scalar constant for this ONNXContext.
- CONSTANT - Enum constant in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the supplied label for all inputs.
- CONSTANT - Enum constant in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the specified constant value.
- CONSTANT_OF_SHAPE - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
- CONSTANTSGD - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
SGD with a constant learning rate.
- CONSTRAINED_BP - Enum constant in enum class org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Constrained Belief Propagation from "Confidence Estimation for Information Extraction" Culotta and McCallum 2004.
- constrainedBeliefPropagation(ChainHelper.ChainCliqueValues, int[]) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs constrained belief propagation on a linear chain CRF.
- constructFromLists(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
-
Generates the counts for two vectors.
- constructFromLists(List<T1>, List<T2>, List<Double>) - Static method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Generates the counts for two vectors.
- constructFromLists(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
Constructs a TripleDistribution from three lists of the same length.
- constructFromLists(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
Constructs a WeightedTripleDistribution from three lists of the same length and a list of weights of the same length.
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
-
Constructs a distribution from a joint count.
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>, int, int) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
-
Constructs a distribution from a joint count.
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
-
Constructs a joint distribution from the counts.
- constructFromMap(Map<CachedPair<T1, T2>, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Generates a WeightedPairDistribution by generating the marginal distributions for the first and second elements.
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
Constructs a TripleDistribution by marginalising the supplied joint distribution.
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>, int, int, int, int, int, int) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
Constructs a TripleDistribution by marginalising the supplied joint distribution.
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>, Map<CachedPair<T1, T2>, MutableLong>, Map<CachedPair<T1, T3>, MutableLong>, Map<CachedPair<T2, T3>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>, Map<T3, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
Constructs a TripleDistribution by marginalising the supplied joint distribution.
- constructFromMap(Map<CachedTriple<T1, T2, T3>, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
Constructs a WeightedTripleDistribution by marginalising the supplied joint distribution.
- constructInfoForExternalModel(Map<Event, Integer>) - Method in class org.tribuo.anomaly.AnomalyFactory
- constructInfoForExternalModel(Map<Label, Integer>) - Method in class org.tribuo.classification.LabelFactory
- constructInfoForExternalModel(Map<ClusterID, Integer>) - Method in class org.tribuo.clustering.ClusteringFactory
-
Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.
- constructInfoForExternalModel(Map<MultiLabel, Integer>) - Method in class org.tribuo.multilabel.MultiLabelFactory
- constructInfoForExternalModel(Map<Regressor, Integer>) - Method in class org.tribuo.regression.RegressionFactory
- constructInfoForExternalModel(Map<T, Integer>) - Method in interface org.tribuo.OutputFactory
-
Creates an
ImmutableOutputInfo
from the supplied mapping. - contains(int) - Method in class org.tribuo.impl.IndexedArrayExample
-
Does this example contain a feature with id i.
- contains(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- contains(String) - Method in class org.tribuo.multilabel.MultiLabel
-
Does this MultiLabel contain this string?
- contains(Label) - Method in class org.tribuo.multilabel.MultiLabel
-
Does this MultiLabel contain this Label?
- containsAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
- containsMetadata(String) - Method in class org.tribuo.Example
-
Test if the metadata contains the supplied key.
- context - Variable in class org.tribuo.util.onnx.ONNXRef
- Context(Model<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric.Context
-
Constructs a context and compute the confusion matrix using the specified model and predictions.
- Context(SequenceModel<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric.Context
-
Constructs a context and compute the confusion matrix using the specified model and predictions.
- convert(byte) - Static method in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
Converts the byte into the enum.
- convert(List<? extends Example<?>>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- convert(List<? extends Example<?>>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.FeatureConverter
- convert(List<? extends Example<?>>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.ImageConverter
-
Transform implicitly pads unseen values with zero.
- convert(List<? extends SGDVector>) - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- convert(List<? extends SGDVector>) - Method in interface org.tribuo.interop.tensorflow.FeatureConverter
- convert(List<? extends SGDVector>) - Method in class org.tribuo.interop.tensorflow.ImageConverter
- convert(Example<?>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- convert(Example<?>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.FeatureConverter
- convert(Example<?>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.ImageConverter
-
Transform implicitly pads unseen values with zero.
- convert(SGDVector) - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- convert(SGDVector) - Method in interface org.tribuo.interop.tensorflow.FeatureConverter
- convert(SGDVector) - Method in class org.tribuo.interop.tensorflow.ImageConverter
- convert(SequenceExample<Label>, ImmutableFeatureMap, ImmutableOutputInfo<Label>) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Deprecated.
- convert(SequenceExample<T>, ImmutableFeatureMap) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Deprecated.As it's replaced with
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap)
which is more flexible. - convertBatchOutput(ImmutableOutputInfo<Label>, List<float[][]>, int[], Example<Label>[]) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- convertBatchOutput(ImmutableOutputInfo<Regressor>, List<float[][]>, int[], Example<Regressor>[]) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- convertBatchOutput(ImmutableOutputInfo<T>, List<float[][]>, int[], Example<T>[]) - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction
. - convertDataset(Dataset<T>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertDataset(Dataset<T>, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExample(Example<T>, ImmutableFeatureMap) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExample(Example<T>, ImmutableFeatureMap, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Converts an examples into a DMatrix.
- convertExamples(Iterable<Example<T>>, ImmutableFeatureMap) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExamples(Iterable<Example<T>>, ImmutableFeatureMap, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Converts an iterable of examples into a DMatrix.
- convertFeatures(SparseVector) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.ExternalModel
-
Converts from a SparseVector using the external model's indices into the ingestion format for the external model.
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.oci.OCIModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.ExternalModel
-
Converts from a list of SparseVector using the external model's indices into the ingestion format for the external model.
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.oci.OCIModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
- convertOutput(float[][], int[], List<Example<T>>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertOutput(float[][], int, Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertOutput(List<OnnxValue>, int[], List<Example<T>>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Converts a tensor into a prediction.
- convertOutput(List<OnnxValue>, int, Example<T>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Converts a tensor into a prediction.
- convertOutput(Tensor, int[], List<Example<T>>) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
-
Converts a tensor into a prediction.
- convertOutput(Tensor, int, Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
-
Converts a tensor into a prediction.
- convertOutput(ImmutableOutputInfo<Label>, List<float[]>, int, Example<Label>) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- convertOutput(ImmutableOutputInfo<Regressor>, List<float[]>, int, Example<Regressor>) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- convertOutput(ImmutableOutputInfo<T>, List<float[]>, int, Example<T>) - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction
. - convertOutput(TensorMap, int[], List<Example<T>>) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
-
Converts a tensor into a prediction.
- convertOutput(TensorMap, int, Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
-
Converts a tensor into a prediction.
- convertOutput(DenseMatrix, int[], List<Example<Label>>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.oci.OCILabelConverter
- convertOutput(DenseMatrix, int[], List<Example<MultiLabel>>, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- convertOutput(DenseMatrix, int[], List<Example<Regressor>>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.oci.OCIRegressorConverter
- convertOutput(DenseMatrix, int[], List<Example<T>>) - Method in class org.tribuo.interop.oci.OCIModel
- convertOutput(DenseMatrix, int[], List<Example<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.oci.OCIOutputConverter
-
Converts a dense matrix into a list of predictions of the appropriate type.
- convertOutput(DenseMatrix, int, Example<T>) - Method in class org.tribuo.interop.oci.OCIModel
- convertOutput(DenseVector, int, Example<Label>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.oci.OCILabelConverter
- convertOutput(DenseVector, int, Example<MultiLabel>, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- convertOutput(DenseVector, int, Example<Regressor>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.oci.OCIRegressorConverter
- convertOutput(DenseVector, int, Example<T>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.oci.OCIOutputConverter
-
Converts a dense vector into a single prediction of the appropriate type.
- convertOutput(V, int[], List<Example<T>>) - Method in class org.tribuo.interop.ExternalModel
-
Converts the output of the external model into a list of
Prediction
s. - convertOutput(V, int, Example<T>) - Method in class org.tribuo.interop.ExternalModel
-
Converts the output of the external model into a
Prediction
. - convertSingleExample(Example<T>, ImmutableFeatureMap, ArrayList<Float>, ArrayList<Integer>, ArrayList<Long>, long) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Writes out the features from an example into the three supplied
ArrayList
s. - convertSparseVector(SparseVector) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used when predicting with an externally trained XGBoost model.
- convertSparseVectors(List<SparseVector>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used when predicting with an externally trained XGBoost model.
- convertToBatchOutput(Tensor, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToBatchOutput(Tensor, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToBatchOutput(Tensor, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToBatchOutput(Tensor, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts a
Tensor
containing multiple outputs into a list ofOutput
s. - convertToBatchPrediction(Tensor, ImmutableOutputInfo<Label>, int[], List<Example<Label>>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToBatchPrediction(Tensor, ImmutableOutputInfo<MultiLabel>, int[], List<Example<MultiLabel>>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToBatchPrediction(Tensor, ImmutableOutputInfo<Regressor>, int[], List<Example<Regressor>>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToBatchPrediction(Tensor, ImmutableOutputInfo<T>, int[], List<Example<T>>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts a
Tensor
containing multiple outputs into a list ofPrediction
s. - convertToCheckpointModel(String, String) - Method in class org.tribuo.interop.tensorflow.TensorFlowNativeModel
-
Creates a
TensorFlowCheckpointModel
version of this model. - convertToDense() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- convertToDense() - Method in interface org.tribuo.math.optimisers.util.ShrinkingTensor
-
Converts the tensor into a dense tensor.
- convertToDense() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- convertToDenseVector(ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.multilabel.MultiLabel
-
Converts this MultiLabel into a DenseVector using the indices from the output info.
- convertToMap(ObjectNode) - Static method in class org.tribuo.json.JsonUtil
-
Converts a Json node into a Map from String to String for use in downstream processing by
RowProcessor
. - convertToNativeModel() - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Creates a
TensorFlowNativeModel
version of this model. - convertToOutput(Tensor, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToOutput(Tensor, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToOutput(Tensor, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToOutput(Tensor, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts a
Tensor
into the specified output type. - convertToPrediction(Tensor, ImmutableOutputInfo<Label>, int, Example<Label>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToPrediction(Tensor, ImmutableOutputInfo<MultiLabel>, int, Example<MultiLabel>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToPrediction(Tensor, ImmutableOutputInfo<Regressor>, int, Example<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToPrediction(Tensor, ImmutableOutputInfo<T>, int, Example<T>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts a
Tensor
into aPrediction
. - convertToSparseVector(ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.multilabel.MultiLabel
-
Converts this MultiLabel into a SparseVector using the indices from the output info.
- convertToTensor(List<Example<Label>>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToTensor(List<Example<MultiLabel>>, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToTensor(List<Example<Regressor>>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToTensor(List<Example<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts a list of
Example
into aTensor
representing all the outputs in the list. - convertToTensor(Label, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelConverter
- convertToTensor(MultiLabel, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- convertToTensor(Regressor, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- convertToTensor(T, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Converts an
Output
into aTensor
representing it's output. - convertToVector(SequenceExample<Label>, ImmutableFeatureMap, ImmutableOutputInfo<Label>) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Converts a
SequenceExample
into an array ofSGDVector
s and labels suitable for CRF prediction. - convertToVector(SequenceExample<T>, ImmutableFeatureMap) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Converts a
SequenceExample
into an array ofSGDVector
s suitable for CRF prediction. - convertTree() - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
- convertTree() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
Converts a tree from a training representation to the final inference time representation.
- convertTree() - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- convertTree() - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- copy() - Method in class org.tribuo.anomaly.AnomalyInfo
- copy() - Method in class org.tribuo.anomaly.Event
- copy() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- copy() - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- copy() - Method in class org.tribuo.CategoricalIDInfo
- copy() - Method in class org.tribuo.CategoricalInfo
- copy() - Method in class org.tribuo.classification.ImmutableLabelInfo
- copy() - Method in class org.tribuo.classification.Label
- copy() - Method in class org.tribuo.classification.LabelInfo
- copy() - Method in class org.tribuo.classification.MutableLabelInfo
- copy() - Method in class org.tribuo.clustering.ClusterID
- copy() - Method in class org.tribuo.clustering.ClusteringInfo
- copy() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- copy() - Method in class org.tribuo.clustering.MutableClusteringInfo
- copy() - Method in class org.tribuo.common.sgd.FMParameters
- copy() - Method in class org.tribuo.common.tree.AbstractTrainingNode
- copy() - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Returns a copy of the elements in use.
- copy() - Method in class org.tribuo.common.tree.LeafNode
- copy() - Method in interface org.tribuo.common.tree.Node
-
Copies the node and it's children.
- copy() - Method in class org.tribuo.common.tree.SplitNode
- copy() - Method in class org.tribuo.data.columnar.RowProcessor
-
Deprecated.In a future release this API will change, in the meantime this is the correct way to get a row processor with clean state.
When using regexMappingProcessors, RowProcessor is stateful in a way that can sometimes make it fail the second time it is used. Concretely:
RowProcessor rp; Dataset ds1 = new MutableDataset(new CSVDataSource(csvfile1, rp)); Dataset ds2 = new MutableDataset(new CSVDataSource(csvfile2, rp)); // this may fail due to state in rp
This method returns a RowProcessor with clean state and the same configuration as this row processor. - copy() - Method in class org.tribuo.Example
-
Returns a deep copy of this Example.
- copy() - Method in class org.tribuo.impl.ArrayExample
- copy() - Method in class org.tribuo.impl.BinaryFeaturesExample
- copy() - Method in class org.tribuo.impl.IndexedArrayExample
- copy() - Method in class org.tribuo.impl.ListExample
- copy() - Method in interface org.tribuo.math.FeedForwardParameters
-
Returns a copy of the parameters.
- copy() - Method in class org.tribuo.math.la.DenseMatrix
-
Copies the matrix.
- copy() - Method in class org.tribuo.math.la.DenseSparseMatrix
- copy() - Method in class org.tribuo.math.la.DenseVector
- copy() - Method in interface org.tribuo.math.la.Matrix
-
Copies the matrix.
- copy() - Method in interface org.tribuo.math.la.SGDVector
-
Returns a deep copy of this vector.
- copy() - Method in class org.tribuo.math.la.SparseVector
- copy() - Method in interface org.tribuo.math.la.Tensor
-
Returns a copy of this Tensor.
- copy() - Method in class org.tribuo.math.LinearParameters
- copy() - Method in class org.tribuo.math.optimisers.AdaDelta
- copy() - Method in class org.tribuo.math.optimisers.AdaGrad
- copy() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- copy() - Method in class org.tribuo.math.optimisers.Adam
- copy() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- copy() - Method in class org.tribuo.math.optimisers.Pegasos
- copy() - Method in class org.tribuo.math.optimisers.RMSProp
- copy() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- copy() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Copies a gradient optimiser with it's configuration.
- copy() - Method in class org.tribuo.Model
-
Copies a model, returning a deep copy of any mutable state, and a shallow copy otherwise.
- copy() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- copy() - Method in class org.tribuo.multilabel.MultiLabel
- copy() - Method in class org.tribuo.multilabel.MultiLabelInfo
- copy() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- copy() - Method in interface org.tribuo.Output
-
Deep copy of the output up to it's immutable state.
- copy() - Method in interface org.tribuo.OutputInfo
-
Generates a copy of this OutputInfo, including it's mutability.
- copy() - Method in class org.tribuo.RealIDInfo
- copy() - Method in class org.tribuo.RealInfo
- copy() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- copy() - Method in class org.tribuo.regression.MutableRegressionInfo
- copy() - Method in class org.tribuo.regression.RegressionInfo
- copy() - Method in class org.tribuo.regression.Regressor
- copy() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- copy() - Method in class org.tribuo.sequence.SequenceExample
-
Returns a deep copy of this SequenceExample.
- copy() - Method in class org.tribuo.SparseModel
- copy() - Method in interface org.tribuo.VariableInfo
-
Returns a copy of this variable info.
- copy(String) - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Returns a copy of this FieldProcessor bound to the supplied newFieldName.
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Note: the copy shares the text pipeline with the original.
- copy(String, EnsembleModelProvenance, List<Model<T>>) - Method in class org.tribuo.ensemble.EnsembleModel
-
Copies this ensemble model.
- copy(String, EnsembleModelProvenance, List<Model<T>>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- copy(String, ModelProvenance) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyModel
- copy(String, ModelProvenance) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.sgd.fm.FMClassificationModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- copy(String, ModelProvenance) - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
- copy(String, ModelProvenance) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.nearest.KNNModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.tree.TreeModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.xgboost.XGBoostModel
- copy(String, ModelProvenance) - Method in class org.tribuo.ensemble.EnsembleModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.oci.OCIModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorFlowNativeModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.Model
-
Copies a model, replacing its provenance and name with the supplied values.
- copy(String, ModelProvenance) - Method in class org.tribuo.multilabel.baseline.ClassifierChainModel
- copy(String, ModelProvenance) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- copy(String, ModelProvenance) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelModel
- copy(String, ModelProvenance) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.sgd.fm.FMRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.slm.SparseLinearModel
- copy(String, ModelProvenance) - Method in class org.tribuo.transform.TransformedModel
- copyDataset(Dataset<T>) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
- copyDataset(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, Merger) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(SequenceDataset<T>) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(SequenceDataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
- copyDataset(SequenceDataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, Merger) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyModel(Model) - Static method in class org.tribuo.common.liblinear.LibLinearModel
-
Copies the model by writing it out to a String and loading it back in.
- copyModel(svm_model) - Static method in class org.tribuo.common.libsvm.LibSVMModel
-
Copies an svm_model, as it does not provide a copy method.
- copyParameters(svm_parameter) - Static method in class org.tribuo.common.libsvm.SVMParameters
-
Deep copy of the svm_parameters including the arrays.
- copyParams(Map<String, ?>) - Method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Returns a copy of the supplied parameter map which has the appropriate type for passing to XGBoost.train.
- copyResourceToTmp(String) - Static method in class org.tribuo.tests.Resources
-
Copies a classpath resource to a temporary file.
- copyValues(int) - Method in class org.tribuo.impl.ArrayExample
-
Returns a copy of the feature values array at the specific size.
- CoreTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI Options for all the tokenizers in the core package.
- CoreTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.CoreTokenizerOptions
- CoreTokenizerOptions.CoreTokenizerType - Enum Class in org.tribuo.util.tokens.options
-
Tokenizer type.
- coreTokenizerType - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
-
Type of tokenizer
- CORRELATED - Enum constant in enum class org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Correlated data.
- COSINE - Enum constant in enum class org.tribuo.clustering.hdbscan.HdbscanTrainer.Distance
-
Cosine similarity as a distance measure.
- COSINE - Enum constant in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Cosine similarity as a distance measure.
- COSINE - Enum constant in enum class org.tribuo.common.nearest.KNNTrainer.Distance
-
Cosine similarity used as a distance measure.
- cosineDistance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the cosine distance of two vectors.
- cosineSimilarity(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the cosine similarity of two vectors.
- cost - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- cost - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
Cost penalty for SVM.
- count - Variable in class org.tribuo.SkeletalVariableInfo
-
How often the feature occurs in the dataset.
- count - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
-
The number of samples this distribution has seen.
- count - Variable in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The number of samples in this distribution.
- count - Variable in class org.tribuo.util.infotheory.impl.WeightCountTuple
-
The current count.
- count - Variable in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
The sample count.
- count - Variable in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The sample count.
- countMap - Variable in class org.tribuo.regression.RegressionInfo
- CREATE_AND_DEPLOY - Enum constant in enum class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions.Mode
-
Create a Model artifact, upload it to OCI and create a Model Deployment.
- createBootstrapView(Dataset<T>, int, long) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset.
- createBootstrapView(Dataset<T>, int, long, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset.
- createConstantTrainer(double) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return a fixed value.
- createConstantTrainer(String) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return a fixed label.
- createContext(Model<Event>, List<Prediction<Event>>) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createContext(Model<Event>, List<Prediction<Event>>) - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- createContext(Model<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createContext(Model<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.evaluation.LabelMetric
- createContext(Model<ClusterID>, List<Prediction<ClusterID>>) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createContext(Model<ClusterID>, List<Prediction<ClusterID>>) - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- createContext(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createContext(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- createContext(Model<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createContext(Model<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.evaluation.RegressionMetric
- createContext(Model<T>, List<Prediction<T>>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Create the context needed for evaluation.
- createContext(Model<T>, List<Prediction<T>>) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Creates the context this metric uses to compute it's value.
- createContext(Model<T>, Dataset<T>) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Creates the metric context used to compute this metric's value, generating
Prediction
s for eachExample
in the supplied dataset. - createContext(SequenceModel<Label>, List<List<Prediction<Label>>>) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createContext(SequenceModel<T>, List<List<Prediction<T>>>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Create the context needed for evaluation.
- createDeepCopy(Dataset<T>) - Static method in class org.tribuo.MutableDataset
-
Creates a deep copy of the supplied
Dataset
which is mutable. - createDenseMatrix(double[][]) - Static method in class org.tribuo.math.la.DenseMatrix
-
Defensively copies the values before construction.
- createDenseVector(double[]) - Static method in class org.tribuo.math.la.DenseVector
-
Defensively copies the values before construction.
- createDenseVector(Example<T>, ImmutableFeatureMap, boolean) - Static method in class org.tribuo.math.la.DenseVector
-
Builds a
DenseVector
from anExample
. - createEnsembleFromExistingModels(String, List<Model<T>>, EnsembleCombiner<T>) - Static method in class org.tribuo.ensemble.WeightedEnsembleModel
-
Creates an ensemble from existing models.
- createEnsembleFromExistingModels(String, List<Model<T>>, EnsembleCombiner<T>, float[]) - Static method in class org.tribuo.ensemble.WeightedEnsembleModel
-
Creates an ensemble from existing models.
- createEvaluation(C, Map<MetricID<T>, Double>, EvaluationProvenance) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Create an evaluation for the given results
- createEvaluation(C, Map<MetricID<T>, Double>, EvaluationProvenance) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Create an evaluation for the given results
- createEvaluation(AnomalyMetric.Context, Map<MetricID<Event>, Double>, EvaluationProvenance) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createEvaluation(LabelMetric.Context, Map<MetricID<Label>, Double>, EvaluationProvenance) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createEvaluation(LabelMetric.Context, Map<MetricID<Label>, Double>, EvaluationProvenance) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createEvaluation(ClusteringMetric.Context, Map<MetricID<ClusterID>, Double>, EvaluationProvenance) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createEvaluation(MultiLabelMetric.Context, Map<MetricID<MultiLabel>, Double>, EvaluationProvenance) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createEvaluation(RegressionMetric.Context, Map<MetricID<Regressor>, Double>, EvaluationProvenance) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createFeatureMap(Set<String>) - Static method in class org.tribuo.interop.ExternalModel
-
Creates an immutable feature map from a set of feature names.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
Creates the feature vector.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
Creates the feature vector.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.slm.SparseLinearModel
-
Creates the feature vector.
- createFromPairList(List<Pair<String, Boolean>>) - Static method in class org.tribuo.multilabel.MultiLabel
-
Creates a MultiLabel from a list of dimensions.
- createFromPairList(List<Pair<String, Double>>) - Static method in class org.tribuo.regression.Regressor
-
Creates a Regressor from a list of dimension tuples.
- createFromSparseVectors(SparseVector[]) - Static method in class org.tribuo.math.la.DenseSparseMatrix
-
Defensively copies the values.
- createGaussianTrainer(long) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which sample the output from a gaussian distribution fit to the training data.
- createIDXData(IDXDataSource.IDXType, int[], double[]) - Static method in class org.tribuo.datasource.IDXDataSource.IDXData
-
Constructs an IDXData, validating the input and defensively copying it.
- createLabel(Label) - Method in class org.tribuo.multilabel.MultiLabel
-
Creates a binary label from this multilabel.
- createMeanTrainer() - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the mean of the training data.
- createMedianTrainer() - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the median of the training data.
- createMetrics(Model<Event>) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createMetrics(Model<Label>) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createMetrics(Model<ClusterID>) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createMetrics(Model<MultiLabel>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createMetrics(Model<Regressor>) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createMetrics(Model<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Creates the appropriate set of metrics for this model, by querying for it's
OutputInfo
. - createMetrics(SequenceModel<Label>) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createMetrics(SequenceModel<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Creates the appropriate set of metrics for this model, by querying for it's
OutputInfo
. - createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, FMParameters) - Method in class org.tribuo.classification.sgd.fm.FMClassificationTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, LinearParameters) - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<MultiLabel>, FMParameters) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<MultiLabel>, LinearParameters) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, FMParameters) - Method in class org.tribuo.regression.sgd.fm.FMRegressionTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, LinearParameters) - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Booster>, XGBoostOutputConverter<T>) - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, X) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Creates the appropriate model subclass for this subclass of AbstractSGDTrainer.
- createModel(Path, ModelProvenance, OCIUtil.OCIModelType, DataScienceClient, ObjectMapper, OCIUtil.OCIModelArtifactConfig) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Creates an OCI DS model and uploads the model artifact.
- createModel(Map<String, T>, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel
for this trainer. - createModel(Map<String, T>, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel
for this trainer. - createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Event>, List<Model>) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Event>, List<svm_model>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, List<Model>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, List<svm_model>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, List<Model>) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, List<svm_model>) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Construct the appropriate subtype of LibLinearModel for the prediction task.
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<svm_model>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Construct the appropriate subtype of LibSVMModel for the prediction task.
- createModel(U, DataScienceClient, ObjectMapper, OCIUtil.OCIModelArtifactConfig) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Creates an OCI DS model and uploads the model artifact.
- createModelArtifact(Path, OCIUtil.OCIModelArtifactConfig) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Creates the OCI DS model artifact zip file.
- createMostFrequentTrainer() - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return a fixed label, the one which was most frequent in the training data.
- createObjectMapper() - Static method in class org.tribuo.interop.oci.OCIUtil
-
Creates an ObjectMapper capable of parsing the OCI DS json.
- createOCIModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, Path, String, String, OCIOutputConverter<T>) - Static method in class org.tribuo.interop.oci.OCIModel
-
Creates an
OCIModel
by wrapping an OCI DS Model Deployment endpoint. - createOCIModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, Path, String, OCIOutputConverter<T>) - Static method in class org.tribuo.interop.oci.OCIModel
-
Creates an
OCIModel
by wrapping an OCI DS Model Deployment endpoint. - createOnlineEvaluator(Model<T>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Creates an online evaluator that maintains a list of all the predictions it has seen and can evaluate them upon request.
- createOnnxModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, ExampleTransformer, OutputTransformer<T>, OrtSession.SessionOptions, String, String) - Static method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Creates an
ONNXExternalModel
by loading the model from disk. - createOnnxModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, ExampleTransformer, OutputTransformer<T>, OrtSession.SessionOptions, Path, String) - Static method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Creates an
ONNXExternalModel
by loading the model from disk. - createOutputInfo(OutputFactory<T>, Map<T, Integer>) - Static method in class org.tribuo.interop.ExternalModel
-
Creates an output info from a set of outputs.
- createParameters(int, int, SplittableRandom) - Method in class org.tribuo.common.sgd.AbstractFMTrainer
-
Constructs the trainable parameters object, in this case a
FMParameters
containing a weight matrix for the feature weights and a series of weight matrices for the factorized feature representation. - createParameters(int, int, SplittableRandom) - Method in class org.tribuo.common.sgd.AbstractLinearSGDTrainer
-
Constructs the trainable parameters object, in this case a
LinearParameters
containing a single weight matrix. - createParameters(int, int, SplittableRandom) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Constructs the trainable parameters object.
- createQuartileTrainer(double) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the value at the specified fraction of the sorted training data.
- createSparseVector(int, int[], double[]) - Static method in class org.tribuo.math.la.SparseVector
-
Defensively copies the input, and checks that the indices are sorted.
- createSparseVector(int, Map<Integer, Double>) - Static method in class org.tribuo.math.la.SparseVector
-
Builds a SparseVector from a map.
- createSparseVector(Example<T>, ImmutableFeatureMap, boolean) - Static method in class org.tribuo.math.la.SparseVector
-
Builds a
SparseVector
from anExample
. - createSplitFunction(boolean) - Static method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Creates a
SplitFunctionTokenizer.SplitFunction
that is used by the super classSplitFunctionTokenizer
to determine how and where the tokenizer splits the input. - createSplitNode() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
Transforms an
AbstractTrainingNode
into aSplitNode
- createStats() - Method in interface org.tribuo.transform.Transformation
-
Creates the statistics object for this Transformation.
- createStats() - Method in class org.tribuo.transform.transformations.BinningTransformation
- createStats() - Method in class org.tribuo.transform.transformations.IDFTransformation
- createStats() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- createStats() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- createStats() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Returns itself.
- createStratifiedTrainer(long) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return random labels sampled from the training label distribution.
- createSupplier(Tokenizer) - Static method in interface org.tribuo.util.tokens.Tokenizer
-
Creates a supplier from the specified tokenizer by cloning it.
- createTensorflowModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, String, String, FeatureConverter, OutputConverter<T>, String) - Static method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
-
Creates a TensorflowFrozenExternalModel by loading in a frozen graph.
- createTensorflowModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, String, FeatureConverter, OutputConverter<T>, String) - Static method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
-
Creates a TensorflowSavedModelExternalModel by loading in a
SavedModelBundle
. - createThreadLocal(Tokenizer) - Static method in interface org.tribuo.util.tokens.Tokenizer
-
Creates a thread local source of tokenizers by making a Tokenizer supplier using
Tokenizer.createSupplier(Tokenizer)
. - createTransformers(TransformationMap) - Method in class org.tribuo.Dataset
-
Takes a
TransformationMap
and converts it into aTransformerMap
by observing all the values in this dataset. - createTransformers(TransformationMap, boolean) - Method in class org.tribuo.Dataset
-
Takes a
TransformationMap
and converts it into aTransformerMap
by observing all the values in this dataset. - createUniformTrainer(long) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return random labels sampled uniformly from the labels seen at training time.
- createView(Dataset<T>, Predicate<Example<T>>, String) - Static method in class org.tribuo.dataset.DatasetView
-
Creates a view from the supplied dataset, using the specified predicate to test if each example should be in this view.
- createWeightedBootstrapView(Dataset<T>, int, long, float[]) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.
- createWeightedBootstrapView(Dataset<T>, int, long, float[], ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.
- createWhitespaceTokenizer() - Static method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Creates a tokenizer that splits on whitespace.
- createWithEmptyOutputs(List<? extends List<? extends Feature>>, OutputFactory<T>) - Static method in class org.tribuo.sequence.SequenceExample
-
Creates a SequenceExample using
OutputFactory.getUnknownOutput()
as the output for each sequence element. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, String) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied model on disk. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, Path) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied model on disk. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, Booster, URL) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Deprecated.As the URL argument must always be valid. To wrap an in-memory booster use
XGBoostExternalModel.createXGBoostModel(OutputFactory, Map, Map, XGBoostOutputConverter, Booster, Map)
. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, Booster, Map<String, Provenance>) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied in-memory XGBoostBooster
. - CREATION_TIME - Static variable in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
-
The name of the provenance field storing the model creation time.
- CRFModel - Class in org.tribuo.classification.sgd.crf
-
An inference time model for a linear chain CRF trained using SGD.
- CRFModel.ConfidenceType - Enum Class in org.tribuo.classification.sgd.crf
-
The type of subsequence level confidence to predict.
- CRFOptions - Class in org.tribuo.classification.sgd.crf
-
CLI options for training a linear chain CRF model.
- CRFOptions() - Constructor for class org.tribuo.classification.sgd.crf.CRFOptions
- CRFOptions() - Constructor for class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- CRFParameters - Class in org.tribuo.classification.sgd.crf
-
A
Parameters
for training a CRF using SGD. - CRFTrainer - Class in org.tribuo.classification.sgd.crf
-
A trainer for CRFs using SGD.
- CRFTrainer(StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Creates a CRFTrainer which uses SGD to learn the parameters.
- CRFTrainer(StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Sets the minibatch size to 1.
- CRFTrainer(StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Sets the minibatch size to 1 and the logging interval to 100.
- crossValidation - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Cross-validate the output metrics.
- CrossValidation<T extends Output<T>,
E extends Evaluation<T>> - Class in org.tribuo.evaluation -
A class that does k-fold cross-validation.
- CrossValidation(Trainer<T>, Dataset<T>, Evaluator<T, E>, int) - Constructor for class org.tribuo.evaluation.CrossValidation
-
Builds a k-fold cross-validation loop.
- CrossValidation(Trainer<T>, Dataset<T>, Evaluator<T, E>, int, long) - Constructor for class org.tribuo.evaluation.CrossValidation
-
Builds a k-fold cross-validation loop.
- CSV - Enum constant in enum class org.tribuo.data.DataOptions.InputFormat
-
Simple numeric CSV file.
- CSVDataSource<T extends Output<T>> - Class in org.tribuo.data.csv
-
A
DataSource
for loading separable data from a text file (e.g., CSV, TSV) and applyingFieldProcessor
s to it. - CSVDataSource(URI, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(URI, RowProcessor<T>, boolean, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(URI, RowProcessor<T>, boolean, char, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource(URI, RowProcessor<T>, boolean, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource(Path, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(Path, RowProcessor<T>, boolean, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(Path, RowProcessor<T>, boolean, char, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource(Path, RowProcessor<T>, boolean, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource.CSVDataSourceProvenance - Class in org.tribuo.data.csv
-
Provenance for
CSVDataSource
. - CSVDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
-
Deserialization constructor.
- CSVIterator - Class in org.tribuo.data.csv
-
An iterator over a CSV file.
- CSVIterator(Reader) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char, String[]) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(URI) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char, String[]) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVLoader<T extends Output<T>> - Class in org.tribuo.data.csv
-
Load a DataSource/Dataset from a CSV file.
- CSVLoader(char, char, OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied separator, quote and output factory.
- CSVLoader(char, OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied separator and output factory.
- CSVLoader(OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied output factory.
- CSVLoader.CSVLoaderProvenance - Class in org.tribuo.data.csv
-
Deprecated.Deprecated in 4.2 as CSVLoader now returns a
CSVDataSource
. This provenance is kept so older models can still load correctly. - CSVLoaderProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.Deserialization constructor.
- csvQuoteChar - Variable in class org.tribuo.data.DataOptions
-
Quote character in the CSV file.
- csvResponseName - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Response name in the csv file.
- csvResponseName - Variable in class org.tribuo.data.DataOptions
-
Response name in the csv file.
- CSVSaver - Class in org.tribuo.data.csv
-
Saves a Dataset in CSV format suitable for loading by
CSVLoader
. - CSVSaver() - Constructor for class org.tribuo.data.csv.CSVSaver
-
Builds a CSV saver using the default separator and quote from
CSVIterator
. - CSVSaver(char, char) - Constructor for class org.tribuo.data.csv.CSVSaver
-
Builds a CSV saver using the supplied separator and quote.
- cumulativeSum(boolean[]) - Static method in class org.tribuo.util.Util
-
Produces a cumulative sum array.
- cumulativeSum(double[]) - Static method in class org.tribuo.util.Util
-
Produces a cumulative sum array.
- currentRow - Variable in class org.tribuo.data.columnar.ColumnarIterator
-
The current row.
D
- DART - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A gradient boosted decision tree using dropout.
- data - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- data - Variable in class org.tribuo.data.text.TextDataSource
-
The actual data read out of the text file.
- data - Variable in class org.tribuo.Dataset
-
The data in this data set.
- data - Variable in class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
The tensor data.
- data - Variable in class org.tribuo.sequence.SequenceDataset
-
The data in this data set.
- DATA_LOCATION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- DATA_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- DataOptions - Class in org.tribuo.data
-
Options for working with training and test data in a CLI.
- DataOptions() - Constructor for class org.tribuo.data.DataOptions
- DataOptions.Delimiter - Enum Class in org.tribuo.data
-
The delimiters supported by CSV files in this options object.
- DataOptions.InputFormat - Enum Class in org.tribuo.data
-
The input formats supported by this options object.
- DataProvenance - Interface in org.tribuo.provenance
-
Tag interface for data sources provenances.
- Dataset<T extends Output<T>> - Class in org.tribuo
-
A class for sets of data, which are used to train and evaluate classifiers.
- Dataset(DataSource<T>) - Constructor for class org.tribuo.Dataset
-
Creates a dataset.
- Dataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.Dataset
-
Creates a dataset.
- DATASET - Enum constant in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select the dataset provenance.
- DATASET - Static variable in class org.tribuo.provenance.ModelProvenance
- DatasetExplorer - Class in org.tribuo.data
-
A CLI for exploring a serialised
Dataset
. - DatasetExplorer() - Constructor for class org.tribuo.data.DatasetExplorer
-
Constructs a dataset explorer.
- DatasetExplorer.DatasetExplorerOptions - Class in org.tribuo.data
-
Command line options.
- DatasetExplorerOptions() - Constructor for class org.tribuo.data.DatasetExplorer.DatasetExplorerOptions
- datasetName - Variable in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
-
Name of the example dataset, options are {gorilla}.
- datasetName - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Name of the example dataset, options are {gorilla}.
- datasetPath - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Path to the serialized dataset to score.
- datasetProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- DatasetProvenance - Class in org.tribuo.provenance
-
Base class for dataset provenance.
- DatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.DatasetProvenance
-
Deserialization constructor.
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, String, boolean, boolean, int, int, int) - Constructor for class org.tribuo.provenance.DatasetProvenance
-
Constructs a dataset provenance using the supplied information.
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, Dataset<T>) - Constructor for class org.tribuo.provenance.DatasetProvenance
-
Creates a dataset provenance from the supplied dataset.
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, SequenceDataset<T>) - Constructor for class org.tribuo.provenance.DatasetProvenance
-
Creates a dataset provenance from the supplied sequence dataset.
- DatasetView<T extends Output<T>> - Class in org.tribuo.dataset
-
DatasetView provides an immutable view on another
Dataset
that only exposes selected examples. - DatasetView(Dataset<T>, int[], String) - Constructor for class org.tribuo.dataset.DatasetView
-
Creates a DatasetView which includes the supplied indices from the dataset.
- DatasetView(Dataset<T>, int[], ImmutableFeatureMap, ImmutableOutputInfo<T>, String) - Constructor for class org.tribuo.dataset.DatasetView
-
Creates a DatasetView which includes the supplied indices from the dataset.
- DatasetView.DatasetViewProvenance - Class in org.tribuo.dataset
-
Provenance for the
DatasetView
. - DatasetViewProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Deserialization constructor.
- dataSource - Variable in class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
-
Datasource to load from a config file
- DataSource<T extends Output<T>> - Interface in org.tribuo
-
A interface for things that can be given to a Dataset's constructor.
- DATASOURCE_CREATION_TIME - Static variable in interface org.tribuo.provenance.DataSourceProvenance
-
The name of the provenance field for the datasource timestamp.
- DataSourceProvenance - Interface in org.tribuo.provenance
-
Data source provenance.
- DateExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and translates it to a
LocalDate
based on the specifiedDateTimeFormatter
. - DateExtractor(String, String, String) - Constructor for class org.tribuo.data.columnar.extractors.DateExtractor
-
Constructs a date extractor that emits a LocalDate by applying the supplied format to the specified field.
- DateExtractor(String, String, String, String, String) - Constructor for class org.tribuo.data.columnar.extractors.DateExtractor
-
Constructs a date extractor that emits a LocalDate by applying the supplied format to the specified field.
- DateExtractor(String, String, DateTimeFormatter) - Constructor for class org.tribuo.data.columnar.extractors.DateExtractor
-
Deprecated.
- DateFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
Processes a column that contains a date value.
- DateFieldProcessor(String, EnumSet<DateFieldProcessor.DateFeatureType>, String) - Constructor for class org.tribuo.data.columnar.processors.field.DateFieldProcessor
-
Constructs a field processor which parses a date from the specified field name using the supplied format string then extracts date features according to the supplied
EnumSet
. - DateFieldProcessor(String, EnumSet<DateFieldProcessor.DateFeatureType>, String, String, String) - Constructor for class org.tribuo.data.columnar.processors.field.DateFieldProcessor
-
Constructs a field processor which parses a date from the specified field name using the supplied format string then extracts date features according to the supplied
EnumSet
. - DateFieldProcessor.DateFeatureType - Enum Class in org.tribuo.data.columnar.processors.field
-
The types of date features which can be extracted.
- DAY - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The day.
- DAY_OF_QUARTER - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The day of the quarter.
- DAY_OF_WEEK - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The day of the week in ISO 8601.
- DAY_OF_YEAR - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The day of the year.
- dbConfig - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
Name of the DBConfig to use
- DEBUG - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
All the logging.
- DecisionTreeTrainer<T extends Output<T>> - Interface in org.tribuo.common.tree
-
A tag interface for a
Trainer
so the random forests trainer can check if it's actually a tree. - decode(Tensor, List<SequenceExample<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputConverter
-
Decode graph output tensors corresponding to a batch of input sequences.
- decode(Tensor, SequenceExample<T>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputConverter
-
Decode a tensor of graph output into a list of predictions for the input sequence.
- deepCopy() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Copies this inverted feature.
- deepCopy() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Returns a deep copy of this tree feature.
- DEFAULT - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
DEFAULT = 0;
- DEFAULT - Enum constant in enum class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
The default label features.
- DEFAULT_BATCH_SIZE - Static variable in class org.tribuo.interop.ExternalModel
-
Default batch size for external model batch predictions.
- DEFAULT_COST - Static variable in class org.tribuo.regression.sgd.objectives.Huber
-
The default cost beyond which the function is linear.
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The default map size to initialise the marginalised count maps with.
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The default map size.
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
The initial size of the various maps.
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
The initial size of the various maps.
- DEFAULT_METADATA_SIZE - Static variable in class org.tribuo.Example
-
The default initial size of the metadata map.
- DEFAULT_NAME - Static variable in class org.tribuo.regression.Regressor
-
Default name used for dimensions which are unnamed when parsed from Strings.
- DEFAULT_RESPONSE - Static variable in class org.tribuo.data.csv.CSVSaver
-
The default response column name.
- DEFAULT_SCORE - Static variable in class org.tribuo.anomaly.Event
-
The default score of events.
- DEFAULT_SEED - Static variable in interface org.tribuo.Trainer
-
Default seed used to initialise RNGs.
- DEFAULT_SIZE - Static variable in class org.tribuo.common.tree.AbstractTrainingNode
-
Default buffer size used in the split operation.
- DEFAULT_SIZE - Static variable in class org.tribuo.impl.ArrayExample
-
Default initial size of the backing arrays.
- DEFAULT_SIZE - Static variable in class org.tribuo.impl.BinaryFeaturesExample
-
Default initial size of the backing arrays.
- DEFAULT_SPLIT_CHAR - Static variable in class org.tribuo.regression.RegressionFactory
-
The default character to split the string form of a multidimensional regressor.
- DEFAULT_SPLIT_CHARACTERS - Static variable in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
The default split characters.
- DEFAULT_SPLIT_EXCEPTING_IN_DIGITS_CHARACTERS - Static variable in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
The default characters which don't cause splits inside digits.
- DEFAULT_THRESHOLD - Static variable in class org.tribuo.interop.oci.OCIMultiLabelConverter
-
The default threshold for conversion into a label.
- DEFAULT_THRESHOLD - Static variable in class org.tribuo.interop.onnx.MultiLabelTransformer
-
The default threshold for conversion into a label.
- DEFAULT_UNKNOWN_TOKEN - Static variable in class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
The default unknown token string.
- DEFAULT_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
DEFAULT = 0;
- DEFAULT_WEIGHT - Static variable in class org.tribuo.Example
-
The default weight.
- DEFAULT_WEIGHT - Static variable in class org.tribuo.sequence.SequenceExample
-
The default sequence example weight.
- DefaultFeatureExtractor - Class in org.tribuo.classification.sequence.viterbi
-
A label feature extractor that produces several kinds of label-based features.
- DefaultFeatureExtractor() - Constructor for class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
-
Constructs a default feature extractor for bigrams and trigrams using the past 3 outcomes.
- DefaultFeatureExtractor(int, int, boolean, boolean, boolean) - Constructor for class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
-
Constructs a default feature extractor using the supplied parameters.
- degree - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Degree in polynomial kernel.
- delimiter - Variable in class org.tribuo.data.DataOptions
-
Delimiter
- DELTA - Static variable in class org.tribuo.math.la.VectorTuple
-
The tolerance for equality in value comparisons.
- DemoLabelDataSource - Class in org.tribuo.classification.example
-
The base class for the 2d binary classification data sources in
org.tribuo.classification.example
. - DemoLabelDataSource.DemoLabelDataSourceProvenance - Class in org.tribuo.classification.example
-
Provenance for
DemoLabelDataSource
. - DemoLabelDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.classification.example.DemoLabelDataSource.DemoLabelDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- DemoOptions() - Constructor for class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
- DENOTATION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- DENOTATION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- dense - Variable in class org.tribuo.MutableDataset
-
Denotes if this dataset contains implicit zeros or not.
- dense - Variable in class org.tribuo.sequence.MutableSequenceDataset
-
Does this dataset have a dense feature space.
- DENSE - Enum constant in enum class org.tribuo.interop.tensorflow.TrainTest.InputType
-
Dense feature extractor.
- DenseFeatureConverter - Class in org.tribuo.interop.tensorflow
-
Converts a sparse example into a dense float vector, then wraps it in a
TFloat32
. - DenseFeatureConverter(String) - Constructor for class org.tribuo.interop.tensorflow.DenseFeatureConverter
-
Builds a DenseFeatureConverter, setting the input name.
- DenseMatrix - Class in org.tribuo.math.la
-
A dense matrix, backed by a primitive array.
- DenseMatrix(int, int) - Constructor for class org.tribuo.math.la.DenseMatrix
-
Creates a dense matrix full of zeros.
- DenseMatrix(DenseMatrix) - Constructor for class org.tribuo.math.la.DenseMatrix
-
Copies the supplied matrix.
- DenseMatrix(Matrix) - Constructor for class org.tribuo.math.la.DenseMatrix
-
Copies the supplied matrix, densifying it if it's sparse.
- DenseSparseMatrix - Class in org.tribuo.math.la
-
A matrix which is dense in the first dimension and sparse in the second.
- DenseSparseMatrix(int, int) - Constructor for class org.tribuo.math.la.DenseSparseMatrix
-
Creates a DenseSparseMatrix with no values or indices.
- DenseSparseMatrix(List<SparseVector>) - Constructor for class org.tribuo.math.la.DenseSparseMatrix
-
Constructs a DenseSparseMatrix out of the supplied sparse vector list.
- DenseSparseMatrix(DenseSparseMatrix) - Constructor for class org.tribuo.math.la.DenseSparseMatrix
-
Creates a new DenseSparseMatrix by deep copying the supplied DenseSparseMatrix.
- denseTrainTest() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Makes a simple dataset for training and testing.
- denseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 classes, {Foo,Bar,Baz,Quux}.
- denseTrainTest() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.
- denseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- denseTrainTest(double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.
- denseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 classes, {Foo,Bar,Baz,Quux}.
- denseTrainTest(double) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.
- denseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- DenseTransformer - Class in org.tribuo.interop.onnx
-
Converts a sparse Tribuo example into a dense float vector, then wraps it in an
OnnxTensor
. - DenseTransformer() - Constructor for class org.tribuo.interop.onnx.DenseTransformer
- DenseVector - Class in org.tribuo.math.la
-
A dense vector, backed by a double array.
- DenseVector(double[]) - Constructor for class org.tribuo.math.la.DenseVector
-
Does not defensively copy the input, used internally.
- DenseVector(int) - Constructor for class org.tribuo.math.la.DenseVector
-
Creates an empty dense vector of the specified size.
- DenseVector(int, double) - Constructor for class org.tribuo.math.la.DenseVector
-
Creates a dense vector of the specified size where each element is initialised to the specified value.
- DenseVector(DenseVector) - Constructor for class org.tribuo.math.la.DenseVector
-
Copy constructor.
- densify() - Method in class org.tribuo.math.la.SparseVector
-
Returns a dense vector copying this sparse vector.
- densify() - Method in class org.tribuo.MutableDataset
-
Iterates through the examples, converting implicit zeros into explicit zeros.
- densify() - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Iterates through the examples, converting implicit zeros into explicit zeros.
- densify(List<String>) - Method in class org.tribuo.Example
-
Converts all implicit zeros into explicit zeros based on the supplied feature names.
- densify(List<String>) - Method in class org.tribuo.impl.ArrayExample
- densify(List<String>) - Method in class org.tribuo.impl.BinaryFeaturesExample
- densify(List<String>) - Method in class org.tribuo.impl.IndexedArrayExample
- densify(List<String>) - Method in class org.tribuo.impl.ListExample
- densify(FeatureMap) - Method in class org.tribuo.Example
-
Converts all implicit zeros into explicit zeros based on the supplied feature map.
- densify(FeatureMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- densify(FeatureMap) - Method in class org.tribuo.sequence.SequenceExample
-
Converts all implicit zeros into explicit zeros based on the supplied feature map.
- deploy(OCIUtil.OCIModelDeploymentConfig, DataScienceClient, ObjectMapper) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Creates a Model deployment from an uploaded model.
- DEPLOY - Enum constant in enum class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions.Mode
-
Create a Model deployment.
- deploymentName - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The deployment name.
- depth - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- depth - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Maximum depth in the decision tree.
- depth - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Max tree depth (default 6, range (0,inf]).
- depth - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Max tree depth (default 6, range (0,inf]).
- DESCRIPTION - Static variable in class org.tribuo.provenance.SimpleDataSourceProvenance
-
The description field in the provenance.
- DescriptiveStats - Class in org.tribuo.evaluation
-
Descriptive statistics calculated across a list of doubles.
- DescriptiveStats() - Constructor for class org.tribuo.evaluation.DescriptiveStats
-
Create an empty DescriptiveStats.
- DescriptiveStats(List<Double>) - Constructor for class org.tribuo.evaluation.DescriptiveStats
-
Create a DescriptiveStats initialized with the supplied values.
- difference(SparseVector) - Method in class org.tribuo.math.la.SparseVector
-
Generates an array of the indices that are active in this vector but are not present in
other
. - differencesIndices(double[]) - Static method in class org.tribuo.util.Util
-
Returns an array containing the indices where values are different.
- differencesIndices(double[], double) - Static method in class org.tribuo.util.Util
-
Returns an array containing the indices where values are different.
- diffProvenance(ModelProvenance, ModelProvenance) - Static method in class org.tribuo.reproducibility.ReproUtil
-
Creates a JSON String diff of two
ModelProvenance
objects. - DIM_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto
- DIM_PARAM - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
- DIM_PARAM_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- DIM_VALUE - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
- DIM_VALUE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- dim1 - Variable in class org.tribuo.math.la.DenseMatrix
- dim2 - Variable in class org.tribuo.math.la.DenseMatrix
- DIMENSIONALITY_REDUCTION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Dimensionality reduction, no Tribuo mapping.
- dimensions - Variable in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
- dimensions - Variable in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
- DimensionTuple(String, double) - Constructor for class org.tribuo.regression.Regressor.DimensionTuple
-
Creates a dimension tuple from the supplied name and value.
- DimensionTuple(String, double, double) - Constructor for class org.tribuo.regression.Regressor.DimensionTuple
-
Creates a dimension tuple from the supplied name, value and variance.
- DIMS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.SparseTensorProto
- DIMS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- directory - Variable in class org.tribuo.classification.experiments.RunAll.RunAllOptions
-
Directory to write out the models and test reports.
- DirectoryFileSource<T extends Output<T>> - Class in org.tribuo.data.text
-
A data source for a somewhat-common format for text classification datasets: a top level directory that contains a number of subdirectories.
- DirectoryFileSource() - Constructor for class org.tribuo.data.text.DirectoryFileSource
-
for olcut
- DirectoryFileSource(Path, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.DirectoryFileSource
-
Creates a data source that will use the given feature extractor and document preprocessors on the data read from the files in the directories representing classes.
- DirectoryFileSource.DirectoryFileSourceProvenance - Class in org.tribuo.data.text
-
Provenance for
DirectoryFileSource
. - DirectoryFileSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
-
Deserialization constructor.
- distance - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
-
Distance function in K-Means.
- distance - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
Distance function to use in the e step.
- distance(SGDVector, DoubleUnaryOperator, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
-
Computes the distance between this vector and the other vector.
- DISTANCE_DELTA - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
-
Delta to consider two distances equal.
- distanceType - Variable in class org.tribuo.clustering.hdbscan.HdbscanOptions
-
Distance function in HDBSCAN*.
- distributionEquals(Prediction<T>) - Method in class org.tribuo.Prediction
-
Checks that the other prediction has the same distribution as this prediction, using the
Output.fullEquals(T)
method. - div - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Divides by the specified constant.
- div(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that divides each value by the operand.
- DIV - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise division with broadcasting.
- DMatrixTuple(DMatrix, int[], Example<T>[]) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- DOC_STRING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ValueInfoProto
- DocumentPreprocessor - Interface in org.tribuo.data.text
-
An interface for things that can pre-process documents before they are broken into features.
- domain - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The operator domain (used for the ML operators).
- DOMAIN_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- DOMAIN_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- DOMAIN_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- DOMAIN_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- domainAndIDEquals(ImmutableOutputInfo<Event>) - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- domainAndIDEquals(ImmutableOutputInfo<Label>) - Method in class org.tribuo.classification.ImmutableLabelInfo
- domainAndIDEquals(ImmutableOutputInfo<ClusterID>) - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- domainAndIDEquals(ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- domainAndIDEquals(ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.regression.ImmutableRegressionInfo
- domainAndIDEquals(ImmutableOutputInfo<T>) - Method in interface org.tribuo.ImmutableOutputInfo
-
Checks if the domain is the same as the other output info's domain, and that each element is mapped to the same id number.
- domainEquals(FeatureMap) - Method in class org.tribuo.FeatureMap
-
Check if this feature map contains the same features as the supplied one.
- dot(SGDVector) - Method in class org.tribuo.math.la.DenseVector
- dot(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the dot product between this vector and
other
. - dot(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- dot(SGDVector) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- DOUBLE - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
DOUBLE = 11;
- DOUBLE - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
A 64-bit float.
- DOUBLE_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- DOUBLE_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
DOUBLE = 11;
- DoubleExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a double.
- DoubleExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.DoubleExtractor
-
Extracts a double value from the supplied field name.
- DoubleExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.DoubleExtractor
-
Extracts a double value from the supplied field name.
- DoubleFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
Processes a column that contains a real value.
- DoubleFieldProcessor(String) - Constructor for class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
-
Constructs a field processor which extracts a single double valued feature from the specified field name.
- DoubleFieldProcessor(String, boolean) - Constructor for class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
-
Constructs a field processor which extracts a single double valued feature from the specified field name.
- DoubleFieldProcessor(String, boolean, boolean) - Constructor for class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
-
Constructs a field processor which extracts a single double valued feature from the specified field name.
- doubleTensorBuilder(ONNXContext, String, List<Integer>, Consumer<DoubleBuffer>) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Generic method to create double
OnnxMl.TensorProto
instances. - dropInvalidExamples - Variable in class org.tribuo.ImmutableDataset
-
If true, instead of throwing an exception when an invalid
Example
is encountered, this Dataset will log a warning and drop it. - dsConfig - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The OCI Data Science config.
- dsConfig - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The OCI Data Science config.
- DTYPE - Static variable in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
The name of the data type.
- DummyClassifierModel - Class in org.tribuo.classification.baseline
-
A model which performs dummy classifications (e.g., constant output, uniform sampled labels, stratified sampled labels).
- DummyClassifierTrainer - Class in org.tribuo.classification.baseline
-
A trainer for simple baseline classifiers.
- DummyClassifierTrainer.DummyType - Enum Class in org.tribuo.classification.baseline
-
Types of dummy classifier.
- DummyRegressionModel - Class in org.tribuo.regression.baseline
-
A model which performs dummy regressions (e.g., constant output, gaussian sampled output, mean value, median, quartile).
- DummyRegressionTrainer - Class in org.tribuo.regression.baseline
-
A trainer for simple baseline regressors.
- DummyRegressionTrainer.DummyRegressionTrainerProvenance - Class in org.tribuo.regression.baseline
-
Deprecated.
- DummyRegressionTrainer.DummyType - Enum Class in org.tribuo.regression.baseline
-
Types of dummy regression model.
- DummyRegressionTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.Constructs a provenance from the marshalled form.
- DummyRegressionTrainerProvenance(DummyRegressionTrainer) - Constructor for class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.Constructs a provenance from the host.
E
- ELASTICNET - Enum constant in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Creates an
ElasticNetCDTrainer
. - ElasticNetCDTrainer - Class in org.tribuo.regression.slm
-
An ElasticNet trainer that uses co-ordinate descent.
- ElasticNetCDTrainer(double, double) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
-
Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, randomising the feature choice and using
Trainer.DEFAULT_SEED
as the RNG seed. - ElasticNetCDTrainer(double, double, double, int, boolean, long) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
-
Constructs an elastic net trainer using the supplied parameters.
- ElasticNetCDTrainer(double, double, long) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
-
Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, and randomising the feature choice.
- ELEM_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- ELEM_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- ELEM_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- elements - Variable in class org.tribuo.math.la.DenseVector
- EmptyDatasetProvenance - Class in org.tribuo.provenance.impl
-
An empty DatasetProvenance, should not be used except by the provenance removal system.
- EmptyDatasetProvenance() - Constructor for class org.tribuo.provenance.impl.EmptyDatasetProvenance
-
An empty dataset provenance.
- EmptyDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyDatasetProvenance
-
Deserialization constructor.
- EmptyDataSourceProvenance - Class in org.tribuo.provenance.impl
-
An empty DataSourceProvenance, should not be used except by the provenance removal system.
- EmptyDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyDataSourceProvenance
-
Deserialization constructor.
- emptyExample() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with no features.
- emptyMultiDimExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with no features.
- EmptyResponseProcessor<T extends Output<T>> - Class in org.tribuo.data.columnar.processors.response
-
A
ResponseProcessor
that always emits an empty optional. - EmptyResponseProcessor(OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
Constructs a response processor which never emits a response.
- EmptyTrainerProvenance - Class in org.tribuo.provenance.impl
-
An empty TrainerProvenance, should not be used except by the provenance removal system.
- EmptyTrainerProvenance() - Constructor for class org.tribuo.provenance.impl.EmptyTrainerProvenance
-
Constructs an empty trainer provenance.
- EmptyTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyTrainerProvenance
-
Deserialization constructor.
- encode(List<? extends SequenceExample<?>>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceFeatureConverter
-
Encodes a batch of examples as a feed dict.
- encode(List<SequenceExample<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputConverter
-
Encodes a batch of labels as a feed dict.
- encode(SequenceExample<?>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceFeatureConverter
-
Encodes an example as a feed dict.
- encode(SequenceExample<T>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputConverter
-
Encodes an example's label as a feed dict.
- end - Variable in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
The subsequence end index.
- end - Variable in class org.tribuo.util.tokens.Token
-
The end index.
- end - Variable in class org.tribuo.util.tokens.universal.Range
-
The end index.
- END_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- endpointDomain - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
The OCI endpoint domain.
- ensemble - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for classifier ensembles.
- EnsembleCombiner<T extends Output<T>> - Interface in org.tribuo.ensemble
-
An interface for combining predictions.
- EnsembleExcuse<T extends Output<T>> - Class in org.tribuo.ensemble
-
An
Excuse
which has a List of excuses for each of the ensemble members. - EnsembleExcuse(Example<T>, Prediction<T>, Map<String, List<Pair<String, Double>>>, List<Excuse<T>>) - Constructor for class org.tribuo.ensemble.EnsembleExcuse
-
Constructs an ensemble excuse, comprising the excuses from each ensemble member, along with the feature weights.
- EnsembleModel<T extends Output<T>> - Class in org.tribuo.ensemble
-
A model which contains a list of other
Model
s. - EnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>) - Constructor for class org.tribuo.ensemble.EnsembleModel
-
Builds an EnsembleModel from the supplied model list.
- EnsembleModelProvenance - Class in org.tribuo.provenance
-
Model provenance for ensemble models.
- EnsembleModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, ListProvenance<? extends ModelProvenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
-
Creates a provenance for an ensemble model tracking the class name, creation time, dataset provenance and trainer provenance along with the individual model provenances for each ensemble member.
- EnsembleModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>, boolean, ListProvenance<? extends ModelProvenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
-
Creates a provenance for an ensemble model tracking the class name, creation time, dataset provenance, trainer provenance and any instance specific provenance along with the individual model provenances for each ensemble member.
- EnsembleModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>, ListProvenance<? extends ModelProvenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
-
Creates a provenance for an ensemble model tracking the class name, creation time, dataset provenance, trainer provenance and any instance specific provenance along with the individual model provenances for each ensemble member.
- EnsembleModelProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
-
Used by the provenance unmarshalling system.
- ensembleName() - Method in class org.tribuo.common.tree.ExtraTreesTrainer
- ensembleName() - Method in class org.tribuo.common.tree.RandomForestTrainer
- ensembleName() - Method in class org.tribuo.ensemble.BaggingTrainer
-
Default name of the generated ensemble.
- ensembleOptions - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
-
The ensemble options.
- ensembleOptions - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
-
The ensemble options.
- ensembleOptions - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
-
The ensemble options.
- ensembleOptions - Variable in class org.tribuo.classification.sgd.fm.TrainTest.TrainTestOptions
- ensembleOptions - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
-
The ensemble options.
- ensembleSize - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
-
Number of base learners in the ensemble.
- ensembleSize - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Number of trees in the ensemble.
- ensembleSize - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Number of trees in the ensemble.
- entropy(List<T>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy, using histogram probability estimators.
- Entropy - Class in org.tribuo.classification.dtree.impurity
-
A log_e entropy impurity measure.
- Entropy() - Constructor for class org.tribuo.classification.dtree.impurity.Entropy
- ENTROPY - Enum constant in enum class org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Uses
Entropy
. - entrySet() - Method in class org.tribuo.transform.TransformerMap
-
Get the feature names and associated list of transformers.
- epochs - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Number of SGD epochs.
- epochs - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- epochs - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- epochs - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Number of gradient descent epochs.
- epochs - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Number of SGD epochs.
- epochs - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
Number of SGD epochs.
- epsilon - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- epsilon - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Epsilon for AdaDelta, AdaGrad, AdaGradRDA, Adam.
- epsilon - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
Regression value insensitivity for margin.
- EPSILON - Static variable in class org.tribuo.transform.transformations.SimpleTransform
-
Epsilon for determining when two double values are the same.
- EPSILON_SVR - Enum constant in enum class org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
epsilon-insensitive SVR.
- EQUAL_FREQUENCY - Enum constant in enum class org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Creates bins of equal frequency (i.e., equal numbers of data points).
- EQUAL_WIDTH - Enum constant in enum class org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Creates bins of equal width over the data range.
- equalFrequency(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates bins which contain the same amount of training data that is, each bin has an equal probability of occurrence in the training data.
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.GraphProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.ModelProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.NodeProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- equals(Object) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- equals(Object) - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- equals(Object) - Method in class org.tribuo.anomaly.Event
- equals(Object) - Method in class org.tribuo.classification.evaluation.LabelMetric
- equals(Object) - Method in class org.tribuo.classification.Label
- equals(Object) - Method in class org.tribuo.classification.LabelFactory
- equals(Object) - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- equals(Object) - Method in class org.tribuo.clustering.ClusterID
- equals(Object) - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- equals(Object) - Method in class org.tribuo.clustering.ClusteringFactory
- equals(Object) - Method in class org.tribuo.common.tree.LeafNode
- equals(Object) - Method in class org.tribuo.common.tree.SplitNode
- equals(Object) - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.
- equals(Object) - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- equals(Object) - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- equals(Object) - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- equals(Object) - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- equals(Object) - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- equals(Object) - Method in class org.tribuo.evaluation.DescriptiveStats
- equals(Object) - Method in class org.tribuo.evaluation.metrics.MetricTarget
- equals(Object) - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- equals(Object) - Method in class org.tribuo.Feature
- equals(Object) - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- equals(Object) - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- equals(Object) - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- equals(Object) - Method in class org.tribuo.impl.ArrayExample
- equals(Object) - Method in class org.tribuo.impl.BinaryFeaturesExample
- equals(Object) - Method in class org.tribuo.impl.IndexedArrayExample
- equals(Object) - Method in class org.tribuo.impl.ListExample
- equals(Object) - Method in class org.tribuo.interop.ExternalTrainerProvenance
- equals(Object) - Method in class org.tribuo.interop.oci.OCILabelConverter
- equals(Object) - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- equals(Object) - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
- equals(Object) - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- equals(Object) - Method in class org.tribuo.math.la.DenseMatrix
- equals(Object) - Method in class org.tribuo.math.la.DenseSparseMatrix
- equals(Object) - Method in class org.tribuo.math.la.DenseVector
-
Equals is defined mathematically, that is two SGDVectors are equal iff they have the same indices and the same values at those indices.
- equals(Object) - Method in class org.tribuo.math.la.MatrixTuple
- equals(Object) - Method in class org.tribuo.math.la.SparseVector
-
Equals is defined mathematically, that is two SGDVectors are equal iff they have the same indices and the same values at those indices.
- equals(Object) - Method in class org.tribuo.math.la.VectorTuple
- equals(Object) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- equals(Object) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabel
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabelFactory
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabelInfo
- equals(Object) - Method in class org.tribuo.provenance.DatasetProvenance
- equals(Object) - Method in class org.tribuo.provenance.EnsembleModelProvenance
- equals(Object) - Method in class org.tribuo.provenance.EvaluationProvenance
- equals(Object) - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- equals(Object) - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- equals(Object) - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- equals(Object) - Method in class org.tribuo.provenance.ModelProvenance
- equals(Object) - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- equals(Object) - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- equals(Object) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- equals(Object) - Method in class org.tribuo.regression.RegressionFactory
- equals(Object) - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- equals(Object) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- equals(Object) - Method in class org.tribuo.regression.Regressor
-
Regressors are equal if they have the same number of dimensions and equal dimension names.
- equals(Object) - Method in record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Indicates whether some other object is "equal to" this one.
- equals(Object) - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- equals(Object) - Method in class org.tribuo.SkeletalVariableInfo
- equals(Object) - Method in class org.tribuo.transform.TransformationMap.TransformationList
- equals(Object) - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- equals(Object) - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.CachedPair
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.Row
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.WeightCountTuple
- equals(Object) - Method in class org.tribuo.util.IntDoublePair
- equals(Object) - Method in class org.tribuo.util.MeanVarianceAccumulator
- equalWidth(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates fixed equal width bins between the observed min and max values.
- eta - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Step size shrinkage parameter (default 0.3, range [0,1]).
- eta - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Step size shrinkage parameter (default 0.3, range [0,1]).
- EUCLIDEAN - Enum constant in enum class org.tribuo.clustering.hdbscan.HdbscanTrainer.Distance
-
Euclidean (or l2) distance.
- EUCLIDEAN - Enum constant in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Euclidean (or l2) distance.
- euclideanDistance(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
The l2 or euclidean distance between this vector and the other vector.
- euclideanDistance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
The l2 or euclidean distance between this vector and the other vector.
- euclideanDistance(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- EV - Enum constant in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Explained Variance of the predictions.
- evaluate() - Method in class org.tribuo.evaluation.CrossValidation
-
Performs k fold cross validation, returning the k evaluations.
- evaluate() - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Creates an
Evaluation
containing all the current predictions. - evaluate(Model<T>, List<Prediction<T>>, List<T>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, List<Prediction<T>>, DataProvenance) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(Model<T>, List<Prediction<T>>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, Dataset<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and dataset, by calling
Model.predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(Model<T>, Dataset<T>) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the dataset using the supplied model, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, DataSource<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and datasource, by calling
Model.predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(Model<T>, DataSource<T>) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the dataset using the supplied model, returning an immutable
Evaluation
of the appropriate type. - evaluate(SequenceModel<T>, List<List<Prediction<T>>>, DataProvenance) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(SequenceModel<T>, List<List<Prediction<T>>>, DataProvenance) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(SequenceModel<T>, SequenceDataset<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and dataset, by calling
SequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(SequenceModel<T>, SequenceDataset<T>) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the dataset using the supplied model, returning an immutable evaluation.
- evaluate(SequenceModel<T>, SequenceDataSource<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and datasource, by calling
SequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(SequenceModel<T>, SequenceDataSource<T>) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the datasource using the supplied model, returning an immutable evaluation.
- Evaluation<T extends Output<T>> - Interface in org.tribuo.evaluation
-
An immutable evaluation of a specific model and dataset.
- EvaluationAggregator - Class in org.tribuo.evaluation
-
Aggregates metrics from a list of evaluations, or a list of models and datasets.
- EvaluationMetric<T extends Output<T>,
C extends MetricContext<T>> - Interface in org.tribuo.evaluation.metrics -
A metric that can be calculated for the specified output type.
- EvaluationMetric.Average - Enum Class in org.tribuo.evaluation.metrics
-
Specifies what form of average to use for a
EvaluationMetric
. - EvaluationProvenance - Class in org.tribuo.provenance
-
Provenance for evaluations.
- EvaluationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.EvaluationProvenance
-
Deserialization constructor.
- EvaluationProvenance(ModelProvenance, DataProvenance) - Constructor for class org.tribuo.provenance.EvaluationProvenance
-
Constructs an evaluation provenance from the supplied provenances.
- EvaluationRenderer<T extends Output<T>,
E extends Evaluation<T>> - Interface in org.tribuo.evaluation -
Renders an
Evaluation
into a String. - evaluator - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- Evaluator<T extends Output<T>,
E extends Evaluation<T>> - Interface in org.tribuo.evaluation -
An evaluation factory which produces immutable
Evaluation
s of a givenDataset
using the givenModel
. - EVEN_OR_ODD_DAY - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The parity of the day of the year.
- EVEN_OR_ODD_MONTH - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The parity of the month.
- EVEN_OR_ODD_WEEK - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The parity of the week of the year as defined by ISO 8601.
- EVEN_OR_ODD_YEAR - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The parity of the year.
- Event - Class in org.tribuo.anomaly
- Event(Event.EventType) - Constructor for class org.tribuo.anomaly.Event
-
Constructs a new event of the specified type with the default score of
Event.DEFAULT_SCORE
. - Event(Event.EventType, double) - Constructor for class org.tribuo.anomaly.Event
-
Constructs a new event of the specified type and score.
- Event.EventType - Enum Class in org.tribuo.anomaly
-
The type of event.
- EXACT - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
Exact greedy algorithm, enumerates all split candidates.
- Example<T extends Output<T>> - Class in org.tribuo
-
An example used for training and evaluation.
- Example(Example<T>) - Constructor for class org.tribuo.Example
-
Copies the output, weight and metadata into this example.
- Example(T) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output and
Example.DEFAULT_WEIGHT
as the weight. - Example(T, float) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output and weight.
- Example(T, float, Map<String, Object>) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output, weight and metadata.
- Example(T, Map<String, Object>) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output, metadata and
Example.DEFAULT_WEIGHT
as the weight. - ExampleArray(SparseVector[], int[], double[]) - Constructor for class org.tribuo.classification.sgd.Util.ExampleArray
-
Constructs an example array.
- examples - Variable in class org.tribuo.classification.example.DemoLabelDataSource
- examples - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- exampleToNodes(Example<T>, ImmutableFeatureMap, List<FeatureNode>) - Static method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Converts a Tribuo
Example
into a liblinearFeatureNode
array, including a bias feature. - exampleToNodes(Example<T>, ImmutableFeatureMap, List<svm_node>) - Static method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Convert the example into an array of svm_node which represents a sparse feature vector.
- ExampleTransformer - Interface in org.tribuo.interop.onnx
-
Transforms a
SparseVector
, extracting the features from it as aOnnxTensor
. - excuse(String) - Method in class org.tribuo.Excuse
-
Returns the features involved in this excuse.
- Excuse<T extends Output<T>> - Class in org.tribuo
-
Holds an
Example
, aPrediction
and a Map from String to List of Pairs that contains the per output explanation. - Excuse(Example<T>, Prediction<T>, Map<String, List<Pair<String, Double>>>) - Constructor for class org.tribuo.Excuse
-
Constructs an excuse for the prediction of the supplied example, using the feature weights.
- exp - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Exponentiates the inputs
- exp() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that applies
Math.exp(double)
. - expandRegexMapping(Collection<String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against the supplied list of field names. - expandRegexMapping(ImmutableFeatureMap) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against the supplied feature map. - expandRegexMapping(Model<T>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against theImmutableFeatureMap
contained in the suppliedModel
. - EXPECTED - Enum constant in enum class org.tribuo.anomaly.Event.EventType
-
An expected event, with id 0.
- EXPECTED_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The expected event.
- expectedCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of expected events observed.
- explain(CommandInterpreter, String[]) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Explains a text classification.
- explain(String) - Method in class org.tribuo.classification.explanations.lime.LIMEText
- explain(String) - Method in interface org.tribuo.classification.explanations.TextExplainer
- explain(Map<String, String>) - Method in interface org.tribuo.classification.explanations.ColumnarExplainer
-
Explains the supplied data.
- explain(Map<String, String>) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
- explain(Example<Label>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
- explain(Example<Label>) - Method in interface org.tribuo.classification.explanations.TabularExplainer
-
Explain why the supplied
Example
is classified a certain way. - explainedVariance() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculatest the explained variance for all dimensions.
- explainedVariance(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the explained variance based on the supplied statistics.
- explainedVariance(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.
- explainedVariance(Regressor, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the explained variance based on the supplied statistics for a single dimension.
- explainWithSamples(Map<String, String>) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
- explainWithSamples(Example<Label>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
- Explanation<T extends Output<T>> - Interface in org.tribuo.classification.explanations
-
An explanation knows what features are used, what the explaining Model is and what the original Model's prediction is.
- explanationTrainer - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- expNormalize(double) - Method in class org.tribuo.math.la.DenseVector
-
An optimisation for the exponential normalizer when you already know the normalization constant.
- ExpNormalizer - Class in org.tribuo.math.util
-
Normalizes the exponential values of the input array.
- ExpNormalizer() - Constructor for class org.tribuo.math.util.ExpNormalizer
- exportCombiner(ONNXNode) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
-
Exports this voting combiner to ONNX.
- exportCombiner(ONNXNode) - Method in class org.tribuo.classification.ensemble.VotingCombiner
-
Exports this voting combiner to ONNX.
- exportCombiner(ONNXNode) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Exports this ensemble combiner into the ONNX context of its input.
- exportCombiner(ONNXNode) - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
-
Exports this voting combiner to ONNX.
- exportCombiner(ONNXNode) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
-
Exports this averaging combiner, writing constructed nodes into the
ONNXContext
governinginput
and returning the leaf node of the combiner. - exportCombiner(ONNXNode, T) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
-
Exports this voting combiner to ONNX.
- exportCombiner(ONNXNode, T) - Method in class org.tribuo.classification.ensemble.VotingCombiner
-
Exports this voting combiner to ONNX
- exportCombiner(ONNXNode, T) - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
-
Exports this voting combiner to ONNX
- exportCombiner(ONNXNode, T) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
-
Exports this averaging combiner, writing constructed nodes into the
ONNXContext
governinginput
and returning the leaf node of the combiner. - exportCombiner(ONNXNode, U) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Exports this ensemble combiner into the ONNX context of its input.
- exportModel(String) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Exports this model as a
SavedModelBundle
, writing to the supplied directory. - exportNormalizer(ONNXNode) - Method in class org.tribuo.math.util.ExpNormalizer
-
Returns the ONNX softmax node over the 2nd dimension.
- exportNormalizer(ONNXNode) - Method in class org.tribuo.math.util.NoopNormalizer
-
Returns its input.
- exportNormalizer(ONNXNode) - Method in class org.tribuo.math.util.Normalizer
-
Applies ONNX ReduceMin, Sub, ReduceSum, and Div operations to input.
- exportNormalizer(ONNXNode) - Method in class org.tribuo.math.util.SigmoidNormalizer
-
Returns the ONNX sigmoid node, operating independently over each element.
- exportNormalizer(ONNXNode) - Method in interface org.tribuo.math.util.VectorNormalizer
-
Exports this normalizer to ONNX, returning the leaf of the appended graph and writing the nodes needed for normalization into the
ONNXContext
thatinput
belongs to. - exportONNXModel(String, long) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- exportONNXModel(String, long) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- exportONNXModel(String, long) - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Exports this
Model
as an ONNX protobuf. - exportONNXModel(String, long) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
-
Exports this
Model
as an ONNX protobuf. - exportONNXModel(String, long) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
-
Exports this
EnsembleModel
as an ONNX model. - exportONNXModel(String, long) - Method in interface org.tribuo.ONNXExportable
-
Exports this
Model
as an ONNX protobuf. - exportONNXModel(String, long) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- exportONNXModel(String, long) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- exportONNXModel(String, long) - Method in class org.tribuo.regression.slm.SparseLinearModel
- EXTERNAL - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
EXTERNAL = 1;
- EXTERNAL_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- EXTERNAL_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
EXTERNAL = 1;
- ExternalDatasetProvenance - Class in org.tribuo.interop
-
A dummy provenance used to describe the dataset of external models.
- ExternalDatasetProvenance(String, OutputFactory<T>, boolean, int, int) - Constructor for class org.tribuo.interop.ExternalDatasetProvenance
-
An empty provenance used as a placeholder for externally trained models.
- ExternalDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.ExternalDatasetProvenance
-
Deserialization constructor.
- ExternalModel<T extends Output<T>,
U, V> - Class in org.tribuo.interop -
This is the base class for third party models which are trained externally and loaded into Tribuo for prediction.
- ExternalModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, Integer>) - Constructor for class org.tribuo.interop.ExternalModel
-
Constructs an external model from a model trained outside of Tribuo.
- ExternalModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, int[], int[], boolean) - Constructor for class org.tribuo.interop.ExternalModel
-
Constructs an external model from a model trained outside of Tribuo.
- externalPrediction(OnnxTensor) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Runs the session to make a prediction.
- externalPrediction(DMatrix) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- externalPrediction(TensorMap) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
-
Runs the session to make a prediction.
- externalPrediction(TensorMap) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
-
Runs the session to make a prediction.
- externalPrediction(DenseMatrix) - Method in class org.tribuo.interop.oci.OCIModel
- externalPrediction(U) - Method in class org.tribuo.interop.ExternalModel
-
Runs the external model's prediction function.
- ExternalTrainerProvenance - Class in org.tribuo.interop
-
A dummy provenance for a model trained outside Tribuo.
- ExternalTrainerProvenance(byte[]) - Constructor for class org.tribuo.interop.ExternalTrainerProvenance
-
Creates an external trainer provenance, computing the hash from the byte array and storing this instant as the timestamp, and the current working directory as the location.
- ExternalTrainerProvenance(URL) - Constructor for class org.tribuo.interop.ExternalTrainerProvenance
-
Creates an external trainer provenance, storing the location and pulling in the timestamp and file hash.
- ExternalTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.ExternalTrainerProvenance
-
Used by the provenance serialization system.
- EXTRA_TREES - Enum constant in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Creates an
ExtraTreesTrainer
. - extract(LocalDate) - Method in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
Applies this enum's extraction function to the supplied date.
- extract(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- extract(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- extract(ColumnarIterator.Row) - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Returns Optional which is filled if extraction succeeded.
- extract(T, String) - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- extract(T, String) - Method in interface org.tribuo.data.text.TextFeatureExtractor
-
Extracts an example from the supplied input text and output object.
- extract(T, String) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Tokenizes the input using the loaded tokenizer, truncates the token list if it's longer than
maxLength
- 2 (to account for [CLS] and [SEP] tokens), and then passes the token list toBERTFeatureExtractor.extractExample(java.util.List<java.lang.String>)
. - extractData(Dataset<Event>, ImmutableOutputInfo<Event>, ImmutableFeatureMap) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
- extractData(Dataset<Event>, ImmutableOutputInfo<Event>, ImmutableFeatureMap) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- extractData(Dataset<Label>, ImmutableOutputInfo<Label>, ImmutableFeatureMap) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- extractData(Dataset<Label>, ImmutableOutputInfo<Label>, ImmutableFeatureMap) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- extractData(Dataset<Regressor>, ImmutableOutputInfo<Regressor>, ImmutableFeatureMap) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- extractData(Dataset<Regressor>, ImmutableOutputInfo<Regressor>, ImmutableFeatureMap) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- extractData(Dataset<T>, ImmutableOutputInfo<T>, ImmutableFeatureMap) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Extracts the features and
Output
s in LibLinear's format. - extractData(Dataset<T>, ImmutableOutputInfo<T>, ImmutableFeatureMap) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Extracts the features and
Output
s in LibSVM's format. - extractExample(List<String>) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
- extractExample(List<String>, T) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
- extractFeatures(List<Label>, double) - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- extractFeatures(List<Label>, double) - Method in interface org.tribuo.classification.sequence.viterbi.LabelFeatureExtractor
-
Generates features based on the previously produced labels.
- extractFeatures(List<Label>, double) - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Extracts the field value, or returns
Optional.empty()
if it failed to parse. - extractMarshalledVariables(Graph, Session) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
Extracts a Map containing the name of each Tensorflow VariableV2 and the associated parameter array.
- extractNames(OutputInfo<Regressor>) - Static method in class org.tribuo.regression.Regressor
-
Extracts the names from the supplied Regressor domain in their canonical order.
- extractor - Variable in class org.tribuo.data.text.DirectoryFileSource
-
The extractor that we'll use to turn text into examples.
- extractor - Variable in class org.tribuo.data.text.TextDataSource
-
The extractor that we'll use to turn text into examples.
- extractOutput(Event) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Converts an output into a double for use in training.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource.GaussianAnomalyDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.clustering.example.GaussianClusterDataSource.GaussianClusterDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
-
Separates this class's non-configurable fields from the configurable fields.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
-
Splits the provenance into configured and non-configured values.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.datasource.AggregateConfigurableDataSource.AggregateConfigurableDataSourceProvenance
-
Extracts the class name and host type fields from the provenance map.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
Separates out the configured and non-configured provenance values.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
-
Splits the provenance into configurable and non-configurable provenances.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource.MultiLabelGaussianDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.provenance.SkeletalTrainerProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.regression.example.GaussianDataSource.GaussianDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.regression.example.NonlinearGaussianDataSource.NonlinearGaussianDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractSequenceExample(List<String>, boolean) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
- extractSequenceExample(List<String>, List<T>, boolean) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
- extractTFProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance
- extractTFProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
- ExtraTreesTrainer<T extends Output<T>> - Class in org.tribuo.common.tree
-
A trainer which produces an Extremely Randomized Tree Ensemble.
- ExtraTreesTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int) - Constructor for class org.tribuo.common.tree.ExtraTreesTrainer
-
Constructs an ExtraTreesTrainer with the default seed
Trainer.DEFAULT_SEED
. - ExtraTreesTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int, long) - Constructor for class org.tribuo.common.tree.ExtraTreesTrainer
-
Constructs an ExtraTreesTrainer with the supplied seed, trainer, combining function and number of members.
F
- F_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- f1(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the F_1 score.
- f1(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The F1 for this label.
- f1(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the F_1 score.
- f1(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- f1(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the F_1 score, i.e., the harmonic mean of the precision and recall.
- F1 - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- F1 - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- F1 - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- factorizedDimSize - Variable in class org.tribuo.common.sgd.AbstractFMTrainer
- factorSize - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Factor size.
- factory - Static variable in class org.tribuo.classification.example.DemoLabelDataSource
- Feature - Class in org.tribuo
-
A class for features.
- Feature(String, double) - Constructor for class org.tribuo.Feature
-
Creates an immutable feature.
- FEATURE_TYPE - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
The name of the provenance field for the idx feature type.
- FEATURE_VALUE - Static variable in class org.tribuo.data.columnar.processors.field.IdentityProcessor
-
The value of the emitted features.
- FeatureAggregator - Interface in org.tribuo.data.text
-
An interface for aggregating feature values into other values.
- featureBackwardMapping - Variable in class org.tribuo.interop.ExternalModel
- featureConverter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
- featureConverter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- featureConverter - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- FeatureConverter - Interface in org.tribuo.interop.tensorflow
- featureDiff() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns the value of the
featureDiff
record component. - FeatureDiff(Set<String>, Set<String>) - Constructor for record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Creates an instance of a
FeatureDiff
record class. - featureForwardMapping - Variable in class org.tribuo.interop.ExternalModel
- FeatureHasher - Class in org.tribuo.data.text.impl
-
Hashes the feature names to reduce the dimensionality.
- FeatureHasher(int) - Constructor for class org.tribuo.data.text.impl.FeatureHasher
-
Constructs a feature hasher using the supplied hash dimension.
- featureIDMap - Variable in class org.tribuo.ImmutableDataset
-
A map from feature names to IDs for the features found in this dataset.
- featureIDMap - Variable in class org.tribuo.Model
-
The features this model knows about.
- featureIDMap - Variable in class org.tribuo.sequence.ImmutableSequenceDataset
-
A map from feature names to IDs for the features found in this dataset.
- featureIDMap - Variable in class org.tribuo.sequence.SequenceModel
- featureIDs - Variable in class org.tribuo.impl.IndexedArrayExample
-
Feature id numbers from the internal featureMap.
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows information on a particular feature.
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.data.DatasetExplorer
-
Shows information on a particular feature.
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.ModelExplorer
-
Shows a specific feature's information.
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows information on a particular feature.
- featureIterator() - Method in class org.tribuo.sequence.SequenceExample
-
Creates an iterator over every feature in this sequence.
- featureMap - Variable in class org.tribuo.MutableDataset
-
A map from feature names to feature info objects.
- featureMap - Variable in class org.tribuo.sequence.MutableSequenceDataset
-
A map from feature names to IDs for the features found in this dataset.
- FeatureMap - Class in org.tribuo
-
A map from Strings to
VariableInfo
objects storing information about a feature. - FeatureMap() - Constructor for class org.tribuo.FeatureMap
-
Constructs an empty feature map.
- FeatureMap(Map<String, ? extends VariableInfo>) - Constructor for class org.tribuo.FeatureMap
-
Constructs a feature map wrapping the supplied map.
- FeatureMap(FeatureMap) - Constructor for class org.tribuo.FeatureMap
-
Constructs a deep copy of the supplied feature map.
- featureNameComparator() - Static method in class org.tribuo.Feature
-
A comparator using the lexicographic ordering of feature names.
- featureNames - Variable in class org.tribuo.impl.ArrayExample
-
Feature names array.
- featureNames - Variable in class org.tribuo.impl.BinaryFeaturesExample
-
Feature names array.
- FeatureProcessor - Interface in org.tribuo.data.columnar
-
Takes a list of columnar features and adds new features or removes existing features.
- features - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
-
The examples encoded as sparse vectors.
- features - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
-
The array of sequence example features.
- FEATURES_FILE_MODIFIED_TIME - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
The name of the features file modified time provenance field.
- FEATURES_RESOURCE_HASH - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
The name of the provenance field for the feature file hash.
- FeatureTransformer - Interface in org.tribuo.data.text
-
A feature transformer maps a list of features to a new list of features Useful for example to apply the hashing trick to a set of features
- FeatureTuple() - Constructor for class org.tribuo.impl.IndexedArrayExample.FeatureTuple
-
Constructs an empty feature tuple.
- FeatureTuple(String, int, double) - Constructor for class org.tribuo.impl.IndexedArrayExample.FeatureTuple
-
Constructs a feature tuple using the specified values.
- featureValues - Variable in class org.tribuo.impl.ArrayExample
-
Feature values array.
- FeedForwardParameters - Interface in org.tribuo.math
-
A Parameters for models which make a single prediction like logistic regressions and neural networks.
- feedInto(Session.Runner) - Method in class org.tribuo.interop.tensorflow.TensorMap
-
Feeds the tensors in this FeedDict into the runner.
- FIELD_NAME - Static variable in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
The field name this response processor looks for, which is ignored anyway as this processor always returns
Optional.empty()
. - FieldExtractor<T> - Interface in org.tribuo.data.columnar
-
Extracts a value from a field to be placed in an
Example
's metadata field. - fieldName - Variable in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- FieldProcessor - Interface in org.tribuo.data.columnar
-
An interface for things that process the columns in a data set.
- FieldProcessor.GeneratedFeatureType - Enum Class in org.tribuo.data.columnar
-
The types of generated features.
- fieldProcessorMap - Variable in class org.tribuo.data.columnar.RowProcessor
- FieldResponseProcessor<T extends Output<T>> - Class in org.tribuo.data.columnar.processors.response
-
A response processor that returns the value(s) in a given (set of) fields.
- FieldResponseProcessor(String, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- FieldResponseProcessor(List<String>, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- FieldResponseProcessor(List<String>, List<String>, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- FieldResponseProcessor(List<String>, List<String>, OutputFactory<T>, boolean) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- FieldResponseProcessor(List<String>, List<String>, OutputFactory<T>, boolean, boolean) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- fields - Variable in class org.tribuo.data.columnar.ColumnarIterator
-
The column headers for this iterator.
- FILE_MODIFIED_TIME - Static variable in interface org.tribuo.provenance.DataSourceProvenance
-
The name of the provenance field for the file timestamp.
- fileCompleter() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Completers for filenames.
- fileCompleter() - Method in class org.tribuo.data.DatasetExplorer
-
The filename completer.
- fileCompleter() - Method in class org.tribuo.ModelExplorer
-
Completers for files.
- fileCompleter() - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Completers for files.
- fill(double) - Method in class org.tribuo.math.la.DenseVector
-
Fills this
DenseVector
withvalue
. - fill(int[]) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Overwrites values from the supplied array into this array.
- fill(IntArrayContainer) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Overwrites values in this array with the supplied array.
- finalise() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- finalise() - Method in class org.tribuo.math.optimisers.ParameterAveraging
-
This sets the parameters to their average value.
- finalise() - Method in class org.tribuo.math.optimisers.Pegasos
- finalise() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Finalises the gradient optimisation, setting the parameters to their correct values.
- FIRST - Enum constant in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the first feature value in the list.
- FIRST - Enum constant in enum class org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
The first variable is weighted.
- FIRST_CLASS - Static variable in class org.tribuo.classification.example.DemoLabelDataSource
-
The first class.
- firstCount - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
-
The first marginal distribution.
- firstDimensionName - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
-
Name of the first output dimension.
- fixSize() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Fixes the size of the backing array.
- fixSize() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Fixes the size of each
InvertedFeature
's inner arrays. - FLOAT - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
FLOAT = 1;
- FLOAT - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Basic types.
- FLOAT - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
A 32-bit float.
- FLOAT_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- FLOAT_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
FLOAT = 1;
- FLOAT_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Basic types.
- FLOAT16 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
IEEE754 half-precision floating-point format (16 bits wide).
- FLOAT16_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
IEEE754 half-precision floating-point format (16 bits wide).
- FloatExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a float.
- FloatExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.FloatExtractor
-
Extracts a float value from the supplied field name.
- FloatExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.FloatExtractor
-
Extracts a float value from the supplied field name.
- floatInput(int) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an input node for this ONNXContext, with the name "input", of dimension [batch_size,
featureDimension
], and of type float32. - floatInput(String, int) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an input node for this ONNXContext, with the given name, of dimension [batch_size,
featureDimension
], and of type float32. - floatMatrix(ONNXContext, String, Matrix, boolean) - Static method in class org.tribuo.math.onnx.ONNXMathUtils
-
Builds a
ONNXInitializer
containing theMatrix
. - floatOutput(int) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an output node for this ONNXContext, with the name "output", of dimension [batch_size,
outputDimension
], and of type float32. - floatOutput(String, int) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates an output node for this ONNXContext, with the given name, of dimension [batch_size,
outputDimension
], and of type float32. - FLOATS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
FLOATS = 6;
- FLOATS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- FLOATS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
FLOATS = 6;
- floatTensor(String, List<Integer>, Consumer<FloatBuffer>) - Method in class org.tribuo.util.onnx.ONNXContext
-
Creates a tensor for this ONNXContext, populated as
ONNXUtils.floatTensorBuilder(ONNXContext, String, List, Consumer)
. - floatTensorBuilder(ONNXContext, String, List<Integer>, Consumer<FloatBuffer>) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Generic method to create float
OnnxMl.TensorProto
instances. - floatVector(ONNXContext, String, SGDVector) - Static method in class org.tribuo.math.onnx.ONNXMathUtils
-
Builds a
ONNXInitializer
containing theSGDVector
. - FMClassificationModel - Class in org.tribuo.classification.sgd.fm
-
The inference time version of a factorization machine trained using SGD.
- FMClassificationOptions - Class in org.tribuo.classification.sgd.fm
-
CLI options for training a factorization machine classifier.
- FMClassificationOptions() - Constructor for class org.tribuo.classification.sgd.fm.FMClassificationOptions
- FMClassificationOptions.LossEnum - Enum Class in org.tribuo.classification.sgd.fm
-
Available loss types.
- FMClassificationTrainer - Class in org.tribuo.classification.sgd.fm
-
A trainer for a classification factorization machine using SGD.
- FMClassificationTrainer(LabelObjective, StochasticGradientOptimiser, int, int, int, long, int, double) - Constructor for class org.tribuo.classification.sgd.fm.FMClassificationTrainer
-
Constructs an SGD trainer for a factorization machine.
- FMClassificationTrainer(LabelObjective, StochasticGradientOptimiser, int, int, long, int, double) - Constructor for class org.tribuo.classification.sgd.fm.FMClassificationTrainer
-
Constructs an SGD trainer for a factorization machine.
- FMClassificationTrainer(LabelObjective, StochasticGradientOptimiser, int, long, int, double) - Constructor for class org.tribuo.classification.sgd.fm.FMClassificationTrainer
-
Constructs an SGD trainer for a factorization machine.
- fmEpochs - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Number of SGD epochs.
- fmEpochs - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Number of SGD epochs.
- fmFactorSize - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Factor size.
- fmFactorSize - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Factor size.
- fmix32(int) - Static method in class org.tribuo.util.MurmurHash3
-
32-bit mixing function.
- fmix64(long) - Static method in class org.tribuo.util.MurmurHash3
-
64-bit mixing function.
- fmLoggingInterval - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Log the objective after n examples.
- fmLoggingInterval - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Log the objective after n examples.
- fmMinibatchSize - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Minibatch size.
- fmMinibatchSize - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Minibatch size.
- FMMultiLabelModel - Class in org.tribuo.multilabel.sgd.fm
-
The inference time version of a multi-label factorization machine trained using SGD.
- FMMultiLabelOptions - Class in org.tribuo.multilabel.sgd.fm
-
CLI options for training a linear classifier.
- FMMultiLabelOptions() - Constructor for class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
- FMMultiLabelOptions.LossEnum - Enum Class in org.tribuo.multilabel.sgd.fm
-
Available loss types.
- FMMultiLabelTrainer - Class in org.tribuo.multilabel.sgd.fm
-
A trainer for a multi-label classification factorization machine using SGD.
- FMMultiLabelTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, int, int, long, int, double) - Constructor for class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
-
Constructs an SGD trainer for a multi-label factorization machine.
- FMMultiLabelTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, int, long, int, double) - Constructor for class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
-
Constructs an SGD trainer for a multi-label factorization machine.
- FMMultiLabelTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, long, int, double) - Constructor for class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
-
Constructs an SGD trainer for a multi-label factorization machine.
- fmObjective - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Loss function.
- fmObjective - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Loss function.
- FMParameters - Class in org.tribuo.common.sgd
-
A
Parameters
for factorization machines. - FMParameters(SplittableRandom, int, int, int, double) - Constructor for class org.tribuo.common.sgd.FMParameters
-
Constructor.
- FMRegressionModel - Class in org.tribuo.regression.sgd.fm
-
The inference time model of a regression factorization machine trained using SGD.
- FMRegressionOptions() - Constructor for class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
- FMRegressionTrainer - Class in org.tribuo.regression.sgd.fm
-
A trainer for a regression factorization machine using SGD.
- FMRegressionTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, int, long, int, double, boolean) - Constructor for class org.tribuo.regression.sgd.fm.FMRegressionTrainer
-
Constructs an SGD trainer for a factorization machine.
- FMRegressionTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, long, int, double, boolean) - Constructor for class org.tribuo.regression.sgd.fm.FMRegressionTrainer
-
Constructs an SGD trainer for a factorization machine.
- FMRegressionTrainer(RegressionObjective, StochasticGradientOptimiser, int, long, int, double, boolean) - Constructor for class org.tribuo.regression.sgd.fm.FMRegressionTrainer
-
Constructs an SGD trainer for a factorization machine.
- fmVariance - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Variance of the initialization gaussian.
- fmVariance - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Variance of the initialization gaussian.
- fn() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged number of false negatives.
- fn() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of false negatives.
- fn() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the micro averaged false negative count.
- fn() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fn(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- fn(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The false negative count for this label.
- fn(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of false negatives, possibly averaged depending on the metric target.
- fn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- fn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fn(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of false negatives, i.e., the number of times the true label was incorrectly predicted as another label.
- fn(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of false negatives for the supplied label.
- FN - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of false negatives.
- FN - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The number of false negatives.
- FN - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of false negatives.
- foreachIndexedInPlace(ToDoubleBiFunction<Integer, Double>) - Method in class org.tribuo.math.la.DenseVector
- foreachIndexedInPlace(ToDoubleBiFunction<Integer, Double>) - Method in interface org.tribuo.math.la.SGDVector
-
Applies a
ToDoubleBiFunction
elementwise to thisSGDVector
. - foreachIndexedInPlace(ToDoubleBiFunction<Integer, Double>) - Method in class org.tribuo.math.la.SparseVector
-
Applies a
ToDoubleBiFunction
elementwise to thisSGDVector
. - foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
-
Applies a
DoubleUnaryOperator
elementwise to thisSGDVector
. - foreachInPlace(DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Applies a
DoubleUnaryOperator
elementwise to thisTensor
. - forEachRemaining(Consumer<? super ColumnarIterator.Row>) - Method in class org.tribuo.data.columnar.ColumnarIterator
- formatDuration(long, long) - Static method in class org.tribuo.util.Util
-
Formats a duration given two times in milliseconds.
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- forNumber(int) - Static method in enum class ai.onnx.proto.OnnxMl.Version
- forTarget(MetricTarget<Label>) - Method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Gets the LabelMetric wrapped around the supplied MetricTarget.
- forTarget(MetricTarget<ClusterID>) - Method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Constructs the metric for the specified metric target.
- forTarget(MetricTarget<MultiLabel>) - Method in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Get the metric for the supplied target.
- fp() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro average of the number of false positives across all the labels, i.e., the total number of false positives.
- fp() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of false positives.
- fp() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the micro averaged false positive count.
- fp() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fp(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- fp(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The false positive count for this label.
- fp(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of false positives, possibly averaged depending on the metric target.
- fp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- fp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fp(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of false positives, i.e., the number of times this label was predicted but it was not the true label..
- fp(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of false positives for the supplied label.
- FP - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of false positives.
- FP - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The number of false positives.
- FP - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of false positives.
- fpr - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
-
The false positive rate at the corresponding threshold.
- fraction - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Fraction of features in split.
- fractionFeaturesInSplit - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Number of features to sample per split.
- frequencyBasedSample(Random, long) - Method in class org.tribuo.CategoricalInfo
-
Samples a value from this feature according to the frequency of observation.
- frequencyBasedSample(SplittableRandom, long) - Method in class org.tribuo.CategoricalInfo
-
Samples a value from this feature according to the frequency of observation.
- fscore(double, double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the Fscore.
- fscore(MetricTarget<T>, ConfusionMatrix<T>, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the Fscore.
- FTRL - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The FTRL optimiser.
- fullEquals(Event) - Method in class org.tribuo.anomaly.Event
- fullEquals(Label) - Method in class org.tribuo.classification.Label
- fullEquals(ClusterID) - Method in class org.tribuo.clustering.ClusterID
- fullEquals(MultiLabel) - Method in class org.tribuo.multilabel.MultiLabel
- fullEquals(Regressor) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- fullEquals(Regressor) - Method in class org.tribuo.regression.Regressor
- fullEquals(T) - Method in interface org.tribuo.Output
-
Compares other to this output.
- FULLY_WEIGHTED_VOTING - Enum constant in enum class org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Use a
FullyWeightedVotingCombiner
. - FullyWeightedVotingCombiner - Class in org.tribuo.classification.ensemble
-
A combiner which performs a weighted or unweighted vote across the predicted labels.
- FullyWeightedVotingCombiner() - Constructor for class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
-
Constructs a weighted voting combiner.
G
- G_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- gamma - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Gamma value in kernel function.
- gamma - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Minimum loss reduction to make a split (default 0, range [0,inf]).
- gamma - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Minimum loss reduction to make a split (default 0, range [0,inf]).
- GAMMA - Enum constant in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Gamma loss function.
- GATHER - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Gathers elements from the first argument (of rank r) indexed by the second argument (of rank q) producing a tensor of rank
q + r - 1
. - gatherAcrossDim1(int[]) - Method in class org.tribuo.math.la.DenseMatrix
-
Constructs a dense vector by gathering values across dimension 1.
- gatherAcrossDim2(int[]) - Method in class org.tribuo.math.la.DenseMatrix
-
Constructs a dense vector by gathering values across dimension 2.
- GAUSSIAN - Enum constant in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Samples from a Gaussian using the means and variances from the training data.
- gaussianAnomaly() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates two datasets, one without anomalies drawn from a single gaussian and the second drawn from a mixture of two gaussians, with the second tagged anomalous.
- gaussianAnomaly(long, double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates two datasets, one without anomalies drawn from a single gaussian and the second drawn from a mixture of two gaussians, with the second tagged anomalous.
- GaussianAnomalyDataSource - Class in org.tribuo.anomaly.example
-
Generates an anomaly detection dataset sampling each feature uniformly from a univariate Gaussian.
- GaussianAnomalyDataSource(int, double[], double[], double[], double[], float, long) - Constructor for class org.tribuo.anomaly.example.GaussianAnomalyDataSource
-
Generates anomaly detection examples sampling each feature uniformly from a univariate Gaussian.
- GaussianAnomalyDataSource(int, float, long) - Constructor for class org.tribuo.anomaly.example.GaussianAnomalyDataSource
-
Generates anomaly detection examples sampling each feature uniformly from a univariate Gaussian.
- GaussianAnomalyDataSource.GaussianAnomalyDataSourceProvenance - Class in org.tribuo.anomaly.example
-
Provenance for
GaussianAnomalyDataSource
. - GaussianAnomalyDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.anomaly.example.GaussianAnomalyDataSource.GaussianAnomalyDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- GaussianClusterDataSource - Class in org.tribuo.clustering.example
-
Generates a clustering dataset drawn from a mixture of 5 Gaussians.
- GaussianClusterDataSource(int, double[], double[], double[], double[], double[], double[], double[], double[], double[], double[], double[], long) - Constructor for class org.tribuo.clustering.example.GaussianClusterDataSource
-
Generates a clustering dataset drawn from a mixture of 5 Gaussians.
- GaussianClusterDataSource(int, long) - Constructor for class org.tribuo.clustering.example.GaussianClusterDataSource
-
Generates a clustering dataset drawn from a mixture of 5 Gaussians.
- GaussianClusterDataSource.GaussianClusterDataSourceProvenance - Class in org.tribuo.clustering.example
-
Provenance for
GaussianClusterDataSource
. - GaussianClusterDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.clustering.example.GaussianClusterDataSource.GaussianClusterDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- gaussianClusters(long, long) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a dataset drawn from a mixture of 5 2d gaussians.
- GaussianDataSource - Class in org.tribuo.regression.example
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- GaussianDataSource(int, float, float, float, float, float, long) - Constructor for class org.tribuo.regression.example.GaussianDataSource
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- GaussianDataSource.GaussianDataSourceProvenance - Class in org.tribuo.regression.example
-
Provenance for
GaussianDataSource
. - GaussianDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.example.GaussianDataSource.GaussianDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- GaussianLabelDataSource - Class in org.tribuo.classification.example
-
A data source for two classes generated from separate Gaussians.
- GaussianLabelDataSource(int, long, double[], double[], double[], double[]) - Constructor for class org.tribuo.classification.example.GaussianLabelDataSource
-
Constructs a data source which contains two classes where each class is sampled from a 2d Gaussian with the specified parameters.
- GBTREE - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A gradient boosted decision tree.
- GEMM - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
General Matrix Multiply:
alpha*AB + beta*C
. - general - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Options for loading in data.
- general - Variable in class org.tribuo.classification.experiments.RunAll.RunAllOptions
-
Options for loading in data.
- general - Variable in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
-
Options for loading in data.
- general - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.classification.sgd.fm.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
-
The data loading options.
- general - Variable in class org.tribuo.clustering.hdbscan.TrainTest.HdbscanCLIOptions
-
The data loading options.
- general - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
The data loading options.
- general - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Data loading options.
- general - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
The data loading options.
- general - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
The data loading options.
- general - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
The data loading options.
- general - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
The dataset loading options.
- general - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
The dataset loading options.
- general - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
The data loading options.
- general - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
The data loading options.
- generalOptions - Variable in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
-
The data loading options.
- generate() - Method in class org.tribuo.classification.example.CheckerboardDataSource
- generate() - Method in class org.tribuo.classification.example.ConcentricCirclesDataSource
- generate() - Method in class org.tribuo.classification.example.DemoLabelDataSource
-
Generates the examples using the configured fields.
- generate() - Method in class org.tribuo.classification.example.GaussianLabelDataSource
- generate() - Method in class org.tribuo.classification.example.InterlockingCrescentsDataSource
- generate() - Method in class org.tribuo.classification.example.NoisyInterlockingCrescentsDataSource
- generateBootstrap() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Generates the indices from this DatasetViewProvenance by rerunning the bootstrap sample.
- generateBootstrapIndices(int, Random) - Static method in class org.tribuo.util.Util
-
Draws a bootstrap sample of indices.
- generateBootstrapIndices(int, SplittableRandom) - Static method in class org.tribuo.util.Util
-
Draws a bootstrap sample of indices.
- generateCDF(double[]) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCDF(float[]) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCDF(long[], long) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCorrelated(int, int, double, double) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
These correlations don't map to mutual information values, as if xyDraw is above xyCorrelation then the draw is completely random.
- generateDataset() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Generate training and testing datasets.
- generateDataset(int, double[], double[], double[], double[], double[], double[], double[], double[], double[], double[], double[], long) - Static method in class org.tribuo.clustering.example.GaussianClusterDataSource
-
Generates a clustering dataset drawn from a mixture of 5 Gaussians.
- generateDataset(int, double[], double[], double[], double[], float, long) - Static method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource
-
Generates an anomaly detection dataset sampling each feature uniformly from a univariate Gaussian.
- generateDataset(int, float[], float[], float[], float[], boolean[], float, float[], float[], long) - Static method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
-
Generates a multi-label output drawn from three gaussian functions.
- generateDataset(int, float[], float, float, float, float, float, float, long) - Static method in class org.tribuo.regression.example.NonlinearGaussianDataSource
-
Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
- generateDataset(int, float, float, float, float, float, long) - Static method in class org.tribuo.regression.example.GaussianDataSource
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- generateEmptyExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example with no examples.
- generateExample(long, Map<String, String>, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateExample(Map<String, String>, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateExample(ColumnarIterator.Row, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateFeatureName(String, String) - Static method in class org.tribuo.data.columnar.ColumnarFeature
-
Generates a feature name based on the field name and the name.
- generateFeatureName(String, String, String) - Static method in class org.tribuo.data.columnar.ColumnarFeature
-
Generates a feature name used for conjunction features.
- generateFeatures(Map<String, String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generates the features from the supplied row.
- generateGorillaA() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
Generates a sequence example with a mixture of features and three labels "O", "Status" and "Monkey".
- generateGorillaB() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
Generates a sequence example with a mixture of features and three labels "O", "Status" and "Monkey".
- generateGorillaDataset(int) - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
Generates a simple dataset consisting of numCopies repeats of two sequences.
- generateHashedFeatureMap(FeatureMap, Hasher) - Static method in class org.tribuo.hash.HashedFeatureMap
-
Converts a standard
FeatureMap
by hashing each entry using the supplied hash functionHasher
. - generateIDs(List<? extends VariableInfo>) - Static method in class org.tribuo.ImmutableFeatureMap
-
Generates the feature ids by sorting the features with the String comparator, then sequentially numbering them.
- generateIDs(FeatureMap) - Static method in class org.tribuo.ImmutableFeatureMap
-
Generates the feature ids by sorting the features with the String comparator, then sequentially numbering them.
- generateImmutableOutputInfo() - Method in class org.tribuo.anomaly.AnomalyInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.classification.LabelInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.clustering.ClusteringInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.multilabel.MultiLabelInfo
- generateImmutableOutputInfo() - Method in interface org.tribuo.OutputInfo
-
Generates an
ImmutableOutputInfo
which has a copy of the data in thisOutputInfo
, but also has id values and is immutable. - generateImmutableOutputInfo() - Method in class org.tribuo.regression.RegressionInfo
- generateInfo() - Method in class org.tribuo.anomaly.AnomalyFactory
- generateInfo() - Method in class org.tribuo.classification.LabelFactory
-
Generates an empty MutableLabelInfo.
- generateInfo() - Method in class org.tribuo.clustering.ClusteringFactory
- generateInfo() - Method in class org.tribuo.multilabel.MultiLabelFactory
- generateInfo() - Method in interface org.tribuo.OutputFactory
-
Generates the appropriate
MutableOutputInfo
so the output values can be tracked by aDataset
or other aggregate. - generateInfo() - Method in class org.tribuo.regression.RegressionFactory
- generateInvalidExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example with features that are unused by the training data.
- generateLabelString(Set<Label>) - Static method in class org.tribuo.multilabel.MultiLabelFactory
- generateMetadata(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generates the example metadata from the supplied row and index.
- generateMutableOutputInfo() - Method in class org.tribuo.anomaly.AnomalyInfo
- generateMutableOutputInfo() - Method in class org.tribuo.classification.LabelInfo
- generateMutableOutputInfo() - Method in class org.tribuo.clustering.ClusteringInfo
- generateMutableOutputInfo() - Method in class org.tribuo.multilabel.MultiLabelInfo
- generateMutableOutputInfo() - Method in interface org.tribuo.OutputInfo
-
Generates a mutable copy of this
OutputInfo
. - generateMutableOutputInfo() - Method in class org.tribuo.regression.RegressionInfo
- generateOtherInvalidExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example where the first example has no features.
- generateOutput(V) - Method in class org.tribuo.anomaly.AnomalyFactory
- generateOutput(V) - Method in class org.tribuo.classification.LabelFactory
-
Generates the Label string by calling toString on the input.
- generateOutput(V) - Method in class org.tribuo.clustering.ClusteringFactory
-
Generates a ClusterID by calling toString on the input, then calling Integer.parseInt.
- generateOutput(V) - Method in class org.tribuo.multilabel.MultiLabelFactory
-
Parses the MultiLabel value either by toStringing the input and calling
MultiLabel.parseString(java.lang.String)
or if it's aCollection
iterating over the elements calling toString on each element in turn and usingMultiLabel.parseElement(java.lang.String)
. - generateOutput(V) - Method in interface org.tribuo.OutputFactory
-
Parses the
V
and generates the appropriateOutput
value. - generateOutput(V) - Method in class org.tribuo.regression.RegressionFactory
-
Parses the Regressor value either by toStringing the input and calling
Regressor.parseString(java.lang.String)
or if it's a collection iterating over the elements calling toString on each element in turn and usingRegressor.parseElement(int, java.lang.String)
. - generateOutputs(List<V>) - Method in interface org.tribuo.OutputFactory
-
Generate a list of outputs from the supplied list of inputs.
- generatePlaceholderName(String) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
Creates a name for a placeholder based on the supplied variable name.
- generatePRCurve(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the Precision Recall curve for a single label.
- generateRealInfo() - Method in class org.tribuo.CategoricalIDInfo
-
Generates a
RealIDInfo
that matches this CategoricalInfo and also contains an id number. - generateRealInfo() - Method in class org.tribuo.CategoricalInfo
-
Generates a
RealInfo
using the currently observed counts to calculate the min, max, mean and variance. - generateROCCurve(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the binary ROC for a single label.
- generatesProbabilities - Variable in class org.tribuo.interop.onnx.LabelTransformer
- generatesProbabilities - Variable in class org.tribuo.Model
-
Does this model generate probability distributions in the output.
- generatesProbabilities() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- generatesProbabilities() - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Does this converter produce probabilities?
- generatesProbabilities() - Method in class org.tribuo.interop.oci.OCILabelConverter
- generatesProbabilities() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- generatesProbabilities() - Method in interface org.tribuo.interop.oci.OCIOutputConverter
-
Does this OCIOutputConverter generate probabilities?
- generatesProbabilities() - Method in class org.tribuo.interop.oci.OCIRegressorConverter
- generatesProbabilities() - Method in class org.tribuo.interop.onnx.LabelTransformer
- generatesProbabilities() - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- generatesProbabilities() - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Does this OutputTransformer generate probabilities.
- generatesProbabilities() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- generatesProbabilities() - Method in class org.tribuo.interop.tensorflow.LabelConverter
- generatesProbabilities() - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- generatesProbabilities() - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Does this OutputConverter generate probabilities.
- generatesProbabilities() - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- generatesProbabilities() - Method in class org.tribuo.Model
-
Does this model generate probabilistic predictions.
- generatesProbabilities() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- generatesProbabilities(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Does the model generate probabilities.
- generatesProbabilities(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Checks if the model generates probabilities.
- generateTestData() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Simple test data for checking multi-label trainers.
- generateTrainData() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Simple training data for checking multi-label trainers.
- generateTransformer() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Returns itself.
- generateTransformer() - Method in interface org.tribuo.transform.TransformStatistics
-
Generates the appropriate
Transformer
from the collected statistics. - generateUniform(int, int) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
Generates a sample from a uniform distribution over the integers.
- generateUniformFloatVector(int, float) - Static method in class org.tribuo.util.Util
-
Generates a float vector of the specified length filled with the specified value.
- generateUniformVector(int, double) - Static method in class org.tribuo.util.Util
-
Generates an array of the specified length filled with the specified value.
- generateUniformVector(int, float) - Static method in class org.tribuo.util.Util
-
Generates an array of the specified length filled with the specified value.
- generateWeightedIndicesSample(int, double[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, double[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, float[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, float[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSampleWithoutReplacement(int, double[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights without replacement.
- generateWeightedIndicesSampleWithoutReplacement(int, float[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights without replacement.
- generateWeightsString() - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Generates a human readable string containing all the weights in this model.
- generateXOR(int) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
Generates a sample from a three variable XOR function.
- get() - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- get() - Method in class org.tribuo.common.sgd.FMParameters
- get() - Method in class org.tribuo.math.LinearParameters
- get() - Method in interface org.tribuo.math.Parameters
-
Get a reference to the underlying
Tensor
array. - get(int) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the
VariableIDInfo
for this id number. - get(int) - Method in class org.tribuo.math.la.DenseVector
- get(int) - Method in interface org.tribuo.math.la.SGDVector
-
Gets an element from this vector.
- get(int) - Method in class org.tribuo.math.la.SparseVector
- get(int) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- get(int) - Method in class org.tribuo.sequence.SequenceExample
-
Gets the example found at the specified index.
- get(int) - Method in class org.tribuo.util.infotheory.impl.RowList
- get(int, int) - Method in class org.tribuo.math.la.DenseMatrix
- get(int, int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- get(int, int) - Method in interface org.tribuo.math.la.Matrix
-
Gets an element from this
Matrix
. - get(int, int) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- get(String) - Method in class org.tribuo.FeatureMap
-
Gets the variable info associated with that feature name, or null if it's unknown.
- get(String) - Method in class org.tribuo.hash.HashedFeatureMap
- get(String) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the
VariableIDInfo
for this name. - get(String) - Method in class org.tribuo.transform.TransformerMap
-
Gets the transformer associated with a given feature name.
- get(MetricID<MultiLabel>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- get(MetricID<T>) - Method in interface org.tribuo.evaluation.Evaluation
-
Gets the value associated with the specific metric.
- get(MetricID<T>) - Method in interface org.tribuo.sequence.SequenceEvaluation
-
Gets the value associated with the specific metric.
- getA() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the first element.
- getAB() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the pair of the first and second elements.
- getABCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The joint distribution over the first and second variables.
- getABCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The joint distribution over the first and second variables.
- getAC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the pair of the first and third elements.
- getACCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The joint distribution over the first and third variables.
- getACCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The joint distribution over the first and third variables.
- getACount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The marginal distribution over the first variable.
- getACount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The marginal distribution over the first variable.
- getActiveFeatures() - Method in interface org.tribuo.classification.explanations.Explanation
-
Returns the names of the active features in this explanation.
- getActiveFeatures() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getActiveFeatures() - Method in class org.tribuo.SparseModel
-
Return an immutable view on the active features for each dimension.
- getAlgorithm() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- getAlgorithm() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field represents a training algorithm step.
- getAlgorithm() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field represents a training algorithm step.
- getAlgorithmBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- getAlgorithmOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- getAlgorithmOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field represents a training algorithm step.
- getAlgorithmOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field represents a training algorithm step.
- getAnomalyCount() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of anomalous events observed.
- getArch() - Method in class org.tribuo.provenance.ModelProvenance
-
The CPU architecture used to create this model.
- getAttribute(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttribute(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
Additional named attributes.
- getAttribute(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
Additional named attributes.
- getAttributeBuilder(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeBuilderList() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
Additional named attributes.
- getAttributeCount() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
Additional named attributes.
- getAttributeList() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeList() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
Additional named attributes.
- getAttributeList() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
Additional named attributes.
- getAttributeOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
Additional named attributes.
- getAttributeOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
Additional named attributes.
- getAttributeOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- getAttributeOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
Additional named attributes.
- getAttributeOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
Additional named attributes.
- getAverageTarget() - Method in class org.tribuo.evaluation.metrics.MetricTarget
-
Returns the average this metric computes, or
Optional.empty()
if it targets an output. - getB() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the second element.
- getBaseName() - Method in class org.tribuo.util.onnx.ONNXRef
-
The name of this object.
- getBatchPredictions(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelOneVOneTransformer
-
Rationalises the output of an onnx model into a standard format suitable for downstream work in Tribuo.
- getBatchPredictions(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
-
Rationalises the output of an onnx model into a standard format suitable for downstream work in Tribuo.
- getBatchSize() - Method in class org.tribuo.interop.ExternalModel
-
Gets the current testing batch size.
- getBatchSize() - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Gets the current testing batch size.
- getBC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the pair of the second and third elements.
- getBCCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The joint distribution over the second and third variables.
- getBCCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The joint distribution over the second and third variables.
- getBCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The marginal distribution over the second variable.
- getBCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The marginal distribution over the second variable.
- getBegin() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 begin = 1;
- getBegin() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
-
optional int64 begin = 1;
- getBegin() - Method in interface ai.onnx.proto.OnnxMl.TensorProto.SegmentOrBuilder
-
optional int64 begin = 1;
- getBias(int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Returns the bias for the specified label id.
- getBiasesCopy() - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Returns a copy of the output dimension biases.
- getC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Gets the third element.
- getCCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The marginal distribution over the third variable.
- getCCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The marginal distribution over the third variable.
- getCentroids() - Method in class org.tribuo.clustering.kmeans.KMeansModel
-
Returns a list of features, one per centroid.
- getCentroidVectors() - Method in class org.tribuo.clustering.kmeans.KMeansModel
-
Returns a copy of the centroids.
- getCheckpointDirectory() - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Gets the checkpoint directory this model loads from.
- getCheckpointName() - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Gets the checkpoint name this model loads from.
- getClassName() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- getClassName() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- getClassName() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- getClassName() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.
- getClassName() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- getClassName() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- getClassName() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- getClassName() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- getClassName() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- getClassName() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getClassName() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- getClassName() - Method in class org.tribuo.provenance.DatasetProvenance
- getClassName() - Method in class org.tribuo.provenance.EvaluationProvenance
- getClassName() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- getClassName() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- getClassName() - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- getClassName() - Method in class org.tribuo.provenance.ModelProvenance
- getClassName() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- getClassName() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- getClassName() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.IDFTransformation.IDFTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- getClassName() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- getCliqueValues(SGDVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generates the local scores and tuples them with the label - label transition weights.
- getClusterLabels() - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
-
Returns the cluster labels for the training data.
- getCM() - Method in class org.tribuo.classification.evaluation.LabelMetric.Context
-
Gets the confusion matrix.
- getColumn(int) - Method in class org.tribuo.math.la.DenseMatrix
-
Returns a copy of the specified column.
- getColumnEntry() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
Gets the columnEntry (i.e., the feature name produced by the
FieldExtractor
without the fieldName). - getColumnNames() - Method in class org.tribuo.data.columnar.RowProcessor
-
The set of column names this will use for the feature processing.
- getConfigurationManager() - Method in class org.tribuo.reproducibility.ReproUtil
-
Returns the ConfigurationManager the ReproUtil is using to manage the reproduced models.
- getConfiguredParameters() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getConfiguredParameters() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- getConfiguredParameters() - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- getConfiguredParameters() - Method in interface org.tribuo.provenance.OutputFactoryProvenance
- getConfiguredParameters() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- getConfiguredParameters() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.IDFTransformation.IDFTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- getConfusionMatrix() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the underlying confusion matrix.
- getConfusionMatrix() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the confusion matrix backing this evaluation.
- getConfusionMatrix() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getConnection() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Constructs a connection based on the object fields.
- getCount() - Method in class org.tribuo.SkeletalVariableInfo
-
Returns the occurrence count of this feature.
- getCount() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the observation count.
- getCount() - Method in interface org.tribuo.VariableInfo
-
The occurrence count of this feature.
- getCover() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Cover measures the number of examples a given feature discriminates across, relative to the total number of examples all features discriminate across.
- getCover() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The number of examples a feature discriminates between.
- getCover(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Cover measures the number of examples a given feature discriminates across, relative to the total.
- getData() - Method in class org.tribuo.dataset.DatasetView
- getData() - Method in class org.tribuo.Dataset
-
Gets the examples as an unmodifiable list.
- getData() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns an unmodifiable view on the data.
- getDataLocation() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- getDataLocation() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- getDataLocation() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- getDatasetProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
The training dataset provenance.
- getDataType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The data type of the tensor.
- getDataType() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
The data type of the tensor.
- getDataType() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
The data type of the tensor.
- getDataType() - Method in class org.tribuo.datasource.IDXDataSource
-
The type of the features that were loaded in.
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getDefaultInstance() - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- getDefaultInstanceForType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getDenotation() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotation() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotation() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotation() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDenotation() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDenotation() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDenotationBytes() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotationBytes() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotationBytes() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- getDenotationBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDenotationBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDenotationBytes() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- getDensify() - Method in class org.tribuo.transform.TransformedModel
-
Returns true if the model densifies the feature space before applying the transformations.
- getDepth() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
The depth of this node in the tree.
- getDepth() - Method in class org.tribuo.common.tree.TreeModel
-
Probes the tree to find the depth.
- getDepth() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
-
Probes the trees to find the depth.
- getDescription() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- getDescription() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns a description of the row processor and it's fields.
- getDescription() - Method in class org.tribuo.data.DatasetExplorer
- getDescription() - Method in class org.tribuo.ModelExplorer
- getDescription() - Method in class org.tribuo.sequence.SequenceModelExplorer
- getDescriptor() - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- getDescriptor() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- getDescriptor() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- getDescriptor() - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getDescriptor() - Static method in enum class ai.onnx.proto.OnnxMl.Version
- getDescriptorForType() - Method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- getDescriptorForType() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- getDescriptorForType() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- getDescriptorForType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- getDescriptorForType() - Method in enum class ai.onnx.proto.OnnxMl.Version
- getDigestSupplier(String) - Static method in class org.tribuo.hash.MessageDigestHasher
-
Creates a supplier for the specified hash type.
- getDim(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDim(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDim(int) - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProtoOrBuilder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimCount() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimCount() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimCount() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProtoOrBuilder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimension(int) - Method in class org.tribuo.regression.Regressor
-
Returns a dimension tuple for the requested dimension index.
- getDimension(String) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getDimension(String) - Method in class org.tribuo.regression.Regressor
-
Returns a dimension tuple for the requested dimension, or optional empty if it's not valid.
- getDimension1Size() - Method in class org.tribuo.math.la.DenseMatrix
- getDimension1Size() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getDimension1Size() - Method in interface org.tribuo.math.la.Matrix
-
The size of the first dimension.
- getDimension2Size() - Method in class org.tribuo.math.la.DenseMatrix
- getDimension2Size() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getDimension2Size() - Method in interface org.tribuo.math.la.Matrix
-
The size of the second dimension.
- getDimensionName(int) - Method in class org.tribuo.classification.sgd.fm.FMClassificationModel
- getDimensionName(int) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- getDimensionName(int) - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Gets the name of the indexed output dimension.
- getDimensionName(int) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
-
Gets the name of the indexed output dimension.
- getDimensionName(int) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelModel
- getDimensionName(int) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDModel
- getDimensionName(int) - Method in class org.tribuo.regression.sgd.fm.FMRegressionModel
- getDimensionName(int) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- getDimensionNamesString() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getDimensionNamesString() - Method in class org.tribuo.regression.Regressor
-
Returns a comma separated list of the dimension names.
- getDimensionNamesString(char) - Method in class org.tribuo.regression.Regressor
-
Returns a delimiter separated list of the dimension names.
- getDimList() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimList() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimList() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProtoOrBuilder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProtoOrBuilder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProtoOrBuilder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- getDimParam() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- getDimParam() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
namespace Shape
- getDimParam() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
namespace Shape
- getDimParamBytes() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- getDimParamBytes() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
namespace Shape
- getDimParamBytes() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
namespace Shape
- getDims(int) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDims(int) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDims(int) - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDims(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- getDims(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
The shape of the tensor.
- getDims(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
The shape of the tensor.
- getDimsCount() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsCount() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsCount() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- getDimsCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
The shape of the tensor.
- getDimsCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
The shape of the tensor.
- getDimsList() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsList() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsList() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- getDimsList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- getDimsList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
The shape of the tensor.
- getDimsList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
The shape of the tensor.
- getDimValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
int64 dim_value = 1;
- getDimValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
int64 dim_value = 1;
- getDimValue() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
int64 dim_value = 1;
- getDistribution() - Method in class org.tribuo.common.tree.LeafNode
-
Gets the distribution over scores in this node.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
A human-readable documentation for this attribute.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
A human-readable documentation for this attribute.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A human-readable documentation for this graph.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A human-readable documentation for this graph.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
A human-readable documentation for this model.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
A human-readable documentation for this model.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
A human-readable documentation for this node.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
A human-readable documentation for this node.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
A human-readable documentation for this tensor.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
A human-readable documentation for this tensor.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- getDocString() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
A human-readable documentation for this value.
- getDocString() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
A human-readable documentation for this value.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
A human-readable documentation for this attribute.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
A human-readable documentation for this attribute.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A human-readable documentation for this graph.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A human-readable documentation for this graph.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
A human-readable documentation for this model.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
A human-readable documentation for this model.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
A human-readable documentation for this node.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
A human-readable documentation for this node.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
A human-readable documentation for this tensor.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
A human-readable documentation for this tensor.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- getDocStringBytes() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
A human-readable documentation for this value.
- getDocStringBytes() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
A human-readable documentation for this value.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Domain name of the model.
- getDomain() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Domain name of the model.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomain() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
The domain of the operator set being identified.
- getDomain() - Method in interface ai.onnx.proto.OnnxMl.OperatorSetIdProtoOrBuilder
-
The domain of the operator set being identified.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- getDomain() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
When missing, the domain is the same as the model's.
- getDomain() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
When missing, the domain is the same as the model's.
- getDomain() - Method in class org.tribuo.anomaly.AnomalyInfo
-
Returns the set of possible
Event
s. - getDomain() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
Returns the classification domain that this confusion matrix operates over.
- getDomain() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- getDomain() - Method in class org.tribuo.classification.ImmutableLabelInfo
-
Returns the set of possible
Label
s that this LabelInfo has seen. - getDomain() - Method in class org.tribuo.classification.LabelInfo
-
Returns the set of possible
Label
s that this LabelInfo has seen. - getDomain() - Method in class org.tribuo.clustering.ClusteringInfo
- getDomain() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getDomain() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- getDomain() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getDomain() - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Returns a set of MultiLabel, where each has a single Label inside it.
- getDomain() - Method in interface org.tribuo.OutputInfo
- getDomain() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getDomain() - Method in class org.tribuo.regression.RegressionInfo
-
Returns a set containing a Regressor for each dimension with the minimum value observed.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Domain name of the model.
- getDomainBytes() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Domain name of the model.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomainBytes() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
The domain of the operator set being identified.
- getDomainBytes() - Method in interface ai.onnx.proto.OnnxMl.OperatorSetIdProtoOrBuilder
-
The domain of the operator set being identified.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- getDomainBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
When missing, the domain is the same as the model's.
- getDomainBytes() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
When missing, the domain is the same as the model's.
- getDoubleData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleData(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDoubleDataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getDropInvalidExamples() - Method in class org.tribuo.ImmutableDataset
-
Returns true if this immutable dataset dropped any invalid examples on construction.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
-
The type and optional shape of each element of the sequence.
- getElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SequenceOrBuilder
-
The type and optional shape of each element of the sequence.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SparseTensorOrBuilder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.TensorOrBuilder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getElemTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- getElemTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- getElemTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
-
The type and optional shape of each element of the sequence.
- getElemTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SequenceOrBuilder
-
The type and optional shape of each element of the sequence.
- getEmptyCopy() - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Returns a 3 element
Tensor
array. - getEmptyCopy() - Method in class org.tribuo.common.sgd.FMParameters
-
This returns a
DenseMatrix
the same size as the Parameters. - getEmptyCopy() - Method in class org.tribuo.math.LinearParameters
-
This returns a
DenseMatrix
the same size as the Parameters. - getEmptyCopy() - Method in interface org.tribuo.math.Parameters
-
Generates an empty copy of the underlying
Tensor
array. - getEnd() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 end = 2;
- getEnd() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
-
optional int64 end = 2;
- getEnd() - Method in interface ai.onnx.proto.OnnxMl.TensorProto.SegmentOrBuilder
-
optional int64 end = 2;
- getEnd() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getEnd() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the ending offset (exclusive) of the current token in the character sequence
- getEnd() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getEvaluation() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
-
Gets the evaluator which scores how close the sparse model's predictions are to the complex model's predictions.
- getEvaluator() - Method in class org.tribuo.anomaly.AnomalyFactory
- getEvaluator() - Method in class org.tribuo.classification.LabelFactory
- getEvaluator() - Method in class org.tribuo.clustering.ClusteringFactory
- getEvaluator() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getEvaluator() - Method in interface org.tribuo.OutputFactory
-
Gets an
Evaluator
suitable for measuring performance of predictions for the Output subclass. - getEvaluator() - Method in class org.tribuo.regression.RegressionFactory
- getEventCount(Event.EventType) - Method in class org.tribuo.anomaly.AnomalyInfo
-
Gets the count of the supplied EventType.
- getExample() - Method in class org.tribuo.Excuse
-
The example being excused.
- getExample() - Method in class org.tribuo.Prediction
-
Returns the example itself.
- getExample(int) - Method in class org.tribuo.dataset.DatasetView
- getExample(int) - Method in class org.tribuo.Dataset
-
Gets the example at the supplied index.
- getExample(int) - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the example at the specified index, or throws IllegalArgumentException if the index is out of bounds.
- getExampleIndices() - Method in class org.tribuo.dataset.DatasetView
-
Returns a copy of the indicies used in this view.
- getExampleSize() - Method in class org.tribuo.Prediction
-
Returns the number of features in the example.
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- getExcuse(Example<ClusterID>) - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
- getExcuse(Example<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- getExcuse(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.ClassifierChainModel
- getExcuse(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.slm.SparseLinearModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.liblinear.LibLinearModel
-
This call is expensive as it copies out the weight matrix from the LibLinear model.
- getExcuse(Example<T>) - Method in class org.tribuo.common.libsvm.LibSVMModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.nearest.KNNModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Factorization machines don't provide excuses, use an explainer.
- getExcuse(Example<T>) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.tree.TreeModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
- getExcuse(Example<T>) - Method in class org.tribuo.ensemble.EnsembleModel
- getExcuse(Example<T>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- getExcuse(Example<T>) - Method in class org.tribuo.interop.ExternalModel
-
By default third party models don't return excuses.
- getExcuse(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Deep learning models don't do excuses.
- getExcuse(Example<T>) - Method in class org.tribuo.Model
-
Generates an excuse for an example.
- getExcuse(Example<T>) - Method in class org.tribuo.transform.TransformedModel
- getExcuses(Iterable<Example<T>>) - Method in class org.tribuo.common.liblinear.LibLinearModel
- getExcuses(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Generates an excuse for each example.
- getExpectedCount() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of expected events observed.
- getExternalData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalData(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getExternalDataOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- getF() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
Exactly ONE of the following fields must be present for this version of the IR
- getF() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
Exactly ONE of the following fields must be present for this version of the IR
- getF() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
Exactly ONE of the following fields must be present for this version of the IR
- getF1() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the F_1 score of the anomalous events, i.e., the harmonic mean of the precision and the recall.
- getFactorsCopy() - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Returns a copy of the factors.
- getFalseNegatives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of false negatives, i.e., anomalous events classified as expected.
- getFalsePositives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of false positives, i.e., expected events classified as anomalous.
- getFeature() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Gets the inverted feature values for this feature.
- getFeatureID() - Method in class org.tribuo.common.tree.SplitNode
-
Gets the feature ID that this node uses for splitting.
- getFeatureIDMap() - Method in class org.tribuo.Dataset
-
Returns or generates an
ImmutableFeatureMap
. - getFeatureIDMap() - Method in class org.tribuo.ImmutableDataset
- getFeatureIDMap() - Method in class org.tribuo.Model
-
Gets the feature domain.
- getFeatureIDMap() - Method in class org.tribuo.MutableDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.SequenceDataset
-
An immutable view on the feature map.
- getFeatureIDMap() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the feature domain.
- getFeatureImportance() - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates objects to report feature importance metrics for XGBoost.
- getFeatureImportance() - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Creates objects to report feature importance metrics for XGBoost.
- getFeatureMap() - Method in class org.tribuo.dataset.DatasetView
- getFeatureMap() - Method in class org.tribuo.Dataset
-
Returns this dataset's
FeatureMap
. - getFeatureMap() - Method in class org.tribuo.ImmutableDataset
- getFeatureMap() - Method in class org.tribuo.MutableDataset
- getFeatureMap() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getFeatureMap() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getFeatureMap() - Method in class org.tribuo.sequence.SequenceDataset
-
The feature map.
- getFeatureName() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The feature name.
- getFeatureProcessors() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the set of
FeatureProcessor
s this RowProcessor uses. - getFeatures() - Method in class org.tribuo.common.tree.TreeModel
-
Returns the set of features which are split on in this tree.
- getFeatures() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getFeatureTransformations() - Method in class org.tribuo.transform.TransformationMap
-
Gets the map of feature specific transformations.
- getFeatureType() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Returns the feature type this FieldProcessor generates.
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getFeatureWeights() - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyModel
- getFeatureWeights() - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- getFeatureWeights() - Method in class org.tribuo.common.liblinear.LibLinearModel
-
Extracts the feature weights from the models.
- getFeatureWeights() - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- getFeatureWeights(int) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Get a copy of the weights for feature
featureID
. - getFeatureWeights(int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Gets a copy of the weights for the specified label id.
- getFeatureWeights(String) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Get a copy of the weights for feature named
featureName
. - getFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
Gets the field name.
- getFieldName() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Gets the field name this extractor operates on.
- getFieldName() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Gets the field name this FieldProcessor uses.
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Deprecated.
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
Deprecated.
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Deprecated.
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Deprecated.
- getFieldName() - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Deprecated.use
ResponseProcessor.getFieldNames()
and support multiple values instead. Gets the field name this ResponseProcessor uses. - getFieldNames() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getFieldNames() - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
- getFieldNames() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getFieldNames() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getFieldNames() - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Gets the field names this ResponseProcessor uses.
- getFieldProcessors() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the map of
FieldProcessor
s this RowProcessor uses. - getFields() - Method in class org.tribuo.data.columnar.ColumnarIterator
-
The immutable list of field names.
- getFields() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
-
Gets the field headers.
- getFirstCount() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Gets the first marginal distribution.
- getFirstFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
If it's a conjunction feature, return the first field name.
- getFlatDataset() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns a view on this SequenceDataset which aggregates all the examples and ignores the sequence structure.
- getFloatData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatData(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloatDataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- getFloats(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- getFloats(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of floats
- getFloats(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of floats
- getFloatsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- getFloatsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of floats
- getFloatsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of floats
- getFloatsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- getFloatsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of floats
- getFloatsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of floats
- getFractionFeaturesInSplit() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getFractionFeaturesInSplit() - Method in interface org.tribuo.common.tree.DecisionTreeTrainer
-
Returns the feature subsampling rate.
- getG() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- getG() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
graph
- getG() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
graph
- getGain() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Gain measures the improvement in accuracy that a feature brings to the branches on which it appears.
- getGain() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The information gain a feature provides when split on.
- getGain(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Gain measures the improvement in accuracy that a feature brings to the branches on which it appears.
- getGamma() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Gets the gamma value.
- getGBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- getGlobalTransformations() - Method in class org.tribuo.transform.TransformationMap
-
Gets the global transformations in this TransformationMap.
- getGOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- getGOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
graph
- getGOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
graph
- getGradientParams() - Method in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Zips the gradient parameter names and values.
- getGraph() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- getGraph() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The parameterized graph that is evaluated to execute the model.
- getGraph() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The parameterized graph that is evaluated to execute the model.
- getGraphBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- getGraphOrBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- getGraphOrBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The parameterized graph that is evaluated to execute the model.
- getGraphOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The parameterized graph that is evaluated to execute the model.
- getGraphs(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphs(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of graph
- getGraphs(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of graph
- getGraphsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of graph
- getGraphsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of graph
- getGraphsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of graph
- getGraphsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of graph
- getGraphsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of graph
- getGraphsOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of graph
- getGraphsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- getGraphsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of graph
- getGraphsOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of graph
- getGreaterThan() - Method in class org.tribuo.common.tree.SplitNode
-
The node used if the value is greater than the splitValue.
- getHashedTrainer(Trainer<T>) - Method in class org.tribuo.hash.HashingOptions
-
Gets the trainer wrapped in a hashing trainer.
- getHasher() - Method in class org.tribuo.hash.HashingOptions
-
Get the specified hasher.
- getHyperparameterFeed() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
-
Build any necessary non-data parameter tensors.
- getI() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
int
- getI() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
int
- getI() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
int
- getID() - Method in enum class org.tribuo.anomaly.Event.EventType
-
Returns the id of the event.
- getID() - Method in class org.tribuo.CategoricalIDInfo
- getID() - Method in class org.tribuo.clustering.ClusterID
-
Gets the cluster id number.
- getID() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The metric ID, a combination of the metric target and metric name.
- getID() - Method in class org.tribuo.RealIDInfo
- getID() - Method in interface org.tribuo.VariableIDInfo
-
The id number associated with this variable.
- getID(String) - Method in class org.tribuo.hash.HashedFeatureMap
-
Gets the id number for this feature, returns -1 if it's unknown.
- getID(String) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the id number for this feature, returns -1 if it's unknown.
- getID(String) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
-
Gets the id for the supplied label string.
- getID(Event) - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getID(Label) - Method in class org.tribuo.classification.ImmutableLabelInfo
- getID(ClusterID) - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getID(MultiLabel) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getID(Regressor) - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getID(T) - Method in interface org.tribuo.ImmutableOutputInfo
-
Return the id number associated with this output, or -1 if the output is unknown.
- getIDtoNaturalOrderMapping() - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Computes the mapping between ID numbers and regressor dimension indices.
- getIdx(int) - Method in class org.tribuo.impl.IndexedArrayExample
-
Gets the feature at internal index i.
- getImpl() - Method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Returns the implementing function for this metric.
- getImpl() - Method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Gets the implementing function for this metric.
- getImpl() - Method in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Get the implementation function for this metric.
- getImportances() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Gets all the feature importances for all the features.
- getImportances(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Gets the feature importances for the top n features sorted by gain.
- getImpurity() - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
- getImpurity() - Method in class org.tribuo.common.tree.LeafNode
- getImpurity() - Method in interface org.tribuo.common.tree.Node
-
The impurity score of this node.
- getImpurity() - Method in class org.tribuo.common.tree.SplitNode
- getImpurity() - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- getImpurity() - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- getIndex() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
-
Gets the row index.
- getIndices() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndices() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndices() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndicesBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndicesOrBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndicesOrBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The indices of the non-default values, which may be stored in one of two formats.
- getIndicesOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The indices of the non-default values, which may be stored in one of two formats.
- getInitialization() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitialization() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitialization() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitializationBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBinding(int) - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingCount() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingCount() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingCount() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingList() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBindingOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- getInitializationBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitializationOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitializationOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitializationOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- getInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializer(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInitializerOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A list of named tensor values, used to specify constant inputs of the graph.
- getInnerExcuses() - Method in class org.tribuo.ensemble.EnsembleExcuse
-
The individual ensemble member's excuses.
- getInnerModel() - Method in class org.tribuo.transform.TransformedModel
-
Gets the inner model to allow access to any class specific methods that model contains (e.g., to examine cluster centroids).
- getInnerModels() - Method in class org.tribuo.common.liblinear.LibLinearModel
-
Returns an unmodifiable list containing a copy of each model.
- getInnerModels() - Method in class org.tribuo.common.libsvm.LibSVMModel
-
Returns an unmodifiable copy of the underlying list of libsvm models.
- getInnerModels() - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Returns an unmodifiable list containing a copy of each model.
- getInput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The inputs and outputs of the graph.
- getInput(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The inputs and outputs of the graph.
- getInput(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getInput(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getInput(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getInputBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputBytes(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getInputBytes(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getInputBytes(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getInputCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The inputs and outputs of the graph.
- getInputCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The inputs and outputs of the graph.
- getInputCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getInputCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getInputCount() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getInputList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The inputs and outputs of the graph.
- getInputList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The inputs and outputs of the graph.
- getInputList() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getInputList() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getInputList() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getInputOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The inputs and outputs of the graph.
- getInputOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The inputs and outputs of the graph.
- getInputOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- getInputOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The inputs and outputs of the graph.
- getInputOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The inputs and outputs of the graph.
- getInstanceProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
Provenance for the specific training run which created this model.
- getInstanceValues() - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- getInt32Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32Data(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt32DataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- getInt64Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- getInt64Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int64.
- getInt64Data(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int64.
- getInt64DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- getInt64DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int64.
- getInt64DataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int64.
- getInt64DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- getInt64DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For int64.
- getInt64DataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For int64.
- getInts(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- getInts(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of ints
- getInts(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of ints
- getIntsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- getIntsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of ints
- getIntsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of ints
- getIntsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- getIntsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of ints
- getIntsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of ints
- getInvocationCount() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- getInvocationCount() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- getInvocationCount() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- getInvocationCount() - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- getInvocationCount() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- getInvocationCount() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- getInvocationCount() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- getInvocationCount() - Method in class org.tribuo.common.nearest.KNNTrainer
- getInvocationCount() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- getInvocationCount() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getInvocationCount() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- getInvocationCount() - Method in class org.tribuo.ensemble.BaggingTrainer
- getInvocationCount() - Method in class org.tribuo.hash.HashingTrainer
- getInvocationCount() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- getInvocationCount() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- getInvocationCount() - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- getInvocationCount() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- getInvocationCount() - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- getInvocationCount() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- getInvocationCount() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- getInvocationCount() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- getInvocationCount() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- getInvocationCount() - Method in class org.tribuo.regression.slm.SLMTrainer
- getInvocationCount() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- getInvocationCount() - Method in class org.tribuo.sequence.IndependentSequenceTrainer
- getInvocationCount() - Method in interface org.tribuo.sequence.SequenceTrainer
-
Returns the number of times the train method has been invoked.
- getInvocationCount() - Method in interface org.tribuo.Trainer
-
The number of times this trainer instance has had it's train method invoked.
- getInvocationCount() - Method in class org.tribuo.transform.TransformTrainer
- getIrVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the IR this model targets.
- getIrVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the IR this model targets.
- getIrVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the IR this model targets.
- getJavaVersion() - Method in class org.tribuo.provenance.ModelProvenance
-
The Java version used to create this model.
- getJointCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
-
The joint distribution over the three variables.
- getJointCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
The joint distribution over the three variables.
- getJointCounts() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Gets the joint distribution.
- getK() - Method in class org.tribuo.evaluation.CrossValidation
-
Returns the number of folds.
- getKernelType() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Gets the kernel type.
- getKernelType(int) - Static method in enum class org.tribuo.common.libsvm.KernelType
-
Converts the LibSVM int id into the enum value.
- getKey() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- getKey() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string key = 1;
- getKey() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string key = 1;
- getKeyBytes() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- getKeyBytes() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string key = 1;
- getKeyBytes() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string key = 1;
- getKeyType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getKeyType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getKeyType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.MapOrBuilder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- getLabel() - Method in class org.tribuo.classification.Label
-
Gets the name of this label.
- getLabelCount(int) - Method in class org.tribuo.classification.ImmutableLabelInfo
-
Returns the number of times the supplied id was observed before this LabelInfo was frozen.
- getLabelCount(int) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
-
Gets the count of the label occurrence for the specified id number, or 0 if it's unknown.
- getLabelCount(String) - Method in class org.tribuo.classification.LabelInfo
-
Gets the count of the supplied label, or 0 if the label is unknown.
- getLabelCount(String) - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Get the number of times this String was observed, or 0 if unknown.
- getLabelCount(Label) - Method in class org.tribuo.classification.LabelInfo
-
Gets the count of the supplied label, or 0 if the label is unknown.
- getLabelCount(Label) - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Get the number of times this Label was observed, or 0 if unknown.
- getLabelOrder() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The label order this confusion matrix uses in
toString
. - getLabelOrder() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Gets the current label order.
- getLabelOrder() - Method in class org.tribuo.multilabel.baseline.ClassifierChainModel
-
Returns the training label order.
- getLabelOrder() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
-
Gets the current label order.
- getLabelScore(Label) - Method in class org.tribuo.multilabel.MultiLabel
-
The score for the specified label if present, returns an empty optional otherwise.
- getLabelSet() - Method in class org.tribuo.multilabel.MultiLabel
-
The set of labels contained in this multilabel.
- getLabelString() - Method in class org.tribuo.multilabel.MultiLabel
-
Returns a comma separated string representing the labels in this multilabel instance.
- getLanguageTag() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
-
Returns the locale string this tokenizer uses.
- getLessThanOrEqual() - Method in class org.tribuo.common.tree.SplitNode
-
The node used if the value is less than or equal to the splitValue.
- getLinearDecaySGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a linearly decaying learning rate initialised to learningRate.
- getLinearDecaySGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a linearly decaying learning rate initialised to learningRate, with momentum.
- getLinearWeightsCopy() - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Returns a copy of the linear weights.
- getLocalScores(SGDVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate the local scores (i.e., the linear classifier for each token).
- getLongLittleEndian(byte[], int) - Static method in class org.tribuo.util.MurmurHash3
-
Gets a long from a byte buffer in little endian byte order.
- getLoss() - Method in class org.tribuo.classification.sgd.fm.FMClassificationOptions
-
Returns the loss function specified in the arguments.
- getLoss() - Method in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Returns the loss function specified in the arguments.
- getLoss() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Returns the loss function specified in the arguments.
- getLoss() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Returns the loss function specified in the arguments.
- getLossOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- getLowerMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
Returns the lower quartile value.
- getMap() - Method in class org.tribuo.interop.tensorflow.TensorMap
-
Returns the underlying immutable map.
- getMapType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- getMapType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a map.
- getMapType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a map.
- getMapTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- getMapTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- getMapTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a map.
- getMapTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a map.
- getMax() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the max of the values.
- getMax() - Method in class org.tribuo.RealInfo
-
Gets the maximum observed value.
- getMax() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the maximum observed value.
- getMax(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Gets the maximum value this RegressionInfo has seen for that id.
- getMax(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the maximum value this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getMaxDepth() - Method in class org.tribuo.common.tree.AbstractTrainingNode.LeafDeterminer
-
Gets the maximum tree depth.
- getMaxFeatureID() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Gets the maximum feature ID found.
- getMaxInputCharactersPerWord() - Method in class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
a getter for the maximum character count for a token to consider when
Wordpiece.wordpiece(String)
is applied to a token. - getMaxLength() - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Returns the maximum length this BERT will accept.
- getMaxTokenLength() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Returns the maximum token length this tokenizer will generate.
- getMean() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the mean of the values.
- getMean() - Method in class org.tribuo.RealInfo
-
Gets the sample mean.
- getMean() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the sample mean.
- getMean(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Gets the mean value this RegressionInfo has seen for that id.
- getMean(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the mean value this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getMeans() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
-
Accessor used in the tests.
- getMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
Returns the median value.
- getMemberProvenance() - Method in class org.tribuo.provenance.EnsembleModelProvenance
-
Get the provenances for each ensemble member.
- getMetadata() - Method in class org.tribuo.Example
-
Returns a copy of this example's metadata.
- getMetadataName() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getMetadataName() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Gets the metadata key name.
- getMetadataName() - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Gets the metadata key name.
- getMetadataProps(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataProps(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Named metadata values; keys should be distinct.
- getMetadataProps(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Named metadata values; keys should be distinct.
- getMetadataPropsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Named metadata values; keys should be distinct.
- getMetadataPropsCount() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Named metadata values; keys should be distinct.
- getMetadataPropsList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Named metadata values; keys should be distinct.
- getMetadataPropsList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Named metadata values; keys should be distinct.
- getMetadataPropsOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Named metadata values; keys should be distinct.
- getMetadataTypes() - Method in class org.tribuo.data.columnar.ColumnarDataSource
-
Returns the metadata keys and value types that are created by this DataSource.
- getMetadataTypes() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the metadata keys and value types that are extracted by this RowProcessor.
- getMetadataValue(String) - Method in class org.tribuo.Example
-
Gets the associated metadata value for this key, if it exists.
- getMin() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the min of the values.
- getMin() - Method in class org.tribuo.RealInfo
-
Gets the minimum observed value.
- getMin() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the minimum observed value.
- getMin(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Gets the minimum value this RegressionInfo has seen for that id.
- getMin(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the minimum value this RegressionInfo has seen, or NaN if it's not seen anything.
- getMinCardinality() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The minimum cardinality threshold for the features.
- getMinCardinality() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The minimum cardinality threshold for the features.
- getMinChildWeight() - Method in class org.tribuo.common.tree.AbstractTrainingNode.LeafDeterminer
-
Gets the minimum example weight of a child node.
- getMinImpurityDecrease() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getMinImpurityDecrease() - Method in interface org.tribuo.common.tree.DecisionTreeTrainer
-
Returns the minimum decrease in impurity necessary to split a node.
- getModel() - Method in interface org.tribuo.classification.explanations.Explanation
-
Returns the explanining model.
- getModel() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getModel() - Method in class org.tribuo.common.libsvm.LibSVMModel
-
Deprecated.Deprecated to unify the names across LibLinear, LibSVM and XGBoost.
- getModel() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the Model used by this context.
- getModelClassName() - Method in class org.tribuo.classification.sgd.fm.FMClassificationTrainer
- getModelClassName() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- getModelClassName() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Returns the class name of the model that's produced by this trainer.
- getModelClassName() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
- getModelClassName() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
- getModelClassName() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Returns the class name of the model that this class produces.
- getModelClassName() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Returns the class name of the model that this class produces.
- getModelClassName() - Method in class org.tribuo.regression.sgd.fm.FMRegressionTrainer
- getModelClassName() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- getModelDump() - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Returns the string model dumps from each Booster.
- getModelParameters() - Method in class org.tribuo.common.sgd.AbstractSGDModel
-
Returns a copy of the model parameters.
- getModelProvenance() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The model provenance.
- getModels() - Method in class org.tribuo.ensemble.EnsembleModel
-
Returns an unmodifiable view on the ensemble members.
- getModelVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the graph encoded.
- getModelVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the graph encoded.
- getModelVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the graph encoded.
- getN() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Returns the number of values.
- getName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- getName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
The name field MUST be present for this version of the IR.
- getName() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
The name field MUST be present for this version of the IR.
- getName() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- getName() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The name of the graph.
- getName() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The name of the graph.
- getName() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- getName() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
An optional identifier for this node in a graph.
- getName() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
An optional identifier for this node in a graph.
- getName() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- getName() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Optionally, a name for the tensor.
- getName() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Optionally, a name for the tensor.
- getName() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- getName() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
The name is optional but significant when provided.
- getName() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
The name is optional but significant when provided.
- getName() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- getName() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR.
- getName() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR.
- getName() - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- getName() - Method in class org.tribuo.classification.evaluation.LabelMetric
- getName() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- getName() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- getName() - Method in class org.tribuo.common.sgd.AbstractFMTrainer
-
Returns the default model name.
- getName() - Method in class org.tribuo.common.sgd.AbstractLinearSGDTrainer
-
Returns the default model name.
- getName() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Returns the default model name.
- getName() - Method in class org.tribuo.data.DatasetExplorer
- getName() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The name of this metric.
- getName() - Method in class org.tribuo.Feature
-
Returns the feature name.
- getName() - Method in class org.tribuo.Model
-
Returns the model name.
- getName() - Method in class org.tribuo.ModelExplorer
- getName() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- getName() - Method in class org.tribuo.regression.evaluation.RegressionMetric
- getName() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the name.
- getName() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the model name.
- getName() - Method in class org.tribuo.sequence.SequenceModelExplorer
- getName() - Method in class org.tribuo.SkeletalVariableInfo
-
Returns the name of the feature.
- getName() - Method in class org.tribuo.util.onnx.ONNXAttribute
-
Gets the attribute's name.
- getName() - Method in interface org.tribuo.VariableInfo
-
The name of this feature.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
The name field MUST be present for this version of the IR.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
The name field MUST be present for this version of the IR.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The name of the graph.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The name of the graph.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
An optional identifier for this node in a graph.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
An optional identifier for this node in a graph.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Optionally, a name for the tensor.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Optionally, a name for the tensor.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
The name is optional but significant when provided.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
The name is optional but significant when provided.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- getNameBytes() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR.
- getNameBytes() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR.
- getNames() - Method in class org.tribuo.regression.Regressor
-
The names of the dimensions.
- getNameSet() - Method in class org.tribuo.multilabel.MultiLabel
-
The set of strings that represent the labels in this multilabel.
- getNativeType() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- getNativeType() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- getNativeType() - Method in enum class org.tribuo.common.libsvm.KernelType
-
Gets LibSVM's int id.
- getNativeType() - Method in interface org.tribuo.common.libsvm.SVMType
-
The LibSVM int id for the algorithm.
- getNativeType() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- getNaturalOrderToIDMapping() - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Computes the mapping between regressor dimension indices and ID numbers.
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.AbstractTrainingNode
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.LeafNode
- getNextNode(SparseVector) - Method in interface org.tribuo.common.tree.Node
-
Returns the next node in the tree based on the supplied example, or null if it's a leaf.
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.SplitNode
-
Return the appropriate child node.
- getNode(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNode(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The nodes in the graph, sorted topologically.
- getNode(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The nodes in the graph, sorted topologically.
- getNodeBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The nodes in the graph, sorted topologically.
- getNodeCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The nodes in the graph, sorted topologically.
- getNodeList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The nodes in the graph, sorted topologically.
- getNodeList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The nodes in the graph, sorted topologically.
- getNodeOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The nodes in the graph, sorted topologically.
- getNormalizer() - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Generates a new
VectorNormalizer
which normalizes the predictions into [0,1]. - getNormalizer() - Method in class org.tribuo.classification.sgd.objectives.Hinge
-
Returns a new
NoopNormalizer
. - getNormalizer() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- getNormalizer() - Method in interface org.tribuo.multilabel.sgd.MultiLabelObjective
-
Generates a new
VectorNormalizer
which normalizes the predictions into a suitable format. - getNormalizer() - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
- getNormalizer() - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
-
Returns a new
NoopNormalizer
. - getNumActiveFeatures() - Method in class org.tribuo.Prediction
-
Returns the number of features used in the prediction.
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- getNumber() - Method in enum class ai.onnx.proto.OnnxMl.Version
- getNumberOfSupportVectors() - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
-
Returns the number of support vectors.
- getNumberOfSupportVectors() - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
-
Returns the number of support vectors.
- getNumberOfSupportVectors() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
-
Returns the number of support vectors used.
- getNumberOfSupportVectors() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
-
Returns the support vectors used for each dimension.
- getNumExamples() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
The number of training examples in this node.
- getNumExamples() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of examples.
- getNumExamplesRemoved() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The number of examples removed due to a lack of features.
- getNumExamplesRemoved() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The number of examples removed due to a lack of features.
- getNumFeatures() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of features.
- getNumModels() - Method in class org.tribuo.ensemble.EnsembleModel
-
The number of ensemble members.
- getNumNamespaces() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Binarised categoricals can be namespaced, where the field name is appended with "#<non-negative-int>" to denote the namespace.
- getNumOutputs() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of output dimensions.
- getObjective() - Method in class org.tribuo.classification.sgd.fm.FMClassificationTrainer
- getObjective() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- getObjective() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Returns the objective used by this trainer.
- getObjective() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
- getObjective() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
- getObjective() - Method in class org.tribuo.regression.sgd.fm.FMRegressionTrainer
- getObjective() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- getObservationCount(double) - Method in class org.tribuo.CategoricalInfo
-
Gets the number of times a specific value was observed, and zero if this value is unknown.
- getOpaqueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpaqueTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- getOpsetImport(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImport(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The OperatorSets this model relies on.
- getOpsetImport(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The OperatorSets this model relies on.
- getOpsetImportBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The OperatorSets this model relies on.
- getOpsetImportCount() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The OperatorSets this model relies on.
- getOpsetImportList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The OperatorSets this model relies on.
- getOpsetImportList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The OperatorSets this model relies on.
- getOpsetImportOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The OperatorSets this model relies on.
- getOpsetProto() - Static method in enum class org.tribuo.util.onnx.ONNXOperators
-
Returns the opset proto for these operators.
- getOpsetVersion() - Static method in enum class org.tribuo.util.onnx.ONNXOperators
-
Returns the opset version supported by these operators.
- getOptimiser() - Method in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Gets the configured gradient optimiser.
- getOptionsDescription() - Method in class org.tribuo.classification.dtree.CARTClassificationOptions
- getOptionsDescription() - Method in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.RunAll.RunAllOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- getOptionsDescription() - Method in class org.tribuo.classification.liblinear.LibLinearOptions
- getOptionsDescription() - Method in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.libsvm.LibSVMOptions
- getOptionsDescription() - Method in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.fm.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.clustering.hdbscan.HdbscanOptions
- getOptionsDescription() - Method in class org.tribuo.clustering.hdbscan.TrainTest.HdbscanCLIOptions
- getOptionsDescription() - Method in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- getOptionsDescription() - Method in class org.tribuo.common.nearest.KNNClassifierOptions
- getOptionsDescription() - Method in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.data.DataOptions
- getOptionsDescription() - Method in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- getOptionsDescription() - Method in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
- getOptionsDescription() - Method in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- getOptionsDescription() - Method in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- getOptionsDescription() - Method in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- getOptionsDescription() - Method in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
- getOptionsDescription() - Method in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
- getOptionsDescription() - Method in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
- getOptionsDescription() - Method in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- getOptionsDescription() - Method in class org.tribuo.regression.slm.TrainTest.SLMOptions
- getOptionsDescription() - Method in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- getOptionsDescription() - Method in class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
- getOpType() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- getOpType() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The symbolic identifier of the Operator to execute.
- getOpType() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The symbolic identifier of the Operator to execute.
- getOpTypeBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- getOpTypeBytes() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The symbolic identifier of the Operator to execute.
- getOpTypeBytes() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The symbolic identifier of the Operator to execute.
- getOS() - Method in class org.tribuo.provenance.ModelProvenance
-
The name of the OS used to create this model.
- getOutlierScores() - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
-
Returns the GLOSH (Global-Local Outlier Scores from Hierarchies) outlier scores for the training data.
- getOutput() - Method in class org.tribuo.common.tree.LeafNode
-
Gets the output in this node.
- getOutput() - Method in class org.tribuo.Example
-
Gets the example's
Output
. - getOutput() - Method in class org.tribuo.Prediction
-
Returns the predicted output.
- getOutput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
repeated .onnx.ValueInfoProto output = 12;
- getOutput(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutput(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getOutput(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getOutput(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getOutput(int) - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getOutput(int) - Method in class org.tribuo.classification.ImmutableLabelInfo
- getOutput(int) - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getOutput(int) - Method in interface org.tribuo.ImmutableOutputInfo
-
Returns the output associated with this id, or null if the id is unknown.
- getOutput(int) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getOutput(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getOutputBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputBytes(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getOutputBytes(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getOutputBytes(int) - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getOutputCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getOutputCount() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getOutputCount() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getOutputFactory() - Method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource
- getOutputFactory() - Method in class org.tribuo.classification.example.DemoLabelDataSource
- getOutputFactory() - Method in class org.tribuo.clustering.example.GaussianClusterDataSource
- getOutputFactory() - Method in class org.tribuo.data.columnar.ColumnarDataSource
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getOutputFactory() - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Gets the OutputFactory this ResponseProcessor uses.
- getOutputFactory() - Method in class org.tribuo.data.text.DirectoryFileSource
- getOutputFactory() - Method in class org.tribuo.data.text.TextDataSource
-
Returns the output factory used to convert the text input into an
Output
. - getOutputFactory() - Method in class org.tribuo.Dataset
-
Gets the output factory this dataset contains.
- getOutputFactory() - Method in class org.tribuo.datasource.AggregateConfigurableDataSource
- getOutputFactory() - Method in class org.tribuo.datasource.AggregateDataSource
- getOutputFactory() - Method in interface org.tribuo.DataSource
-
Returns the OutputFactory associated with this Output subclass.
- getOutputFactory() - Method in class org.tribuo.datasource.IDXDataSource
- getOutputFactory() - Method in class org.tribuo.datasource.LibSVMDataSource
- getOutputFactory() - Method in class org.tribuo.datasource.ListDataSource
- getOutputFactory() - Method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
- getOutputFactory() - Method in class org.tribuo.regression.example.GaussianDataSource
- getOutputFactory() - Method in class org.tribuo.regression.example.NonlinearGaussianDataSource
- getOutputFactory() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the output factory.
- getOutputFactory() - Method in interface org.tribuo.sequence.SequenceDataSource
-
Gets the OutputFactory which was used to generate the Outputs in this SequenceDataSource.
- getOutputID() - Method in class org.tribuo.impl.IndexedArrayExample
-
Gets the output id dimension number.
- getOutputIDInfo() - Method in class org.tribuo.Dataset
-
Returns or generates an
ImmutableOutputInfo
. - getOutputIDInfo() - Method in class org.tribuo.ImmutableDataset
- getOutputIDInfo() - Method in class org.tribuo.Model
-
Gets the output domain.
- getOutputIDInfo() - Method in class org.tribuo.MutableDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.SequenceDataset
-
An immutable view on the output info in this dataset.
- getOutputIDInfo() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the output domain.
- getOutputInfo() - Method in class org.tribuo.dataset.DatasetView
- getOutputInfo() - Method in class org.tribuo.Dataset
-
Returns this dataset's
OutputInfo
. - getOutputInfo() - Method in class org.tribuo.ImmutableDataset
- getOutputInfo() - Method in class org.tribuo.MutableDataset
- getOutputInfo() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputInfo() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputInfo() - Method in class org.tribuo.sequence.SequenceDataset
-
The output info in this dataset.
- getOutputList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputList() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- getOutputList() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
namespace Value
- getOutputList() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
namespace Value
- getOutputName() - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Gets the name of the output operation.
- getOutputOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
repeated .onnx.ValueInfoProto output = 12;
- getOutputs() - Method in class org.tribuo.dataset.DatasetView
-
Gets the set of outputs that occur in the examples in this dataset.
- getOutputs() - Method in class org.tribuo.Dataset
-
Gets the set of outputs that occur in the examples in this dataset.
- getOutputs() - Method in class org.tribuo.ImmutableDataset
- getOutputs() - Method in class org.tribuo.MutableDataset
-
Gets the set of possible outputs in this dataset.
- getOutputs() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputs() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputs() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the set of labels that occur in the examples in this dataset.
- getOutputScores() - Method in class org.tribuo.Prediction
-
Gets the output scores for each output.
- getOutputTarget() - Method in class org.tribuo.evaluation.metrics.MetricTarget
-
Returns the Output this metric targets, or
Optional.empty()
if it's an average. - getParameterNames() - Method in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
An unmodifiable view of the parameter names used by this gradient optimiser.
- getParameters() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Gets the underlying SVM parameter object.
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getParserForType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getPos() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Gets the current position in the input.
- getPrecision() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the precision of the anomalous events, i.e., true positives divided by the number of predicted positives.
- getPrediction() - Method in interface org.tribuo.classification.explanations.Explanation
-
The original model's prediction which is being explained.
- getPrediction() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getPrediction() - Method in class org.tribuo.Excuse
-
Returns the prediction being excused.
- getPrediction(int, Example<T>) - Method in class org.tribuo.common.tree.LeafNode
-
Constructs a new prediction object based on this node's scores.
- getPredictions() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the flattened predictions.
- getPredictions() - Method in interface org.tribuo.evaluation.Evaluation
-
Gets the predictions stored in this evaluation.
- getPredictions() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the predictions used by this context.
- getPredictions() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getProducerName() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- getProducerName() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The name of the framework or tool used to generate this model.
- getProducerName() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The name of the framework or tool used to generate this model.
- getProducerNameBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- getProducerNameBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The name of the framework or tool used to generate this model.
- getProducerNameBytes() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The name of the framework or tool used to generate this model.
- getProducerVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- getProducerVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the framework or tool used to generate this model.
- getProducerVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the framework or tool used to generate this model.
- getProducerVersionBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- getProducerVersionBytes() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the framework or tool used to generate this model.
- getProducerVersionBytes() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the framework or tool used to generate this model.
- getProvenance() - Method in class org.tribuo.anomaly.AnomalyFactory
- getProvenance() - Method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource
- getProvenance() - Method in class org.tribuo.anomaly.liblinear.LinearAnomalyType
- getProvenance() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- getProvenance() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- getProvenance() - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- getProvenance() - Method in class org.tribuo.classification.dtree.impurity.Entropy
- getProvenance() - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- getProvenance() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- getProvenance() - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- getProvenance() - Method in class org.tribuo.classification.ensemble.VotingCombiner
- getProvenance() - Method in class org.tribuo.classification.example.DemoLabelDataSource
- getProvenance() - Method in class org.tribuo.classification.LabelFactory
- getProvenance() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- getProvenance() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- getProvenance() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- getProvenance() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.objectives.Hinge
- getProvenance() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- getProvenance() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- getProvenance() - Method in class org.tribuo.clustering.ClusteringFactory
- getProvenance() - Method in class org.tribuo.clustering.example.GaussianClusterDataSource
- getProvenance() - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- getProvenance() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- getProvenance() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- getProvenance() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- getProvenance() - Method in class org.tribuo.common.nearest.KNNTrainer
- getProvenance() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.feature.UniqueProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.Quartile
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.RowProcessor
- getProvenance() - Method in class org.tribuo.data.csv.CSVDataSource
- getProvenance() - Method in class org.tribuo.data.sql.SQLDataSource
- getProvenance() - Method in class org.tribuo.data.sql.SQLDBConfig
- getProvenance() - Method in class org.tribuo.data.text.DirectoryFileSource
- getProvenance() - Method in class org.tribuo.data.text.impl.AverageAggregator
- getProvenance() - Method in class org.tribuo.data.text.impl.BasicPipeline
- getProvenance() - Method in class org.tribuo.data.text.impl.CasingPreprocessor
- getProvenance() - Method in class org.tribuo.data.text.impl.FeatureHasher
- getProvenance() - Method in class org.tribuo.data.text.impl.NewsPreprocessor
- getProvenance() - Method in class org.tribuo.data.text.impl.NgramProcessor
- getProvenance() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- getProvenance() - Method in class org.tribuo.data.text.impl.SumAggregator
- getProvenance() - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- getProvenance() - Method in class org.tribuo.data.text.impl.TokenPipeline
- getProvenance() - Method in class org.tribuo.data.text.impl.UniqueAggregator
- getProvenance() - Method in class org.tribuo.dataset.DatasetView
- getProvenance() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
- getProvenance() - Method in class org.tribuo.datasource.AggregateConfigurableDataSource
- getProvenance() - Method in class org.tribuo.datasource.AggregateDataSource
- getProvenance() - Method in class org.tribuo.datasource.IDXDataSource
- getProvenance() - Method in class org.tribuo.datasource.LibSVMDataSource
- getProvenance() - Method in class org.tribuo.datasource.ListDataSource
- getProvenance() - Method in class org.tribuo.ensemble.BaggingTrainer
- getProvenance() - Method in class org.tribuo.ensemble.EnsembleModel
- getProvenance() - Method in class org.tribuo.hash.HashCodeHasher
- getProvenance() - Method in class org.tribuo.hash.HashingTrainer
- getProvenance() - Method in class org.tribuo.hash.MessageDigestHasher
- getProvenance() - Method in class org.tribuo.hash.ModHashCodeHasher
- getProvenance() - Method in class org.tribuo.ImmutableDataset
- getProvenance() - Method in class org.tribuo.interop.oci.OCILabelConverter
- getProvenance() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- getProvenance() - Method in class org.tribuo.interop.oci.OCIRegressorConverter
- getProvenance() - Method in class org.tribuo.interop.onnx.DenseTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
- getProvenance() - Method in class org.tribuo.interop.onnx.ImageTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.LabelTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- getProvenance() - Method in class org.tribuo.interop.tensorflow.ImageConverter
- getProvenance() - Method in class org.tribuo.interop.tensorflow.LabelConverter
- getProvenance() - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- getProvenance() - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- getProvenance() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- getProvenance() - Method in class org.tribuo.json.JsonDataSource
- getProvenance() - Method in class org.tribuo.math.kernel.Linear
- getProvenance() - Method in class org.tribuo.math.kernel.Polynomial
- getProvenance() - Method in class org.tribuo.math.kernel.RBF
- getProvenance() - Method in class org.tribuo.math.kernel.Sigmoid
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaDelta
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaGrad
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- getProvenance() - Method in class org.tribuo.math.optimisers.Adam
- getProvenance() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- getProvenance() - Method in class org.tribuo.math.optimisers.Pegasos
- getProvenance() - Method in class org.tribuo.math.optimisers.RMSProp
- getProvenance() - Method in class org.tribuo.math.optimisers.SGD
- getProvenance() - Method in class org.tribuo.Model
- getProvenance() - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- getProvenance() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- getProvenance() - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- getProvenance() - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
- getProvenance() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getProvenance() - Method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
- getProvenance() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getProvenance() - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
- getProvenance() - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
- getProvenance() - Method in class org.tribuo.MutableDataset
- getProvenance() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- getProvenance() - Method in class org.tribuo.regression.example.GaussianDataSource
- getProvenance() - Method in class org.tribuo.regression.example.NonlinearGaussianDataSource
- getProvenance() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- getProvenance() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- getProvenance() - Method in class org.tribuo.regression.RegressionFactory
- getProvenance() - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- getProvenance() - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.Huber
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- getProvenance() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- getProvenance() - Method in class org.tribuo.regression.slm.SLMTrainer
- getProvenance() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- getProvenance() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- getProvenance() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.IndependentSequenceTrainer
- getProvenance() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.SequenceModel
- getProvenance() - Method in class org.tribuo.transform.TransformationMap
- getProvenance() - Method in class org.tribuo.transform.TransformationMap.TransformationList
- getProvenance() - Method in class org.tribuo.transform.transformations.BinningTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.IDFTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.SimpleTransform
- getProvenance() - Method in class org.tribuo.transform.TransformerMap
- getProvenance() - Method in class org.tribuo.transform.TransformTrainer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.WhitespaceTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getQuantizationAnnotation(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotation(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotation(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantizationAnnotationOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- getQuantParameterTensorNames(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNames(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNames(int) - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesCount() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesCount() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesCount() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesList() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesList() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesList() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getQuantParameterTensorNamesOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- getRawData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- getRawData() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Serializations can either use one of the fields above, or use this raw bytes field.
- getRawData() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- getRecall() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the recall of the anomalous events, i.e., true positives divided by the number of positives.
- getRefAttrName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getRefAttrName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getRefAttrName() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getRefAttrNameBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getRefAttrNameBytes() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getRefAttrNameBytes() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- getReference() - Method in interface org.tribuo.math.la.MatrixIterator
-
Gets the MatrixTuple reference that this iterator updates.
- getReference() - Method in interface org.tribuo.math.la.VectorIterator
-
Gets the reference to the VectorTuple this iterator updates.
- getReference() - Method in class org.tribuo.util.onnx.ONNXInitializer
- getReference() - Method in class org.tribuo.util.onnx.ONNXNode
- getReference() - Method in class org.tribuo.util.onnx.ONNXPlaceholder
- getReference() - Method in class org.tribuo.util.onnx.ONNXRef
-
Gets the output name of this object.
- getRemoved() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The feature names that were removed.
- getRemoved() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The feature names that were removed.
- getResponseProcessor() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the response processor this RowProcessor uses.
- getRMSE(String) - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
-
Get the RMSE of a specific dimension of the explanation model.
- getRoot() - Method in class org.tribuo.common.tree.TreeModel
-
Returns the root node of this tree.
- getRoot() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
-
Returns null, as this model contains multiple roots, one per regression output dimension.
- getRoots() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
-
Returns an unmodifiable view on the root node collection.
- getRow() - Method in class org.tribuo.data.columnar.ColumnarIterator
-
Returns the next row of data based on internal state stored by the implementor, or
Optional.empty()
if there is no more data. - getRow() - Method in class org.tribuo.data.csv.CSVIterator
- getRow() - Method in class org.tribuo.data.sql.ResultSetIterator
- getRow() - Method in class org.tribuo.json.JsonFileIterator
- getRow(int) - Method in class org.tribuo.math.la.DenseMatrix
- getRow(int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- getRow(int) - Method in interface org.tribuo.math.la.Matrix
-
An
SGDVector
view of the row. - getRowData() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
-
Gets the row data.
- getS() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
UTF-8 string
- getS() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
UTF-8 string
- getS() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
UTF-8 string
- getScaledMinImpurityDecrease() - Method in class org.tribuo.common.tree.AbstractTrainingNode.LeafDeterminer
-
Gets the minimum impurity decrease necessary to split a node.
- getScore() - Method in class org.tribuo.anomaly.Event
-
Get a real valued score for this label.
- getScore() - Method in class org.tribuo.classification.Label
-
Get a real valued score for this label.
- getScore() - Method in class org.tribuo.clustering.ClusterID
-
Get a real valued score for this ClusterID.
- getScore() - Method in class org.tribuo.multilabel.MultiLabel
-
The overall score for this set of labels.
- getScoreAggregation() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
-
Gets the score aggregation function.
- getScores() - Method in class org.tribuo.Excuse
-
Returns the scores for all outputs and the relevant feature values.
- getSecondCount() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Gets the second marginal distribution.
- getSecondFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
If it's a conjunction feature, return the second field name.
- getSegment() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegment() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegment() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegmentBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegmentOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegmentOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
optional .onnx.TensorProto.Segment segment = 3;
- getSegmentOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
optional .onnx.TensorProto.Segment segment = 3;
- getSequenceModel() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the SequenceModel used by this context.
- getSequenceTrainer() - Method in class org.tribuo.classification.sgd.crf.CRFOptions
-
Returns the configured CRF trainer.
- getSequenceTrainer(Trainer<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions
-
Creates a viterbi trainer wrapping the supplied label trainer.
- getSequenceType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- getSequenceType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a sequence.
- getSequenceType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a sequence.
- getSequenceTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- getSequenceTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- getSequenceTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a sequence.
- getSequenceTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a sequence.
- getSerializableForm(boolean) - Method in class org.tribuo.anomaly.Event
-
Returns "EventType" or "EventType,score=eventScore".
- getSerializableForm(boolean) - Method in class org.tribuo.classification.Label
-
Returns "labelName" or "labelName,score=labelScore".
- getSerializableForm(boolean) - Method in class org.tribuo.clustering.ClusterID
-
Returns "id" or "id,score=idScore".
- getSerializableForm(boolean) - Method in class org.tribuo.multilabel.MultiLabel
-
For a MultiLabel with label set = {a, b, c}, outputs a string of the form:
- getSerializableForm(boolean) - Method in interface org.tribuo.Output
-
Generates a String suitable for writing to a csv or json file.
- getSerializableForm(boolean) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getSerializableForm(boolean) - Method in class org.tribuo.regression.Regressor
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getSerializedSize() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SparseTensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.TensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- getShape() - Method in class org.tribuo.math.la.DenseMatrix
- getShape() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getShape() - Method in class org.tribuo.math.la.DenseVector
- getShape() - Method in class org.tribuo.math.la.SparseVector
- getShape() - Method in interface org.tribuo.math.la.Tensor
-
Returns an int array specifying the shape of this
Tensor
. - getShapeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SparseTensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
optional .onnx.TensorShapeProto shape = 2;
- getShapeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.TensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- getSimpleSGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a constant learning rate set to learningRate.
- getSimpleSGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a constant learning rate set to learningRate, with momentum.
- getSolverType() - Method in class org.tribuo.anomaly.liblinear.LinearAnomalyType
- getSolverType() - Method in enum class org.tribuo.anomaly.liblinear.LinearAnomalyType.LinearType
-
Gets the type of the solver.
- getSolverType() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- getSolverType() - Method in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
Gets the LibLinear solver type.
- getSolverType() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Returns the liblinear enum type.
- getSolverType() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- getSolverType() - Method in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns the liblinear enum.
- getSourceDescription() - Method in class org.tribuo.Dataset
-
A String description of this dataset.
- getSourceDescription() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns the description of the source provenance.
- getSourceProvenance() - Method in class org.tribuo.Dataset
-
The provenance of the data this Dataset contains.
- getSourceProvenance() - Method in class org.tribuo.provenance.DatasetProvenance
-
The input data provenance.
- getSourceProvenance() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns the source provenance.
- getSparseInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Initializers (see above) stored in sparse format.
- getSparseInitializer(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Initializers (see above) stored in sparse format.
- getSparseInitializerCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Initializers (see above) stored in sparse format.
- getSparseInitializerList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Initializers (see above) stored in sparse format.
- getSparseInitializerOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Initializers (see above) stored in sparse format.
- getSparseTensor() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- getSparseTensor() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
sparse tensor value
- getSparseTensor() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
sparse tensor value
- getSparseTensorBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- getSparseTensorOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- getSparseTensorOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
sparse tensor value
- getSparseTensorOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
sparse tensor value
- getSparseTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of sparse tensors
- getSparseTensors(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of sparse tensors
- getSparseTensorsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of sparse tensors
- getSparseTensorsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of sparse tensors
- getSparseTensorsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of sparse tensors
- getSparseTensorsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of sparse tensors
- getSparseTensorsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of sparse tensors
- getSparseTensorsOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of sparse tensors
- getSparseTensorsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- getSparseTensorsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of sparse tensors
- getSparseTensorsOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of sparse tensors
- getSparseTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSparseTensorTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- getSplitCharacters() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Deprecated.
- getSplitPatternRegex() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Gets the String form of the regex in use.
- getSplitXDigitsCharacters() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Deprecated.
- getSqrtDecaySGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a sqrt decaying learning rate initialised to learningRate.
- getSqrtDecaySGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a sqrt decaying learning rate initialised to learningRate, with momentum.
- getStackSize() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
-
Gets the stack size of this model.
- getStandardDeviation() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the standard deviation of the values.
- getStart() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getStart() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the starting character offset of the current token in the character sequence
- getStart() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getStatement() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Constructs a statement based on the object fields.
- getStdDev() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the sample standard deviation.
- getStringData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- getStringData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For strings.
- getStringData(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For strings.
- getStringDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- getStringDataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For strings.
- getStringDataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For strings.
- getStringDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- getStringDataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For strings.
- getStringDataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For strings.
- getStrings(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- getStrings(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of UTF-8 strings
- getStrings(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of UTF-8 strings
- getStringsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- getStringsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of UTF-8 strings
- getStringsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of UTF-8 strings
- getStringsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- getStringsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of UTF-8 strings
- getStringsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of UTF-8 strings
- getSvmType() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Gets the SVM type.
- getT() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- getT() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
tensor value
- getT() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
tensor value
- getTarget() - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- getTarget() - Method in class org.tribuo.classification.evaluation.LabelMetric
- getTarget() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- getTarget() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The target for this metric instance.
- getTarget() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- getTarget() - Method in class org.tribuo.regression.evaluation.RegressionMetric
- getTarget(ImmutableOutputInfo<Label>, Label) - Method in class org.tribuo.classification.sgd.fm.FMClassificationTrainer
- getTarget(ImmutableOutputInfo<Label>, Label) - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- getTarget(ImmutableOutputInfo<MultiLabel>, MultiLabel) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
- getTarget(ImmutableOutputInfo<MultiLabel>, MultiLabel) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
- getTarget(ImmutableOutputInfo<Regressor>, Regressor) - Method in class org.tribuo.regression.sgd.fm.FMRegressionTrainer
- getTarget(ImmutableOutputInfo<Regressor>, Regressor) - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- getTarget(ImmutableOutputInfo<T>, T) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Extracts the appropriate training time representation from the supplied output.
- getTBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- getTensor(String) - Method in class org.tribuo.interop.tensorflow.TensorMap
-
Returns the specified tensor if present.
- getTensorName() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- getTensorName() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
optional string tensor_name = 1;
- getTensorName() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
optional string tensor_name = 1;
- getTensorNameBytes() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- getTensorNameBytes() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
optional string tensor_name = 1;
- getTensorNameBytes() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
optional string tensor_name = 1;
- getTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of tensors
- getTensors(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of tensors
- getTensorsBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsCount() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of tensors
- getTensorsCount() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of tensors
- getTensorsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of tensors
- getTensorsList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of tensors
- getTensorsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of tensors
- getTensorsOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of tensors
- getTensorsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- getTensorsOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
list of tensors
- getTensorsOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
list of tensors
- getTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- getTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a tensor.
- getTensorType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a tensor.
- getTensorTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- getTensorTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- getTensorTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a tensor.
- getTensorTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a tensor.
- getTest() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
Gets the testing datasource.
- getTestDatasetProvenance() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The test dataset provenance.
- getText() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getText() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the text of the current token, as a string
- getText() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getThreshold() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
-
Returns the threshold this converter uses to emit labels.
- getToken() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getToken() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Generates a Token object from the current state of the tokenizer.
- getTokenizer() - Method in class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.SplitPatternTokenizerOptions
- getTokenizer() - Method in interface org.tribuo.util.tokens.options.TokenizerOptions
-
Creates the appropriately configured tokenizer.
- getTopFeatures(int) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyModel
- getTopFeatures(int) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- getTopFeatures(int) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- getTopFeatures(int) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- getTopFeatures(int) - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
- getTopFeatures(int) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- getTopFeatures(int) - Method in class org.tribuo.common.libsvm.LibSVMModel
- getTopFeatures(int) - Method in class org.tribuo.common.nearest.KNNModel
- getTopFeatures(int) - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Gets the top
n
features for each output dimension. - getTopFeatures(int) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
- getTopFeatures(int) - Method in class org.tribuo.common.tree.TreeModel
- getTopFeatures(int) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- getTopFeatures(int) - Method in class org.tribuo.common.xgboost.XGBoostModel
- getTopFeatures(int) - Method in class org.tribuo.ensemble.EnsembleModel
- getTopFeatures(int) - Method in class org.tribuo.interop.oci.OCIModel
- getTopFeatures(int) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
-
Returns an empty map, as the top features are not well defined for most TensorFlow models.
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorFlowFrozenExternalModel
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Deep learning models don't do feature rankings.
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorFlowSavedModelExternalModel
- getTopFeatures(int) - Method in class org.tribuo.Model
-
Gets the top
n
features associated with this model. - getTopFeatures(int) - Method in class org.tribuo.multilabel.baseline.ClassifierChainModel
- getTopFeatures(int) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
-
This aggregates the top features from each of the models.
- getTopFeatures(int) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- getTopFeatures(int) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- getTopFeatures(int) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getTopFeatures(int) - Method in class org.tribuo.regression.slm.SparseLinearModel
- getTopFeatures(int) - Method in class org.tribuo.sequence.IndependentSequenceModel
- getTopFeatures(int) - Method in class org.tribuo.sequence.SequenceModel
-
Gets the top
n
features associated with this model. - getTopFeatures(int) - Method in class org.tribuo.transform.TransformedModel
- getTopLabels(Map<String, Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTopLabels(Map<String, Label>, int) - Static method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- getTOrBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
tensor value
- getTOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
tensor value
- getTotalCover() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Total Cover is similar to cover, but not locally averaged by weight, and thus not skewed in the way that weight can be skewed.
- getTotalCover() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The total number of examples a feature discrimnates between.
- getTotalCover(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Total Cover is similar to cover, but not locally averaged by weight, and thus not skewed in the way that weight can be skewed.
- getTotalGain() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Total Gain is similar to gain, but not locally averaged by weight, and thus not skewed in the way that weight can be skewed.
- getTotalGain() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The total gain across all times the feature is used to split.
- getTotalGain(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Total Gain is similar to gain, but not locally averaged by weight, and thus not skewed in the way that weight can be skewed.
- getTotalObservations() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getTotalObservations() - Method in class org.tribuo.classification.ImmutableLabelInfo
- getTotalObservations() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getTotalObservations() - Method in interface org.tribuo.ImmutableOutputInfo
-
Returns the total number of observed outputs seen by this ImmutableOutputInfo.
- getTotalObservations() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getTotalObservations() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getTrain() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
Gets the training data source.
- getTrainer() - Method in interface org.tribuo.classification.ClassificationOptions
-
Constructs the trainer based on the provided arguments.
- getTrainer() - Method in class org.tribuo.classification.dtree.CARTClassificationOptions
- getTrainer() - Method in class org.tribuo.classification.experiments.AllTrainerOptions
- getTrainer() - Method in class org.tribuo.classification.liblinear.LibLinearOptions
- getTrainer() - Method in class org.tribuo.classification.libsvm.LibSVMOptions
- getTrainer() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
- getTrainer() - Method in class org.tribuo.classification.sgd.fm.FMClassificationOptions
- getTrainer() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- getTrainer() - Method in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- getTrainer() - Method in class org.tribuo.classification.xgboost.XGBoostOptions
- getTrainer() - Method in class org.tribuo.clustering.hdbscan.HdbscanOptions
-
Gets the configured HdbscanTrainer using the options in this object.
- getTrainer() - Method in class org.tribuo.clustering.kmeans.KMeansOptions
-
Gets the configured KMeansTrainer using the options in this object.
- getTrainer() - Method in class org.tribuo.common.nearest.KNNClassifierOptions
- getTrainer() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
Gets the trainer as configured by these options.
- getTrainer() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Gets the LinearSGDTrainer specified by the options in this object.
- getTrainer() - Method in class org.tribuo.regression.xgboost.XGBoostOptions
-
Gets the configured XGBoostRegressionTrainer.
- getTrainerProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
The trainer provenance.
- getTrainingInfo(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfo(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Training-specific information.
- getTrainingInfo(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Training-specific information.
- getTrainingInfoBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoCount() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Training-specific information.
- getTrainingInfoCount() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Training-specific information.
- getTrainingInfoList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Training-specific information.
- getTrainingInfoList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Training-specific information.
- getTrainingInfoOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Training-specific information.
- getTrainingInfoOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Training-specific information.
- getTrainingInfoOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- getTrainingInfoOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Training-specific information.
- getTrainingInfoOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Training-specific information.
- getTrainingTime() - Method in class org.tribuo.provenance.ModelProvenance
-
The training timestamp.
- getTransformationProvenance() - Method in class org.tribuo.provenance.DatasetProvenance
-
The transformation provenances, in application order.
- getTransformerMap() - Method in class org.tribuo.transform.TransformedModel
-
Gets the transformers that this model applies to each example.
- getTribuoProvenance() - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Returns the model provenance from the ONNX model if that model was trained in Tribuo.
- getTribuoVersion() - Method in class org.tribuo.provenance.DatasetProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.ModelProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
-
The Tribuo version.
- getTrueNegatives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of true negatives, i.e., expected events classified as events.
- getTruePositives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of true positives, i.e., anomalous events classified as anomalous.
- getType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The type field MUST be present for this version of the IR.
- getType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
The type field MUST be present for this version of the IR.
- getType() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
The type field MUST be present for this version of the IR.
- getType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getType() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getType() - Method in class org.tribuo.anomaly.Event
-
Gets the event type.
- getType() - Method in class org.tribuo.util.onnx.ONNXAttribute
-
Gets the attribute's type.
- getType() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- getType() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the type of the current token.
- getType() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- getUint64Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64Data(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64Data(int) - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataCount() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataCount() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataList() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUint64DataList() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- getUniqueObservations() - Method in class org.tribuo.CategoricalInfo
-
Gets the number of unique values this CategoricalInfo has observed.
- getUnknownCount() - Method in class org.tribuo.anomaly.AnomalyInfo
- getUnknownCount() - Method in class org.tribuo.classification.LabelInfo
- getUnknownCount() - Method in class org.tribuo.clustering.ClusteringInfo
- getUnknownCount() - Method in class org.tribuo.multilabel.MultiLabelInfo
- getUnknownCount() - Method in interface org.tribuo.OutputInfo
-
Returns the number of unknown
Output
instances (generated byOutputFactory.getUnknownOutput()
) that this OutputInfo has seen. - getUnknownCount() - Method in class org.tribuo.regression.RegressionInfo
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- getUnknownFields() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- getUnknownOutput() - Method in class org.tribuo.anomaly.AnomalyFactory
- getUnknownOutput() - Method in class org.tribuo.classification.LabelFactory
- getUnknownOutput() - Method in class org.tribuo.clustering.ClusteringFactory
- getUnknownOutput() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getUnknownOutput() - Method in interface org.tribuo.OutputFactory
-
Returns the singleton unknown output of type T which can be used for prediction time examples.
- getUnknownOutput() - Method in class org.tribuo.regression.RegressionFactory
- getUnknownToken() - Method in class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
a getter for the "unknown" token specified during initialization.
- getUpdateBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Gradient-based training is usually an iterative procedure.
- getUpdateBinding(int) - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingCount() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingCount() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingCount() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingList() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Gradient-based training is usually an iterative procedure.
- getUpdateBindingOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
Gradient-based training is usually an iterative procedure.
- getUpperMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
The upper quartile value.
- getUseRandomSplitPoints() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getUseRandomSplitPoints() - Method in interface org.tribuo.common.tree.DecisionTreeTrainer
-
Returns whether to choose split points for features at random.
- getValue() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- getValue() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string value = 2;
- getValue() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string value = 2;
- getValue() - Method in class org.tribuo.Feature
-
Returns the feature value.
- getValue() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the value.
- getValueBytes() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- getValueBytes() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string value = 2;
- getValueBytes() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string value = 2;
- getValueCase() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- getValueCase() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- getValueCase() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
- getValueCase() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- getValueCase() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- getValueCase() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
- getValueDescriptor() - Method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- getValueDescriptor() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- getValueDescriptor() - Method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- getValueDescriptor() - Method in enum class ai.onnx.proto.OnnxMl.Version
- getValueInfo(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfo(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Information for the values in the graph.
- getValueInfo(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Information for the values in the graph.
- getValueInfoBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoCount() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Information for the values in the graph.
- getValueInfoCount() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Information for the values in the graph.
- getValueInfoList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Information for the values in the graph.
- getValueInfoList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Information for the values in the graph.
- getValueInfoOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoOrBuilder(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Information for the values in the graph.
- getValueInfoOrBuilder(int) - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Information for the values in the graph.
- getValueInfoOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- getValueInfoOrBuilderList() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
Information for the values in the graph.
- getValueInfoOrBuilderList() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
Information for the values in the graph.
- getValues() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValues() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValues() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValues() - Method in class org.tribuo.regression.Regressor
-
Returns the regression values.
- getValuesBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValuesOrBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValuesOrBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValuesOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- getValueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- getValueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
This field MUST be present for this version of the IR.
- getValueType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.MapOrBuilder
-
This field MUST be present for this version of the IR.
- getValueType() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
- getValueType() - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Gets the class of the value produced by this extractor.
- getValueTypeBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- getValueTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- getValueTypeOrBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
This field MUST be present for this version of the IR.
- getValueTypeOrBuilder() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.MapOrBuilder
-
This field MUST be present for this version of the IR.
- getVariance() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the sample variance of the values.
- getVariance() - Method in class org.tribuo.RealInfo
-
Gets the sample variance.
- getVariance() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the variance.
- getVariance() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Gets the sample variance.
- getVariance(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Gets the variance this RegressionInfo has seen for that id.
- getVariance(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the variance this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getVariances() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
-
Accessor used in the tests.
- getVariances() - Method in class org.tribuo.regression.Regressor
-
The variances of the regressed values, if known.
- getVersion() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The version of the operator set being identified.
- getVersion() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
The version of the operator set being identified.
- getVersion() - Method in interface ai.onnx.proto.OnnxMl.OperatorSetIdProtoOrBuilder
-
The version of the operator set being identified.
- getVocab() - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Returns the vocabulary that this BERTFeatureExtractor understands.
- getWeight() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Weight measures the number a times a feature occurs in the model.
- getWeight() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
-
The number of times a feature is used in the model.
- getWeight() - Method in class org.tribuo.Example
-
Gets the example's weight.
- getWeight() - Method in class org.tribuo.sequence.SequenceExample
-
Gets the weight of this sequence.
- getWeight(int) - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
-
Weight measures the number a times a feature occurs in the model.
- getWeight(int, int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Returns the feature/label weight for the specified feature and label id.
- getWeightMatrix() - Method in class org.tribuo.math.LinearParameters
-
Returns the weight matrix.
- getWeights() - Method in class org.tribuo.regression.slm.SparseLinearModel
-
Gets a copy of the model parameters.
- getWeightsCopy() - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
-
Returns a copy of the weights.
- getWeightSum() - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
- getWeightSum() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
The sum of the weights associated with this node's examples.
- getWeightSum() - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- getWeightSum() - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- GINI - Enum constant in enum class org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Uses
GiniIndex
. - GiniIndex - Class in org.tribuo.classification.dtree.impurity
-
The Gini index impurity measure.
- GiniIndex() - Constructor for class org.tribuo.classification.dtree.impurity.GiniIndex
- GPU_HIST - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
GPU implementation of the
XGBoostTrainer.TreeMethod.HIST
algorithm. - GRADIENT_DESCENT - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
A standard gradient descent optimiser with a fixed learning rate.
- GradientOptimiser - Enum Class in org.tribuo.interop.tensorflow
-
An enum for the gradient optimisers exposed by TensorFlow-Java.
- GradientOptimiserOptions - Class in org.tribuo.math.optimisers
-
CLI options for configuring a gradient optimiser.
- GradientOptimiserOptions() - Constructor for class org.tribuo.math.optimisers.GradientOptimiserOptions
- GradientOptimiserOptions.StochasticGradientOptimiserType - Enum Class in org.tribuo.math.optimisers
-
Type of the gradient optimisers available in CLIs.
- gradientOptions - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Gradient descent options.
- gradientOptions - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Gradient descent options.
- gradientOptions - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
Gradient descent options.
- gradientParamNames - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Gradient optimizer param names, see org.tribuo.interop.tensorflow.GradientOptimiser.
- gradientParamValues - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Gradient optimizer param values, see org.tribuo.interop.tensorflow.GradientOptimiser.
- gradients(Pair<Double, SGDVector>, SGDVector) - Method in class org.tribuo.common.sgd.FMParameters
-
Generate the gradients for a particular feature vector given the loss and the per output gradients.
- gradients(Pair<Double, SGDVector>, SGDVector) - Method in interface org.tribuo.math.FeedForwardParameters
-
Generates the parameter gradients given the loss, output gradient and input features.
- gradients(Pair<Double, SGDVector>, SGDVector) - Method in class org.tribuo.math.LinearParameters
-
Generate the gradients for a particular feature vector given the loss and the per output gradients.
- GRAPH - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
GRAPH = 5;
- GRAPH_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- GRAPH_HASH - Static variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance
-
The name of the provenance field containing the graph hash.
- GRAPH_HASH - Static variable in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
-
The name of the provenance field containing the graph hash.
- GRAPH_LAST_MOD - Static variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance
-
The name of the provenance field containing the graph modified timestamp.
- GRAPH_LAST_MOD - Static variable in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
-
The name of the provenance field containing the graph modified timestamp.
- GRAPH_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
GRAPH = 5;
- graphDef - Variable in class org.tribuo.interop.tensorflow.example.GraphDefTuple
-
The graph definition protobuf.
- GraphDefTuple - Class in org.tribuo.interop.tensorflow.example
-
A tuple containing a graph def protobuf along with the relevant operation names.
- GraphDefTuple(GraphDef, String, String) - Constructor for class org.tribuo.interop.tensorflow.example.GraphDefTuple
-
Creates a graphDef record.
- graphPath - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- GRAPHS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
GRAPHS = 10;
- GRAPHS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- GRAPHS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
GRAPHS = 10;
- GREATER - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Greater than, returns the element-wise greater than operation on the two tensors.
- GREATER_OR_EQUAL - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Greater than or equal to, returns the element-wise greater than or equal to operation on the two tensors.
- greaterThan - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- GROUPS - Enum constant in enum class org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Triggers feature generation for each matching group in the string.
- grow(int) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Grows the backing array, copying the elements.
- growArray() - Method in class org.tribuo.impl.ArrayExample
-
Grows the backing arrays by size+1.
- growArray() - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Grows the backing arrays by size+1.
- growArray(int) - Method in class org.tribuo.impl.ArrayExample
-
Grows the backing arrays storing the names and values.
- growArray(int) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Grows the backing arrays storing the names.
- growArray(int) - Method in class org.tribuo.impl.IndexedArrayExample
- gStatistic - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
-
The G test statistic.
- gTest(List<T1>, List<T2>, Set<List<T3>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the GTest statistics for the input variables conditioned on the set.
- GTestStatistics(double, int, double) - Constructor for class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
-
Constructs a GTestStatistics tuple with the supplied values.
H
- hadamardProductInPlace(Tensor) - Method in interface org.tribuo.math.la.Tensor
-
Same as
Tensor.hadamardProductInPlace(org.tribuo.math.la.Tensor, java.util.function.DoubleUnaryOperator)
, but applies the identity function. - hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
Only implemented for
DenseMatrix
. - hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Updates this
Tensor
with the Hadamard product (i.e., a term by term multiply) of this andother
. - handleChar() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Handle a character to add to the token buffer.
- handleDoc(String) - Method in class org.tribuo.data.text.TextDataSource
-
A method that can be overridden to do different things to each document that we've read.
- HARDMAX - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Hardmax(element in input, axis) = 1 if the element is the first maximum value along the specified axis, 0 otherwise.
- hasAlgorithm() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- hasAlgorithm() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field represents a training algorithm step.
- hasAlgorithm() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field represents a training algorithm step.
- hasBegin() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 begin = 1;
- hasBegin() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
-
optional int64 begin = 1;
- hasBegin() - Method in interface ai.onnx.proto.OnnxMl.TensorProto.SegmentOrBuilder
-
optional int64 begin = 1;
- hasDataLocation() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- hasDataLocation() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- hasDataLocation() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- hasDataType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The data type of the tensor.
- hasDataType() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
The data type of the tensor.
- hasDataType() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
The data type of the tensor.
- hasDenotation() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- hasDenotation() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- hasDenotation() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- hasDenotation() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- hasDenotation() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- hasDenotation() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- hasDimParam() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- hasDimParam() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
namespace Shape
- hasDimParam() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
namespace Shape
- hasDimValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
int64 dim_value = 1;
- hasDimValue() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
int64 dim_value = 1;
- hasDimValue() - Method in interface ai.onnx.proto.OnnxMl.TensorShapeProto.DimensionOrBuilder
-
int64 dim_value = 1;
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
A human-readable documentation for this attribute.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
A human-readable documentation for this attribute.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
A human-readable documentation for this graph.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
A human-readable documentation for this graph.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
A human-readable documentation for this model.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
A human-readable documentation for this model.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
A human-readable documentation for this node.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
A human-readable documentation for this node.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
A human-readable documentation for this tensor.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
A human-readable documentation for this tensor.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- hasDocString() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
A human-readable documentation for this value.
- hasDocString() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
A human-readable documentation for this value.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
Domain name of the model.
- hasDomain() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
Domain name of the model.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The domain of the OperatorSet that specifies the operator named by op_type.
- hasDomain() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
The domain of the operator set being identified.
- hasDomain() - Method in interface ai.onnx.proto.OnnxMl.OperatorSetIdProtoOrBuilder
-
The domain of the operator set being identified.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- hasDomain() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
When missing, the domain is the same as the model's.
- hasDomain() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
When missing, the domain is the same as the model's.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
-
The type and optional shape of each element of the sequence.
- hasElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SequenceOrBuilder
-
The type and optional shape of each element of the sequence.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SparseTensorOrBuilder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasElemType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasElemType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.TensorOrBuilder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasEnd() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 end = 2;
- hasEnd() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
-
optional int64 end = 2;
- hasEnd() - Method in interface ai.onnx.proto.OnnxMl.TensorProto.SegmentOrBuilder
-
optional int64 end = 2;
- hasF() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
Exactly ONE of the following fields must be present for this version of the IR
- hasF() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
Exactly ONE of the following fields must be present for this version of the IR
- hasF() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
Exactly ONE of the following fields must be present for this version of the IR
- hasG() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- hasG() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
graph
- hasG() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
graph
- hasGraph() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- hasGraph() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The parameterized graph that is evaluated to execute the model.
- hasGraph() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The parameterized graph that is evaluated to execute the model.
- hash(String) - Method in class org.tribuo.hash.HashCodeHasher
- hash(String) - Method in class org.tribuo.hash.Hasher
-
Hashes the supplied input using the hashing function.
- hash(String) - Method in class org.tribuo.hash.MessageDigestHasher
- hash(String) - Method in class org.tribuo.hash.ModHashCodeHasher
- hashCode() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- hashCode() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- hashCode() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- hashCode() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- hashCode() - Method in class org.tribuo.anomaly.Event
- hashCode() - Method in class org.tribuo.classification.evaluation.LabelMetric
- hashCode() - Method in class org.tribuo.classification.Label
- hashCode() - Method in class org.tribuo.classification.LabelFactory
- hashCode() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- hashCode() - Method in class org.tribuo.clustering.ClusterID
- hashCode() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- hashCode() - Method in class org.tribuo.clustering.ClusteringFactory
- hashCode() - Method in class org.tribuo.common.tree.LeafNode
- hashCode() - Method in class org.tribuo.common.tree.SplitNode
- hashCode() - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.
- hashCode() - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- hashCode() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- hashCode() - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- hashCode() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- hashCode() - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- hashCode() - Method in class org.tribuo.evaluation.DescriptiveStats
- hashCode() - Method in class org.tribuo.evaluation.metrics.MetricTarget
- hashCode() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- hashCode() - Method in class org.tribuo.Feature
- hashCode() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- hashCode() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- hashCode() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- hashCode() - Method in class org.tribuo.impl.ArrayExample
- hashCode() - Method in class org.tribuo.impl.BinaryFeaturesExample
- hashCode() - Method in class org.tribuo.impl.IndexedArrayExample
- hashCode() - Method in class org.tribuo.impl.ListExample
- hashCode() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- hashCode() - Method in class org.tribuo.interop.oci.OCILabelConverter
- hashCode() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- hashCode() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
- hashCode() - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- hashCode() - Method in class org.tribuo.math.la.DenseMatrix
- hashCode() - Method in class org.tribuo.math.la.DenseSparseMatrix
- hashCode() - Method in class org.tribuo.math.la.DenseVector
- hashCode() - Method in class org.tribuo.math.la.MatrixTuple
- hashCode() - Method in class org.tribuo.math.la.SparseVector
- hashCode() - Method in class org.tribuo.math.la.VectorTuple
- hashCode() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- hashCode() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- hashCode() - Method in class org.tribuo.multilabel.MultiLabel
- hashCode() - Method in class org.tribuo.multilabel.MultiLabelFactory
- hashCode() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- hashCode() - Method in class org.tribuo.multilabel.MultiLabelInfo
- hashCode() - Method in class org.tribuo.provenance.DatasetProvenance
- hashCode() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- hashCode() - Method in class org.tribuo.provenance.EvaluationProvenance
- hashCode() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- hashCode() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- hashCode() - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- hashCode() - Method in class org.tribuo.provenance.ModelProvenance
- hashCode() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- hashCode() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- hashCode() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- hashCode() - Method in class org.tribuo.regression.RegressionFactory
- hashCode() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- hashCode() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
All regressors have a hashcode based on only the dimension names.
- hashCode() - Method in class org.tribuo.regression.Regressor
-
Regressor's hashcode is based on the hash of the dimension names.
- hashCode() - Method in record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Returns a hash code value for this object.
- hashCode() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns a hash code value for this object.
- hashCode() - Method in record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Returns a hash code value for this object.
- hashCode() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- hashCode() - Method in class org.tribuo.SkeletalVariableInfo
- hashCode() - Method in class org.tribuo.transform.TransformationMap.TransformationList
- hashCode() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- hashCode() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- hashCode() - Method in class org.tribuo.util.infotheory.impl.CachedPair
-
Overridden hashcode.
- hashCode() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- hashCode() - Method in class org.tribuo.util.infotheory.impl.Row
- hashCode() - Method in class org.tribuo.util.infotheory.impl.WeightCountTuple
- hashCode() - Method in class org.tribuo.util.IntDoublePair
- hashCode() - Method in class org.tribuo.util.MeanVarianceAccumulator
- HashCodeHasher - Class in org.tribuo.hash
-
Hashes names using String.hashCode().
- HashCodeHasher(String) - Constructor for class org.tribuo.hash.HashCodeHasher
-
Constructs a HashCodeHasher using the specified salt value.
- HashCodeHasher.HashCodeHasherProvenance - Class in org.tribuo.hash
-
Provenance for the
HashCodeHasher
. - HashCodeHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
-
Deserialization constructor.
- hashDim - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Hashing dimension used for standard text format.
- hashDim - Variable in class org.tribuo.data.DataOptions
-
Hashing dimension used for standard text format.
- HashedFeatureMap - Class in org.tribuo.hash
-
A
FeatureMap
used by theHashingTrainer
to provide feature name hashing and guarantee that theModel
does not contain feature name information, but still works with unhashed features names. - Hasher - Class in org.tribuo.hash
-
An abstract base class for hash functions used to hash the names of features.
- Hasher() - Constructor for class org.tribuo.hash.Hasher
- hashFeatureMap(Dataset<T>, Hasher) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable shallow copy of the supplied dataset, using the hasher to generate a
HashedFeatureMap
which transparently maps from the feature name to the hashed variant. - hashingOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for hashing trainers.
- HashingOptions - Class in org.tribuo.hash
-
An Options implementation which provides CLI arguments for the model hashing functionality.
- HashingOptions() - Constructor for class org.tribuo.hash.HashingOptions
- HashingOptions.ModelHashingType - Enum Class in org.tribuo.hash
-
Supported types of hashes in CLI programs.
- HashingSequenceTrainer<T extends Output<T>> - Class in org.tribuo.sequence
-
A SequenceTrainer that hashes all the feature names on the way in.
- HashingSequenceTrainer(SequenceTrainer<T>, Hasher) - Constructor for class org.tribuo.sequence.HashingSequenceTrainer
-
Constructs a hashing sequence trainer using the supplied parameters.
- HashingSequenceTrainer.HashingSequenceTrainerProvenance - Class in org.tribuo.sequence
-
Provenance for
HashingSequenceTrainer
. - HashingSequenceTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.sequence.HashingSequenceTrainer.HashingSequenceTrainerProvenance
-
Deserialization constructor.
- HashingTrainer<T extends Output<T>> - Class in org.tribuo.hash
- HashingTrainer(Trainer<T>, Hasher) - Constructor for class org.tribuo.hash.HashingTrainer
-
Constructs a hashing trainer using the supplied parameters.
- hashType - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
The hash type to use.
- hasI() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
int
- hasI() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
int
- hasI() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
int
- hasIndices() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- hasIndices() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The indices of the non-default values, which may be stored in one of two formats.
- hasIndices() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The indices of the non-default values, which may be stored in one of two formats.
- hasInitialization() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- hasInitialization() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
This field describes a graph to compute the initial tensors upon starting the training process.
- hasInitialization() - Method in interface ai.onnx.proto.OnnxMl.TrainingInfoProtoOrBuilder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- hasIrVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the IR this model targets.
- hasIrVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the IR this model targets.
- hasIrVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the IR this model targets.
- hasKey() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- hasKey() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string key = 1;
- hasKey() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string key = 1;
- hasKeyType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasKeyType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasKeyType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.MapOrBuilder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- hasMapType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- hasMapType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a map.
- hasMapType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a map.
- hasModelVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the graph encoded.
- hasModelVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the graph encoded.
- hasModelVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the graph encoded.
- hasName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- hasName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
The name field MUST be present for this version of the IR.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
The name field MUST be present for this version of the IR.
- hasName() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- hasName() - Method in class ai.onnx.proto.OnnxMl.GraphProto
-
The name of the graph.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.GraphProtoOrBuilder
-
The name of the graph.
- hasName() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- hasName() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
An optional identifier for this node in a graph.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
An optional identifier for this node in a graph.
- hasName() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- hasName() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Optionally, a name for the tensor.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Optionally, a name for the tensor.
- hasName() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- hasName() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
The name is optional but significant when provided.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.OpaqueOrBuilder
-
The name is optional but significant when provided.
- hasName() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- hasName() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR.
- hasName() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR.
- hasNext() - Method in class org.tribuo.data.columnar.ColumnarIterator
- hasOpaqueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- hasOpaqueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.Opaque opaque_type = 7;
- hasOpaqueType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- hasOpType() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- hasOpType() - Method in class ai.onnx.proto.OnnxMl.NodeProto
-
The symbolic identifier of the Operator to execute.
- hasOpType() - Method in interface ai.onnx.proto.OnnxMl.NodeProtoOrBuilder
-
The symbolic identifier of the Operator to execute.
- hasProbabilities() - Method in class org.tribuo.Prediction
-
Are the scores probabilities?
- hasProducerName() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- hasProducerName() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The name of the framework or tool used to generate this model.
- hasProducerName() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The name of the framework or tool used to generate this model.
- hasProducerVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- hasProducerVersion() - Method in class ai.onnx.proto.OnnxMl.ModelProto
-
The version of the framework or tool used to generate this model.
- hasProducerVersion() - Method in interface ai.onnx.proto.OnnxMl.ModelProtoOrBuilder
-
The version of the framework or tool used to generate this model.
- hasRawData() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- hasRawData() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
Serializations can either use one of the fields above, or use this raw bytes field.
- hasRawData() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- hasRefAttrName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- hasRefAttrName() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- hasRefAttrName() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- hasS() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
UTF-8 string
- hasS() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
UTF-8 string
- hasS() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
UTF-8 string
- hasSegment() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- hasSegment() - Method in class ai.onnx.proto.OnnxMl.TensorProto
-
optional .onnx.TensorProto.Segment segment = 3;
- hasSegment() - Method in interface ai.onnx.proto.OnnxMl.TensorProtoOrBuilder
-
optional .onnx.TensorProto.Segment segment = 3;
- hasSequenceType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- hasSequenceType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a sequence.
- hasSequenceType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a sequence.
- hasShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- hasShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
optional .onnx.TensorShapeProto shape = 2;
- hasShape() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.SparseTensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- hasShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- hasShape() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
optional .onnx.TensorShapeProto shape = 2;
- hasShape() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.TensorOrBuilder
-
optional .onnx.TensorShapeProto shape = 2;
- hasSparseTensor() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- hasSparseTensor() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
sparse tensor value
- hasSparseTensor() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
sparse tensor value
- hasSparseTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- hasSparseTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- hasSparseTensorType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- hasT() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- hasT() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
tensor value
- hasT() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
tensor value
- hasTensorName() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- hasTensorName() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
optional string tensor_name = 1;
- hasTensorName() - Method in interface ai.onnx.proto.OnnxMl.TensorAnnotationOrBuilder
-
optional string tensor_name = 1;
- hasTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- hasTensorType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
-
The type of a tensor.
- hasTensorType() - Method in interface ai.onnx.proto.OnnxMl.TypeProtoOrBuilder
-
The type of a tensor.
- hasType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The type field MUST be present for this version of the IR.
- hasType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
-
The type field MUST be present for this version of the IR.
- hasType() - Method in interface ai.onnx.proto.OnnxMl.AttributeProtoOrBuilder
-
The type field MUST be present for this version of the IR.
- hasType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- hasType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- hasType() - Method in interface ai.onnx.proto.OnnxMl.ValueInfoProtoOrBuilder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- hasValue() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- hasValue() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
optional string value = 2;
- hasValue() - Method in interface ai.onnx.proto.OnnxMl.StringStringEntryProtoOrBuilder
-
optional string value = 2;
- hasValues() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- hasValues() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- hasValues() - Method in interface ai.onnx.proto.OnnxMl.SparseTensorProtoOrBuilder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- hasValueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- hasValueType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
This field MUST be present for this version of the IR.
- hasValueType() - Method in interface ai.onnx.proto.OnnxMl.TypeProto.MapOrBuilder
-
This field MUST be present for this version of the IR.
- hasVersion() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The version of the operator set being identified.
- hasVersion() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
The version of the operator set being identified.
- hasVersion() - Method in interface ai.onnx.proto.OnnxMl.OperatorSetIdProtoOrBuilder
-
The version of the operator set being identified.
- HC - Enum constant in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Uses the String hash code.
- HdbscanCLIOptions() - Constructor for class org.tribuo.clustering.hdbscan.TrainTest.HdbscanCLIOptions
- HdbscanModel - Class in org.tribuo.clustering.hdbscan
-
A trained HDBSCAN* model which provides the cluster assignment labels and outlier scores for every data point.
- hdbscanOptions - Variable in class org.tribuo.clustering.hdbscan.TrainTest.HdbscanCLIOptions
-
The HDBSCAN options
- HdbscanOptions - Class in org.tribuo.clustering.hdbscan
-
OLCUT
Options
for the HDBSCAN* implementation. - HdbscanOptions() - Constructor for class org.tribuo.clustering.hdbscan.HdbscanOptions
- HdbscanTrainer - Class in org.tribuo.clustering.hdbscan
-
An HDBSCAN* trainer which generates a hierarchical, density-based clustering representation of the supplied data.
- HdbscanTrainer(int) - Constructor for class org.tribuo.clustering.hdbscan.HdbscanTrainer
-
Constructs an HDBSCAN* trainer with only the minClusterSize parameter.
- HdbscanTrainer(int, HdbscanTrainer.Distance, int, int) - Constructor for class org.tribuo.clustering.hdbscan.HdbscanTrainer
-
Constructs an HDBSCAN* trainer using the supplied parameters.
- HdbscanTrainer.Distance - Enum Class in org.tribuo.clustering.hdbscan
-
Available distance functions.
- HeapMerger - Class in org.tribuo.math.util
-
Merges each
SparseVector
separately using aPriorityQueue
as a heap. - HeapMerger() - Constructor for class org.tribuo.math.util.HeapMerger
- Hinge - Class in org.tribuo.classification.sgd.objectives
-
Hinge loss, scores the correct value margin and any incorrect predictions -margin.
- Hinge - Class in org.tribuo.multilabel.sgd.objectives
-
Hinge loss, scores the correct value margin and any incorrect predictions -margin.
- Hinge() - Constructor for class org.tribuo.classification.sgd.objectives.Hinge
-
Construct a hinge objective with a margin of 1.0.
- Hinge() - Constructor for class org.tribuo.multilabel.sgd.objectives.Hinge
-
Construct a hinge objective with a margin of 1.0.
- Hinge(double) - Constructor for class org.tribuo.classification.sgd.objectives.Hinge
-
Construct a hinge objective with the supplied margin.
- Hinge(double) - Constructor for class org.tribuo.multilabel.sgd.objectives.Hinge
-
Construct a hinge objective with the supplied margin.
- HINGE - Enum constant in enum class org.tribuo.classification.sgd.fm.FMClassificationOptions.LossEnum
-
Hinge loss (like an SVM).
- HINGE - Enum constant in enum class org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Hinge loss.
- HINGE - Enum constant in enum class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions.LossEnum
-
Hinge loss.
- HINGE - Enum constant in enum class org.tribuo.multilabel.sgd.linear.LinearSGDOptions.LossEnum
-
Hinge loss.
- HIST - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
Faster histogram optimized approximate algorithm.
- HTMLOutput - Class in org.tribuo.util
-
Utilities for nice HTML output that can be put in wikis and such.
- Huber - Class in org.tribuo.regression.sgd.objectives
-
Huber loss, i.e., a mixture of l2 and l1 losses.
- Huber() - Constructor for class org.tribuo.regression.sgd.objectives.Huber
-
Huber Loss using the default cost
Huber.DEFAULT_COST
. - Huber(double) - Constructor for class org.tribuo.regression.sgd.objectives.Huber
-
Huber loss using the supplied cost.
- HUBER - Enum constant in enum class org.tribuo.regression.sgd.fm.TrainTest.LossEnum
-
Uses
Huber
loss. - HUBER - Enum constant in enum class org.tribuo.regression.sgd.TrainTest.LossEnum
-
Uses
Huber
loss.
I
- i - Variable in class org.tribuo.math.la.MatrixTuple
-
The i index.
- I_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- id - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
-
The feature id number.
- IDENTITY - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Identity.
- IdentityExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and emits it as a String.
- IdentityExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IdentityExtractor
-
Extracts the String value from the supplied field.
- IdentityExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.IdentityExtractor
-
Extracts the String value from the supplied field.
- IdentityProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which converts the field name and value into a feature with a value ofIdentityProcessor.FEATURE_VALUE
. - IdentityProcessor(String) - Constructor for class org.tribuo.data.columnar.processors.field.IdentityProcessor
-
Constructs a field processor which emits a single feature with a specific value and uses the field name and field value as the feature name.
- IDFTransformation - Class in org.tribuo.transform.transformations
-
A feature transformation that computes the IDF for features and then transforms them with a TF-IDF weighting.
- IDFTransformation() - Constructor for class org.tribuo.transform.transformations.IDFTransformation
-
Constructs an IDFTransformation.
- IDFTransformation.IDFTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
IDFTransformation
. - IDFTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.IDFTransformation.IDFTransformationProvenance
-
Deserialization constructor.
- idIterator() - Method in class org.tribuo.impl.IndexedArrayExample
-
Iterator over the feature ids and values.
- idMap - Variable in class org.tribuo.ImmutableFeatureMap
-
The map from id numbers to the feature infos.
- IDXDataSource<T extends Output<T>> - Class in org.tribuo.datasource
-
A DataSource which can read IDX formatted data (i.e., MNIST).
- IDXDataSource(Path, Path, OutputFactory<T>) - Constructor for class org.tribuo.datasource.IDXDataSource
-
Constructs an IDXDataSource from the supplied paths.
- IDXDataSource.IDXData - Class in org.tribuo.datasource
-
Java side representation for an IDX file.
- IDXDataSource.IDXDataSourceProvenance - Class in org.tribuo.datasource
-
Provenance class for
IDXDataSource
. - IDXDataSource.IDXType - Enum Class in org.tribuo.datasource
-
The possible IDX input formats.
- IDXDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
Deserialization constructor.
- IMAGE - Enum constant in enum class org.tribuo.interop.tensorflow.TrainTest.InputType
-
Image feature extractor, requires the image format option be set.
- IMAGE_CLASSIFICATION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Image classification, no strict Tribuo mapping.
- ImageConverter - Class in org.tribuo.interop.tensorflow
-
Image converter.
- ImageConverter(String, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.ImageConverter
-
Builds an image converter for images of the supplied size.
- imageFormat - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Image format, in [W,H,C].
- ImageTransformer - Class in org.tribuo.interop.onnx
-
Image transformer.
- ImageTransformer(int, int, int) - Constructor for class org.tribuo.interop.onnx.ImageTransformer
-
Constructs an image transformer with the specified parameters.
- ImmutableAnomalyInfo - Class in org.tribuo.anomaly
-
An
ImmutableOutputInfo
object forEvent
s. - ImmutableClusteringInfo - Class in org.tribuo.clustering
-
An
ImmutableOutputInfo
object for ClusterIDs. - ImmutableClusteringInfo(Map<Integer, MutableLong>) - Constructor for class org.tribuo.clustering.ImmutableClusteringInfo
-
Constructs an immutable clustering info from the supplied cluster counts.
- ImmutableClusteringInfo(ClusteringInfo) - Constructor for class org.tribuo.clustering.ImmutableClusteringInfo
-
Copies the supplied clustering info, generating id numbers.
- ImmutableDataset<T extends Output<T>> - Class in org.tribuo
-
This is a
Dataset
which has anImmutableFeatureMap
to store the feature information. - ImmutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>, FeatureMap, OutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataSource<T>, FeatureMap, OutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataSource<T>, Model<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.ImmutableDataset
-
If you call this it's your job to setup outputMap, featureIDMap and fill it with examples.
- ImmutableDataset(DataProvenance, OutputFactory<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.ImmutableDataset
-
This is dangerous, and should not be used unless you've overridden everything in ImmutableDataset.
- ImmutableFeatureMap - Class in org.tribuo
-
ImmutableFeatureMap is used when unknown features should not be added to the FeatureMap.
- ImmutableFeatureMap() - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new empty immutable feature map.
- ImmutableFeatureMap(List<VariableInfo>) - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new immutable feature map copying the supplied variable infos and generating appropriate ID numbers.
- ImmutableFeatureMap(FeatureMap) - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new immutable version which is a deep copy of the supplied feature map, generating new ID numbers.
- ImmutableLabelInfo - Class in org.tribuo.classification
-
An
ImmutableOutputInfo
object forLabel
s. - ImmutableMultiLabelInfo - Class in org.tribuo.multilabel
-
An
ImmutableOutputInfo
for working withMultiLabel
tasks. - ImmutableOutputInfo<T extends Output<T>> - Interface in org.tribuo
-
An
OutputInfo
that is fixed, and contains an id number for each valid output. - ImmutableRegressionInfo - Class in org.tribuo.regression
-
A
ImmutableOutputInfo
forRegressor
s. - ImmutableSequenceDataset<T extends Output<T>> - Class in org.tribuo.sequence
-
This is a
SequenceDataset
which has anImmutableFeatureMap
to store the feature information. - ImmutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, FeatureMap, OutputInfo<T>, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source.
- ImmutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source.
- ImmutableSequenceDataset(DataProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
This is dangerous, and should not be used unless you've overridden everything in ImmutableSequenceDataset.
- ImmutableSequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
If you call this it's your job to setup outputIDInfo and featureIDMap.
- ImmutableSequenceDataset(SequenceDataSource<T>, FeatureMap, OutputInfo<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source, using the specified output and feature domains.
- ImmutableSequenceDataset(SequenceDataSource<T>, SequenceModel<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source, taking the output and feature domains from the supplied model.
- impurity - Variable in class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
-
The impurity value.
- impurity(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the inputs are counts.
- impurity(float[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the input are fractional counts.
- impurity(float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurity(float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurity(float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the impurity based on the supplied weights and targets.
- impurity(int[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the input are counts.
- impurity(int[], float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurity(int[], int, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurity(List<int[]>, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in all the indices arrays.
- impurity(Map<String, Double>) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Takes a
Map
for weighted counts. - impurity(IntArrayContainer, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices container.
- impurityNormed(double[]) - Method in class org.tribuo.classification.dtree.impurity.Entropy
- impurityNormed(double[]) - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- impurityNormed(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity, assuming it's input is a normalized probability distribution.
- impurityScore - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- impurityTuple(int[], int, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurityTuple(int[], int, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurityTuple(int[], int, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurityTuple(List<int[]>, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurityTuple(List<int[]>, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurityTuple(List<int[]>, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in all the indices arrays.
- ImpurityTuple(float, float) - Constructor for class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
-
Construct an impurity tuple.
- impurityType - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Impurity measure to use.
- impurityWeighted(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the inputs are weighted counts normalizing by their sum.
- impurityWeighted(float[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity by assuming the input are weighted counts and converting them into a probability distribution by dividing by their sum.
- incr - Variable in class org.tribuo.util.tokens.universal.Range
-
The value to increment by.
- INCREMENT_INVOCATION_COUNT - Static variable in interface org.tribuo.Trainer
-
When training a model, passing this value will inform the trainer to simply increment the invocation count rather than set a new one
- incrementalTrain(Dataset<T>, U) - Method in interface org.tribuo.IncrementalTrainer
-
Incrementally trains the supplied model with the new data.
- IncrementalTrainer<T extends Output<T>,
U extends Model<T>> - Interface in org.tribuo -
An interface for incremental training of
Model
s. - IndependentMultiLabelModel - Class in org.tribuo.multilabel.baseline
-
A
Model
which wraps n binary models, where n is the size of the MultiLabel domain. - IndependentMultiLabelTrainer - Class in org.tribuo.multilabel.baseline
- IndependentMultiLabelTrainer(Trainer<Label>) - Constructor for class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
-
Constructs an independent multi-label trainer wrapped around the supplied classification trainer.
- IndependentRegressionTreeModel - Class in org.tribuo.regression.rtree
- IndependentSequenceModel<T extends Output<T>> - Class in org.tribuo.sequence
-
A SequenceModel which independently predicts each element of the sequence.
- IndependentSequenceTrainer<T extends Output<T>> - Class in org.tribuo.sequence
-
Trains a sequence model by training a regular model to independently predict every example in each sequence.
- IndependentSequenceTrainer(Trainer<T>) - Constructor for class org.tribuo.sequence.IndependentSequenceTrainer
-
Builds a sequence trainer which uses a
Trainer
to independently predict each sequence element. - index - Variable in class org.tribuo.math.la.VectorTuple
-
The current index.
- index - Variable in class org.tribuo.util.IntDoublePair
-
The key.
- IndexedArrayExample<T extends Output<T>> - Class in org.tribuo.impl
-
A version of ArrayExample which also has the id numbers.
- IndexedArrayExample(Example<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.impl.IndexedArrayExample
-
This constructor removes unknown features.
- IndexedArrayExample(IndexedArrayExample<T>) - Constructor for class org.tribuo.impl.IndexedArrayExample
-
Copy constructor.
- IndexedArrayExample.FeatureTuple - Class in org.tribuo.impl
-
A tuple of the feature name, id and value.
- IndexExtractor - Class in org.tribuo.data.columnar.extractors
-
An Extractor with special casing for loading the index from a Row.
- IndexExtractor() - Constructor for class org.tribuo.data.columnar.extractors.IndexExtractor
-
Extracts the index writing to the default metadata field name
Example.NAME
. - IndexExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IndexExtractor
-
Extracts the index, writing to the supplied metadata field name.
- indexOf(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- indexOfMax() - Method in class org.tribuo.math.la.DenseVector
- indexOfMax() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the index of the maximum value.
- indexOfMax() - Method in class org.tribuo.math.la.SparseVector
- indexOfMax() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- indices - Variable in class org.tribuo.Dataset
-
The indices of the shuffled order.
- indices - Variable in class org.tribuo.math.la.SparseVector
- indices() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Gets the indices where this feature value occurs.
- INDICES_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.SparseTensorProto
- INFIX - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
Some tokenizers produce "sub-word" tokens.
- INFO - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
Tree building info is logged as well as warnings.
- InformationTheory - Class in org.tribuo.util.infotheory
-
A class of (discrete) information theoretic functions.
- InformationTheory.GTestStatistics - Class in org.tribuo.util.infotheory
-
An immutable named tuple containing the statistics from a G test.
- InformationTheoryDemo - Class in org.tribuo.util.infotheory.example
-
Demo showing how to calculate various mutual informations and entropies.
- InformationTheoryDemo() - Constructor for class org.tribuo.util.infotheory.example.InformationTheoryDemo
- InformationTheoryDemo.DemoOptions - Class in org.tribuo.util.infotheory.example
-
Command line options.
- InformationTheoryDemo.DistributionType - Enum Class in org.tribuo.util.infotheory.example
-
Type of data distribution.
- initialisation - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
-
Initialisation function in K-Means.
- initialisation - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
Type of initialisation to use for centroids.
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaDelta
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaGrad
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaGradRDA
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.Adam
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.ParameterAveraging
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.Pegasos
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.RMSProp
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.SGD
- initialise(Parameters) - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Initialises the gradient optimiser.
- INITIALIZATION_BINDING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- INITIALIZATION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- initialize() - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Initializes the model.
- INITIALIZER_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- initialLearningRate - Variable in class org.tribuo.math.optimisers.SGD
- innerGetExcuse(Example<Event>, double[][]) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyModel
-
The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerGetExcuse(Example<Label>, double[][]) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
-
The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerGetExcuse(Example<Regressor>, double[][]) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
-
The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerGetExcuse(Example<T>, double[][]) - Method in class org.tribuo.common.liblinear.LibLinearModel
-
The call to getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerModel - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.common.nearest.KNNModel
-
Uses the model to predict the output for multiple examples.
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.interop.ExternalModel
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Called by the base implementations of
Model.predict(Iterable)
andModel.predict(Dataset)
. - INNERTHREADPOOL - Enum constant in enum class org.tribuo.common.nearest.KNNModel.Backend
-
Uses a thread pool at the inner level (i.e., the whole thread pool works on each prediction).
- innerTrainer - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- innerTrainer - Variable in class org.tribuo.ensemble.BaggingTrainer
- inPlaceAdd(double[], double[]) - Static method in class org.tribuo.util.Util
-
Adds update to input in place.
- inPlaceAdd(float[], float[]) - Static method in class org.tribuo.util.Util
-
Adds update to input in place.
- inplaceNormalizeToDistribution(double[]) - Static method in class org.tribuo.util.Util
-
Normalizes the input array in place.
- inplaceNormalizeToDistribution(float[]) - Static method in class org.tribuo.util.Util
-
Normalizes the input array in place.
- inPlaceSubtract(double[], double[]) - Static method in class org.tribuo.util.Util
-
Subtracts update from input in place.
- inPlaceSubtract(float[], float[]) - Static method in class org.tribuo.util.Util
-
Subtracts update from input in place.
- INPUT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- INPUT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- INPUT_IDS - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Input name for the token ids.
- inputFile - Variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.BERTFeatureExtractorOptions
-
Input file to read, one doc per line
- inputFormat - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Loads the data using the specified format.
- inputFormat - Variable in class org.tribuo.data.DataOptions
-
Loads the data using the specified format.
- inputModel - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
The model to load.
- inputName - Variable in class org.tribuo.interop.tensorflow.example.GraphDefTuple
-
Name of the input operation.
- inputName - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Name of the input placeholder.
- inputNamesSet() - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- inputNamesSet() - Method in interface org.tribuo.interop.tensorflow.FeatureConverter
-
Gets a view of the names of the inputs this converter produces.
- inputNamesSet() - Method in class org.tribuo.interop.tensorflow.ImageConverter
- inputNamesSet() - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceFeatureConverter
-
Gets a view of the names of the inputs this converter produces.
- inputPath - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
SQL File to run as a query, defaults to stdin
- inputPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
-
Input data file in standard text format.
- inputType - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Input type.
- INSTANCE - Enum constant in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select any instance provenance from the specific training run that created this model.
- INSTANCE_VALUES - Static variable in class org.tribuo.provenance.ModelProvenance
- instanceCount - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Number of model instances to deploy.
- instanceCount - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The number of instances to create.
- instanceProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- instanceShape - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
OCI shape to run the model on.
- INT - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
INT = 2;
- INT - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
A 32-bit integer.
- INT_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
INT = 2;
- INT16 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int16_t
- INT16_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int16_t
- INT32 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int32_t
- INT32_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- INT32_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int32_t
- INT64 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int64_t
- INT64_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- INT64_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int64_t
- INT8 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int8_t
- INT8_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
int8_t
- IntArrayContainer - Class in org.tribuo.common.tree.impl
-
An array container which maintains the array and the size.
- IntArrayContainer(int) - Constructor for class org.tribuo.common.tree.impl.IntArrayContainer
-
Constructs a new int array container with the specified initial backing array size.
- IntDoublePair - Class in org.tribuo.util
-
A Pair of a primitive int and a primitive double.
- IntDoublePair(int, double) - Constructor for class org.tribuo.util.IntDoublePair
-
Constructs a tuple out of an int and a double.
- INTEGER - Enum constant in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Ordered integral feature values (e.g.
- InterlockingCrescentsDataSource - Class in org.tribuo.classification.example
-
A data source of two interleaved half circles.
- InterlockingCrescentsDataSource(int) - Constructor for class org.tribuo.classification.example.InterlockingCrescentsDataSource
-
Constructs an interlocking crescents data source.
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- internalGetFieldAccessorTable() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- internalGetValueMap() - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
- internalGetValueMap() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
- internalGetValueMap() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
- internalGetValueMap() - Static method in enum class ai.onnx.proto.OnnxMl.Version
- internalProvenances() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- internalProvenances() - Method in class org.tribuo.provenance.ModelProvenance
-
Returns a list of all the provenances in this model provenance so subclasses can append to the list.
- intersectAndAddInPlace(Tensor) - Method in interface org.tribuo.math.la.Tensor
-
Same as
Tensor.intersectAndAddInPlace(org.tribuo.math.la.Tensor, java.util.function.DoubleUnaryOperator)
, but applies the identity function. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
Only implemented for
DenseMatrix
. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Updates this
Tensor
by adding all the values from the intersection withother
. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- intersection(SparseVector) - Method in class org.tribuo.math.la.SparseVector
-
Generates an array of the indices that are active in both this vector and
other
- intersectionSize(MultiLabel, MultiLabel) - Static method in class org.tribuo.multilabel.MultiLabel
-
The number of labels present in both MultiLabels.
- IntExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a int.
- IntExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IntExtractor
-
Extracts a int value from the supplied field name.
- IntExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.IntExtractor
-
Extracts a int value from the supplied field name.
- INTS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
INTS = 7;
- INTS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- INTS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
INTS = 7;
- invalidMultiDimSparseExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invertData(Dataset<Regressor>) - Static method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
-
Inverts a training dataset from row major to column major.
- InvertedFeature - Class in org.tribuo.regression.rtree.impl
-
Internal datastructure for implementing a decision tree.
- InvertedFeature(double, int) - Constructor for class org.tribuo.regression.rtree.impl.InvertedFeature
-
Constructs an inverted feature for the specifed value which occurs at a single index.
- InvertedFeature(double, int[]) - Constructor for class org.tribuo.regression.rtree.impl.InvertedFeature
-
Constructs an inverted feature for the specified value which occurs at the specified indices.
- IR_VERSION - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 7 published on <TBD> - Add support to allow function body graph to rely on multiple external opreator sets.
- IR_VERSION_2017_10_10 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
The version field is always serialized and we will use it to store the version that the graph is generated from.
- IR_VERSION_2017_10_10_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
The version field is always serialized and we will use it to store the version that the graph is generated from.
- IR_VERSION_2017_10_30 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR_VERSION 2 published on Oct 30, 2017 - Added type discriminator to AttributeProto to support proto3 users
- IR_VERSION_2017_10_30_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR_VERSION 2 published on Oct 30, 2017 - Added type discriminator to AttributeProto to support proto3 users
- IR_VERSION_2017_11_3 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 3 published on Nov 3, 2017 - For operator versioning: - Added new message OperatorSetIdProto - Added opset_import in ModelProto - For vendor extensions, added domain in NodeProto
- IR_VERSION_2017_11_3_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 3 published on Nov 3, 2017 - For operator versioning: - Added new message OperatorSetIdProto - Added opset_import in ModelProto - For vendor extensions, added domain in NodeProto
- IR_VERSION_2019_1_22 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 4 published on Jan 22, 2019 - Relax constraint that initializers should be a subset of graph inputs - Add type BFLOAT16
- IR_VERSION_2019_1_22_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 4 published on Jan 22, 2019 - Relax constraint that initializers should be a subset of graph inputs - Add type BFLOAT16
- IR_VERSION_2019_3_18 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 5 published on March 18, 2019 - Add message TensorAnnotation.
- IR_VERSION_2019_3_18_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 5 published on March 18, 2019 - Add message TensorAnnotation.
- IR_VERSION_2019_9_19 - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 6 published on Sep 19, 2019 - Add support for sparse tensor constants stored in model.
- IR_VERSION_2019_9_19_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 6 published on Sep 19, 2019 - Add support for sparse tensor constants stored in model.
- IR_VERSION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- IR_VERSION_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
IR VERSION 7 published on <TBD> - Add support to allow function body graph to rely on multiple external opreator sets.
- IS_SEQUENCE - Static variable in interface org.tribuo.provenance.TrainerProvenance
-
The name of the provenance field recording if this is a sequence trainer.
- IS_SNAPSHOT - Static variable in class org.tribuo.Tribuo
-
Is this a snapshot build.
- isAnomaly() - Method in class org.tribuo.anomaly.liblinear.LinearAnomalyType
- isAnomaly() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isAnomaly() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- isAnomaly() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isAnomaly() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Is this class an anomaly detection algorithm?
- isAnomaly() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this an anomaly detection algorithm.
- isAnomaly() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- isAnomaly() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isBinary(Feature) - Static method in class org.tribuo.impl.BinaryFeaturesExample
-
Is the supplied feature binary (i.e., does it have a value of 1.0)?
- isChinese(int) - Static method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Determines if the provided codepoint is a Chinese character or not.
- isClassification() - Method in class org.tribuo.anomaly.liblinear.LinearAnomalyType
- isClassification() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isClassification() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- isClassification() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isClassification() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Is this class a Classification algorithm?
- isClassification() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a classification algorithm.
- isClassification() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- isClassification() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isConfigured() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns true if the regexes have been expanded into field processors.
- isControl(int) - Static method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Determines if the provided codepoint is a control character or not.
- isDense() - Method in class org.tribuo.MutableDataset
-
Is the dataset dense (i.e., do all features in the domain have a value in each example).
- isDense() - Method in class org.tribuo.provenance.DatasetProvenance
-
Is the Dataset dense?
- isDense() - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Is the dataset dense (i.e., do all features in the domain have a value in each example).
- isDense(FeatureMap) - Method in class org.tribuo.Example
-
Is this example dense wrt the supplied feature map.
- isDense(FeatureMap) - Method in class org.tribuo.impl.ArrayExample
- isDense(FeatureMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- isDense(FeatureMap) - Method in class org.tribuo.impl.ListExample
- isDense(FeatureMap) - Method in class org.tribuo.sequence.SequenceExample
-
Is this sequence example dense wrt the supplied feature map.
- isDigit(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character is a digit.
- isEmpty() - Method in class org.tribuo.util.infotheory.impl.RowList
- isGenerateNgrams() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Does this tokenizer generate ngrams?
- isGenerateUnigrams() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Does this tokenizer generate unigrams?
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- isInitialized() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- isInitialized() - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Is this model initialized?
- isLeaf() - Method in class org.tribuo.common.tree.AbstractTrainingNode
- isLeaf() - Method in class org.tribuo.common.tree.LeafNode
- isLeaf() - Method in interface org.tribuo.common.tree.Node
-
Is it a leaf node?
- isLeaf() - Method in class org.tribuo.common.tree.SplitNode
- isLetterOrDigit(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character should be kept in a word or should be removed from the word if it occurs at one of the ends.
- isMandatory() - Method in class org.tribuo.util.onnx.ONNXAttribute
-
Is this attribute mandatory?
- isNgram(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for a character in a language that may not separate words with whitespace (includes Arabic, CJK, and Thai).
- isNu() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isNu() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isNu() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a nu-SVM.
- isNu() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isProbabilistic() - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Does the objective function score probabilities or not?
- isProbabilistic() - Method in class org.tribuo.classification.sgd.objectives.Hinge
-
Returns false.
- isProbabilistic() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
-
Returns true.
- isProbabilistic() - Method in interface org.tribuo.multilabel.sgd.MultiLabelObjective
-
Does the objective function score probabilities or not?
- isProbabilistic() - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
-
Returns true.
- isProbabilistic() - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
-
Returns false.
- isPunctuation(int) - Static method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Determines if the input code point should be considered a character that is punctuation.
- isRegression() - Method in class org.tribuo.anomaly.liblinear.LinearAnomalyType
- isRegression() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isRegression() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- isRegression() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isRegression() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Is this class a Regression algorithm?
- isRegression() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a regression algorithm.
- isRegression() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- isRegression() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isSampled() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Is this view from a bootstrap sample.
- isSequence() - Method in class org.tribuo.provenance.DatasetProvenance
-
Is it a sequence dataset?
- isSequence() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
-
Is this a sequence trainer.
- isSplitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Deprecated.
- isSplitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer.SplitCharactersSplitterFunction
-
Checks if this is a valid split character or whitespace.
- isSplitXDigitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Deprecated.
- isSplitXDigitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer.SplitCharactersSplitterFunction
-
Checks if this a valid split character outside of a run of digits.
- isWeighted() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Is this view a weighted bootstrap sample.
- isWhitespace(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character is whitespace.
- isZeroIndexed() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Returns true if this dataset is zero indexed, false otherwise (i.e., it starts from 1).
- iteration - Variable in class org.tribuo.math.optimisers.SGD
- iterations - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
-
Iterations of the k-means algorithm.
- iterations - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
Maximum number of iterations.
- iterations - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
Iterations of Elastic Net.
- iterator() - Method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource
- iterator() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- iterator() - Method in class org.tribuo.classification.example.DemoLabelDataSource
- iterator() - Method in class org.tribuo.classification.ImmutableLabelInfo
- iterator() - Method in class org.tribuo.clustering.example.GaussianClusterDataSource
- iterator() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- iterator() - Method in class org.tribuo.data.columnar.ColumnarDataSource
- iterator() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.
- iterator() - Method in class org.tribuo.data.text.DirectoryFileSource
- iterator() - Method in class org.tribuo.data.text.TextDataSource
- iterator() - Method in class org.tribuo.dataset.DatasetView
- iterator() - Method in class org.tribuo.Dataset
- iterator() - Method in class org.tribuo.datasource.AggregateConfigurableDataSource
- iterator() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- iterator() - Method in class org.tribuo.datasource.AggregateDataSource
- iterator() - Method in class org.tribuo.datasource.IDXDataSource
- iterator() - Method in class org.tribuo.datasource.LibSVMDataSource
- iterator() - Method in class org.tribuo.datasource.ListDataSource
- iterator() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- iterator() - Method in class org.tribuo.FeatureMap
- iterator() - Method in class org.tribuo.impl.ArrayExample
- iterator() - Method in class org.tribuo.impl.BinaryFeaturesExample
- iterator() - Method in class org.tribuo.impl.ListExample
- iterator() - Method in class org.tribuo.math.la.DenseMatrix
- iterator() - Method in class org.tribuo.math.la.DenseSparseMatrix
- iterator() - Method in class org.tribuo.math.la.DenseVector
- iterator() - Method in class org.tribuo.math.la.SparseVector
- iterator() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- iterator() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- iterator() - Method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
- iterator() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- iterator() - Method in class org.tribuo.provenance.DatasetProvenance
- iterator() - Method in class org.tribuo.provenance.EvaluationProvenance
- iterator() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- iterator() - Method in class org.tribuo.provenance.ModelProvenance
-
Calls
ModelProvenance.internalProvenances()
and returns the iterator from that list. - iterator() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- iterator() - Method in class org.tribuo.regression.example.GaussianDataSource
- iterator() - Method in class org.tribuo.regression.example.NonlinearGaussianDataSource
- iterator() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- iterator() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- iterator() - Method in class org.tribuo.regression.Regressor
- iterator() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
- iterator() - Method in class org.tribuo.sequence.SequenceDataset
- iterator() - Method in class org.tribuo.sequence.SequenceExample
- iterator() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- iterator() - Method in class org.tribuo.util.infotheory.impl.RowList
J
- j - Variable in class org.tribuo.math.la.MatrixTuple
-
The j index.
- JACCARD_SCORE - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The Jaccard score, i.e., the average across the predictions of the intersection over union.
- jaccardScore() - Method in interface org.tribuo.multilabel.evaluation.MultiLabelEvaluation
-
The average across the predictions of the intersection of the true and predicted labels divided by the union of the true and predicted labels.
- jaccardScore() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- jaccardScore(List<Prediction<MultiLabel>>) - Static method in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The average Jaccard score across the predictions.
- jaccardScore(MultiLabel, MultiLabel) - Static method in class org.tribuo.multilabel.MultiLabel
-
The Jaccard score/index between the two MultiLabels.
- JAVA_VERSION_STRING - Static variable in class org.tribuo.provenance.ModelProvenance
- javaVersionString - Variable in class org.tribuo.provenance.ModelProvenance
- JOINER - Static variable in class org.tribuo.data.columnar.ColumnarFeature
-
The joiner between the field name and feature name.
- jointCounts - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
-
The joint distribution.
- jointEntropy(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the Shannon/Guiasu weighted joint entropy of two arrays, using histogram probability estimators.
- jointEntropy(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the Shannon joint entropy of two arrays, using histogram probability estimators.
- jointMI(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon joint mutual information, using histogram probability estimators.
- jointMI(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted joint mutual information, using histogram probability estimators.
- jointMI(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon joint mutual information, using histogram probability estimators.
- jointMI(TripleDistribution<T1, T2, T3>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted joint mutual information, using histogram probability estimators.
- jointMI(WeightedTripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted joint mutual information, using histogram probability estimators.
- JointRegressorTrainingNode - Class in org.tribuo.regression.rtree.impl
-
A decision tree node used at training time.
- JointRegressorTrainingNode(RegressorImpurity, Dataset<Regressor>, boolean, AbstractTrainingNode.LeafDeterminer) - Constructor for class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
-
Constructor which creates the inverted file.
- JsonDataSource<T extends Output<T>> - Class in org.tribuo.json
-
A
DataSource
for loading data from a JSON text file and applyingFieldProcessor
s to it. - JsonDataSource(URI, RowProcessor<T>, boolean) - Constructor for class org.tribuo.json.JsonDataSource
-
Creates a JsonDataSource using the specified RowProcessor to process the data.
- JsonDataSource(Path, RowProcessor<T>, boolean) - Constructor for class org.tribuo.json.JsonDataSource
-
Creates a JsonDataSource using the specified RowProcessor to process the data.
- JsonDataSource.JsonDataSourceProvenance - Class in org.tribuo.json
-
Provenance for
JsonDataSource
. - JsonDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
-
Deserialization constructor.
- JsonFileIterator - Class in org.tribuo.json
-
An iterator for JSON format files converting them into a format suitable for
RowProcessor
. - JsonFileIterator(Reader) - Constructor for class org.tribuo.json.JsonFileIterator
-
Builds a JsonFileIterator for the supplied Reader.
- JsonFileIterator(URI) - Constructor for class org.tribuo.json.JsonFileIterator
-
Builds a CSVIterator for the supplied URI.
- JsonUtil - Class in org.tribuo.json
-
Utilities for interacting with JSON objects or text representations.
K
- k - Variable in class org.tribuo.clustering.hdbscan.HdbscanOptions
-
The number of nearest-neighbors to use in the initial density approximation.
- Kernel - Interface in org.tribuo.math.kernel
-
An interface for a Mercer kernel function.
- kernelDegree - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Degree in polynomial kernel function.
- kernelDist(double, double) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Calculates an RBF kernel of a specific width.
- kernelEpochs - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Number of SGD epochs.
- kernelGamma - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Gamma value in kernel function.
- kernelIntercept - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Intercept in kernel function.
- kernelKernel - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Kernel function.
- kernelLambda - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Lambda value in gradient optimisation.
- kernelLoggingInterval - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Log the objective after n examples.
- kernelSeed - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
-
Sets the random seed for the Kernel SVM.
- KernelSVMModel - Class in org.tribuo.classification.sgd.kernel
-
The inference time version of a kernel model trained using Pegasos.
- kernelSVMOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for Kernel SVM trainers.
- KernelSVMOptions - Class in org.tribuo.classification.sgd.kernel
-
Options for using the KernelSVMTrainer.
- KernelSVMOptions() - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- KernelSVMOptions.KernelEnum - Enum Class in org.tribuo.classification.sgd.kernel
-
The kernel types.
- KernelSVMTrainer - Class in org.tribuo.classification.sgd.kernel
-
A trainer for a kernelised model using the Pegasos optimiser.
- KernelSVMTrainer(Kernel, double, int, int, long) - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Constructs a trainer for a kernel SVM model.
- KernelSVMTrainer(Kernel, double, int, long) - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Constructs a trainer for a kernel SVM model.
- kernelType - Variable in class org.tribuo.common.libsvm.SVMParameters
- kernelType - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Type of SVM kernel.
- KernelType - Enum Class in org.tribuo.common.libsvm
-
Kernel types from libsvm.
- kernelWidth - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- KEY_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- KEY_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Map
- keySet() - Method in class org.tribuo.FeatureMap
-
Returns all the feature names in the domain.
- KFoldSplitter<T extends Output<T>> - Class in org.tribuo.evaluation
-
A k-fold splitter to be used in cross-validation.
- KFoldSplitter(int) - Constructor for class org.tribuo.evaluation.KFoldSplitter
-
Builds a k-fold splitter using
Trainer.DEFAULT_SEED
as the seed. - KFoldSplitter(int, long) - Constructor for class org.tribuo.evaluation.KFoldSplitter
-
Builds a k-fold splitter.
- KFoldSplitter.TrainTestFold<T extends Output<T>> - Class in org.tribuo.evaluation
-
Stores a train/test split for a dataset.
- KMeansModel - Class in org.tribuo.clustering.kmeans
-
A K-Means model with a selectable distance function.
- KMeansOptions - Class in org.tribuo.clustering.kmeans
-
OLCUT
Options
for the K-Means implementation. - KMeansOptions() - Constructor for class org.tribuo.clustering.kmeans.KMeansOptions
- KMeansOptions() - Constructor for class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- KMeansTrainer - Class in org.tribuo.clustering.kmeans
-
A K-Means trainer, which generates a K-means clustering of the supplied data.
- KMeansTrainer(int, int, KMeansTrainer.Distance, int, long) - Constructor for class org.tribuo.clustering.kmeans.KMeansTrainer
-
Constructs a K-Means trainer using the supplied parameters and the default random initialisation.
- KMeansTrainer(int, int, KMeansTrainer.Distance, KMeansTrainer.Initialisation, int, long) - Constructor for class org.tribuo.clustering.kmeans.KMeansTrainer
-
Constructs a K-Means trainer using the supplied parameters.
- KMeansTrainer.Distance - Enum Class in org.tribuo.clustering.kmeans
-
Possible distance functions.
- KMeansTrainer.Initialisation - Enum Class in org.tribuo.clustering.kmeans
-
Possible initialization functions.
- KNN - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
KNNTrainer
. - knnBackend - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
-
Parallel backend to use.
- KNNClassifierOptions - Class in org.tribuo.common.nearest
-
CLI Options for training a k-nearest neighbour predictor.
- KNNClassifierOptions() - Constructor for class org.tribuo.common.nearest.KNNClassifierOptions
- KNNClassifierOptions.EnsembleCombinerType - Enum Class in org.tribuo.common.nearest
-
The type of combination function.
- knnDistance - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
-
Distance metric to use.
- knnEnsembleCombiner - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
-
Parallel backend to use.
- knnK - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
-
K nearest neighbours to use.
- KNNModel<T extends Output<T>> - Class in org.tribuo.common.nearest
-
A k-nearest neighbours model.
- KNNModel.Backend - Enum Class in org.tribuo.common.nearest
-
The parallel backend for batch predictions.
- knnNumThreads - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
-
Number of threads to use.
- knnOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for K-NN trainers.
- KNNTrainer<T extends Output<T>> - Class in org.tribuo.common.nearest
-
A
Trainer
for k-nearest neighbour models. - KNNTrainer(int, KNNTrainer.Distance, int, EnsembleCombiner<T>, KNNModel.Backend) - Constructor for class org.tribuo.common.nearest.KNNTrainer
-
Creates a K-NN trainer using the supplied parameters.
- KNNTrainer.Distance - Enum Class in org.tribuo.common.nearest
-
The available distance functions.
L
- L1 - Enum constant in enum class org.tribuo.clustering.hdbscan.HdbscanTrainer.Distance
-
L1 (or Manhattan) distance.
- L1 - Enum constant in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
L1 (or Manhattan) distance.
- L1 - Enum constant in enum class org.tribuo.common.nearest.KNNTrainer.Distance
-
L1 (or Manhattan) distance.
- l1Distance(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
The l1 or Manhattan distance between this vector and the other vector.
- l1Distance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
The l1 or Manhattan distance between this vector and the other vector.
- l1Distance(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- L1R_L2LOSS_SVC - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L1-regularized L2-loss support vector classification
- L1R_LR - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L1-regularized logistic regression
- l1Ratio - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
Ratio between the l1 and l2 penalties in the Elastic Net.
- L2 - Enum constant in enum class org.tribuo.common.nearest.KNNTrainer.Distance
-
L2 (or Euclidean) distance.
- l2Distance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Synonym for euclideanDistance.
- L2R_L1LOSS_SVC_DUAL - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L1-loss support vector classification (dual)
- L2R_L1LOSS_SVR_DUAL - Enum constant in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L1-loss support vector regression (dual)
- L2R_L2LOSS_SVC - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L2-loss support vector classification (primal)
- L2R_L2LOSS_SVC_DUAL - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L2-loss support vector classification (dual)
- L2R_L2LOSS_SVR - Enum constant in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L2-loss support vector regression (primal)
- L2R_L2LOSS_SVR_DUAL - Enum constant in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L2-loss support vector regression (dual)
- L2R_LR - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized logistic regression (primal)
- L2R_LR_DUAL - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized logistic regression (dual)
- label - Variable in class org.tribuo.classification.Label
-
The name of the label.
- Label - Class in org.tribuo.classification
-
An immutable multi-class classification label.
- Label(String) - Constructor for class org.tribuo.classification.Label
-
Builds a label with the sentinel score of Double.NaN.
- Label(String, double) - Constructor for class org.tribuo.classification.Label
-
Builds a label with the supplied string and score.
- LabelConfusionMatrix - Class in org.tribuo.classification.evaluation
-
A confusion matrix for
Label
s. - LabelConfusionMatrix(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Creates a confusion matrix from the supplied predictions and label info.
- LabelConfusionMatrix(Model<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Creates a confusion matrix from the supplied predictions, using the label info from the supplied model.
- LabelConverter - Class in org.tribuo.interop.tensorflow
-
Can convert a
Label
into aTensor
containing one hot encoding of the label and can convert aTFloat16
orTFloat32
into aPrediction
or aLabel
. - LabelConverter() - Constructor for class org.tribuo.interop.tensorflow.LabelConverter
-
Constructs a LabelConverter.
- labelCounts - Variable in class org.tribuo.classification.LabelInfo
-
The occurrence counts of each label.
- labelCounts - Variable in class org.tribuo.multilabel.MultiLabelInfo
- LabelEvaluation - Interface in org.tribuo.classification.evaluation
-
Adds multi-class classification specific metrics to
ClassifierEvaluation
. - LabelEvaluationUtil - Class in org.tribuo.classification.evaluation
-
Static utility functions for calculating performance metrics on
Label
s. - LabelEvaluationUtil.PRCurve - Class in org.tribuo.classification.evaluation
-
Stores the Precision-Recall curve as three arrays: the precisions, the recalls, and the thresholds associated with those values.
- LabelEvaluationUtil.ROC - Class in org.tribuo.classification.evaluation
-
Stores the ROC curve as three arrays: the false positive rate, the true positive rate, and the thresholds associated with those rates.
- LabelEvaluator - Class in org.tribuo.classification.evaluation
- LabelEvaluator() - Constructor for class org.tribuo.classification.evaluation.LabelEvaluator
- LabelFactory - Class in org.tribuo.classification
-
A factory for making Label related classes.
- LabelFactory() - Constructor for class org.tribuo.classification.LabelFactory
-
Constructs a label factory.
- LabelFactory.LabelFactoryProvenance - Class in org.tribuo.classification
-
Provenance for
LabelFactory
. - LabelFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
-
Constructor used by the provenance serialization system.
- LabelFeatureExtractor - Interface in org.tribuo.classification.sequence.viterbi
-
A class for featurising labels from previous steps in Viterbi.
- LabelImpurity - Interface in org.tribuo.classification.dtree.impurity
-
Calculates a tree impurity score based on label counts, weighted label counts or a probability distribution.
- LabelInfo - Class in org.tribuo.classification
-
The base class for information about multi-class classification Labels.
- LabelledDataGenerator - Class in org.tribuo.classification.example
-
Generates three example train and test datasets, used for unit testing.
- LabelMetric - Class in org.tribuo.classification.evaluation
- LabelMetric(MetricTarget<Label>, String, ToDoubleBiFunction<MetricTarget<Label>, LabelMetric.Context>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric
-
Construct a new
LabelMetric
for the supplied metric target, using the supplied function. - LabelMetric.Context - Class in org.tribuo.classification.evaluation
-
The context for a
LabelMetric
is aConfusionMatrix
. - LabelMetrics - Enum Class in org.tribuo.classification.evaluation
-
An enum of the default
LabelMetric
s supported by the multi-class classification evaluation package. - LabelObjective - Interface in org.tribuo.classification.sgd
-
An interface for single label prediction objectives.
- LabelOneVOneTransformer - Class in org.tribuo.interop.onnx
- LabelOneVOneTransformer() - Constructor for class org.tribuo.interop.onnx.LabelOneVOneTransformer
-
Constructs a Label transformer that operates on a one v one output and produces scores via voting.
- labels - Variable in class org.tribuo.classification.LabelInfo
-
The label domain.
- labels - Variable in class org.tribuo.classification.sgd.crf.Chunk
-
The labels for the next labels.length values.
- labels - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
-
The label indices.
- labels - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
-
The sequence example label indices.
- labels - Variable in class org.tribuo.multilabel.MultiLabelInfo
- LabelSequenceEvaluation - Class in org.tribuo.classification.sequence
-
A class that can be used to evaluate a sequence label classification model element wise on a given set of data.
- LabelSequenceEvaluation(Map<MetricID<Label>, Double>, LabelMetric.Context, EvaluationProvenance) - Constructor for class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Constructs a LabelSequenceEvaluation using the supplied parameters.
- LabelSequenceEvaluator - Class in org.tribuo.classification.sequence
-
A sequence evaluator for labels.
- LabelSequenceEvaluator() - Constructor for class org.tribuo.classification.sequence.LabelSequenceEvaluator
- LabelTransformer - Class in org.tribuo.interop.onnx
- LabelTransformer() - Constructor for class org.tribuo.interop.onnx.LabelTransformer
-
Constructs a LabelTransformer which assumes the model emits probabilities.
- LabelTransformer(boolean) - Constructor for class org.tribuo.interop.onnx.LabelTransformer
-
Constructs a LabelTransformer.
- lambda - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Lambda for Pegasos.
- lambda - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
L2 regularization term for weights (default 1).
- lambda - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
L2 regularization term for weights (default 1).
- languageTag - Variable in class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
-
BreakIteratorTokenizer - The language tag of the locale to be used.
- LARS - Enum constant in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Creates a
LARSTrainer
. - LARSLASSO - Enum constant in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Creates a
LARSLassoTrainer
. - LARSLassoTrainer - Class in org.tribuo.regression.slm
-
A trainer for a lasso linear regression model which uses LARS to construct the model.
- LARSLassoTrainer() - Constructor for class org.tribuo.regression.slm.LARSLassoTrainer
-
Constructs a lasso LARS trainer that selects all the features.
- LARSLassoTrainer(int) - Constructor for class org.tribuo.regression.slm.LARSLassoTrainer
-
Constructs a lasso LARS trainer for a linear model.
- LARSTrainer - Class in org.tribuo.regression.slm
-
A trainer for a linear regression model which uses least angle regression.
- LARSTrainer() - Constructor for class org.tribuo.regression.slm.LARSTrainer
-
Constructs a least angle regression trainer that selects all the features.
- LARSTrainer(int) - Constructor for class org.tribuo.regression.slm.LARSTrainer
-
Constructs a least angle regression trainer for a linear model.
- LAST - Enum constant in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the last feature value in the list.
- lastIndexOf(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- leafDeterminer - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- LeafDeterminer(int, float, float) - Constructor for class org.tribuo.common.tree.AbstractTrainingNode.LeafDeterminer
-
Constructs a leaf determiner using the supplied parameters.
- LeafNode<T extends Output<T>> - Class in org.tribuo.common.tree
-
An immutable leaf
Node
that can create a prediction. - LeafNode(double, T, Map<String, T>, boolean) - Constructor for class org.tribuo.common.tree.LeafNode
-
Constructs a leaf node.
- learningRate - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Learning rate for AdaGrad, AdaGradRDA, Adam, Pegasos.
- learningRate() - Method in class org.tribuo.math.optimisers.SGD
-
Override to provide a function which calculates the learning rate.
- leftMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseMatrix
- leftMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
- leftMultiply(SGDVector) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by a
SGDVector
returning a vector of the appropriate size. - leftMultiply(SGDVector) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- len - Variable in class org.tribuo.util.tokens.universal.Range
-
The token length.
- length() - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
Returns the number of elements in this subsequence.
- length() - Method in class org.tribuo.util.tokens.Token
-
The number of characters in this token.
- length() - Method in class org.tribuo.util.tokens.universal.Range
- LESS - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Less than, returns the element-wise less than operation on the two tensors.
- LESS_OR_EQUAL - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Less than or equal to, returns the element-wise less than or equal to operation on the two tensors.
- lessThanOrEqual - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- LIBLINEAR - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
LibLinearClassificationTrainer
. - LibLinearAnomalyModel - Class in org.tribuo.anomaly.liblinear
-
A
Model
which wraps a LibLinear-java anomaly detection model. - LibLinearAnomalyTrainer - Class in org.tribuo.anomaly.liblinear
-
A
Trainer
which wraps a liblinear-java anomaly detection trainer using a one-class SVM. - LibLinearAnomalyTrainer() - Constructor for class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
-
Creates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1, nu:0.5).
- LibLinearAnomalyTrainer(double) - Constructor for class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
-
Creates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1) and the specified nu.
- LibLinearAnomalyTrainer(LinearAnomalyType, double, double, double) - Constructor for class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
-
Creates a trainer for a LibLinearAnomalyModel.
- LibLinearAnomalyTrainer(LinearAnomalyType, double, int, double, double) - Constructor for class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
-
Creates a trainer for a LibLinear model
- LibLinearClassificationModel - Class in org.tribuo.classification.liblinear
-
A
Model
which wraps a LibLinear-java classification model. - LibLinearClassificationTrainer - Class in org.tribuo.classification.liblinear
-
A
Trainer
which wraps a liblinear-java classifier trainer. - LibLinearClassificationTrainer() - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer using the default values (L2R_L2LOSS_SVC_DUAL, 1, 0.1).
- LibLinearClassificationTrainer(LinearClassificationType, double, double) - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer for a LibLinearClassificationModel.
- LibLinearClassificationTrainer(LinearClassificationType, double, int, double) - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer for a LibLinear model
- LibLinearModel<T extends Output<T>> - Class in org.tribuo.common.liblinear
-
A
Model
which wraps a LibLinear-java model. - LibLinearModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, List<Model>) - Constructor for class org.tribuo.common.liblinear.LibLinearModel
-
Constructs a LibLinear model from the supplied arguments.
- liblinearOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for LibLinear trainers.
- libLinearOptions - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
-
The liblinear options.
- LibLinearOptions - Class in org.tribuo.classification.liblinear
-
Command line options for working with a classification liblinear model.
- LibLinearOptions() - Constructor for class org.tribuo.classification.liblinear.LibLinearOptions
- LibLinearOptions() - Constructor for class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- libLinearParams - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- LibLinearRegressionModel - Class in org.tribuo.regression.liblinear
-
A
Model
which wraps a LibLinear-java model. - LibLinearRegressionTrainer - Class in org.tribuo.regression.liblinear
-
A
Trainer
which wraps a liblinear-java regression trainer. - LibLinearRegressionTrainer() - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Creates a trainer using the default values (L2R_L2LOSS_SVR, 1, 1000, 0.1, 0.1).
- LibLinearRegressionTrainer(LinearRegressionType) - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Creates a trainer for a LibLinear regression model.
- LibLinearRegressionTrainer(LinearRegressionType, double, int, double, double) - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Creates a trainer for a LibLinear regression model.
- LibLinearTrainer<T extends Output<T>> - Class in org.tribuo.common.liblinear
-
A
Trainer
which wraps a liblinear-java trainer. - LibLinearTrainer() - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
- LibLinearTrainer(LibLinearType<T>, double, int, double) - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
-
Creates a trainer for a LibLinear model
- LibLinearTrainer(LibLinearType<T>, double, int, double, double) - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
-
Creates a trainer for a LibLinear model
- LibLinearType<T extends Output<T>> - Interface in org.tribuo.common.liblinear
-
A carrier type for the liblinear algorithm type.
- LIBSVM - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
LibSVMClassificationTrainer
. - LIBSVM - Enum constant in enum class org.tribuo.data.DataOptions.InputFormat
-
LibSVM/svm-light format data.
- LibSVMAnomalyModel - Class in org.tribuo.anomaly.libsvm
-
A anomaly detection model that uses an underlying libSVM model to make the predictions.
- LibSVMAnomalyTrainer - Class in org.tribuo.anomaly.libsvm
-
A trainer for anomaly models that uses LibSVM.
- LibSVMAnomalyTrainer() - Constructor for class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
For OLCUT.
- LibSVMAnomalyTrainer(SVMParameters<Event>) - Constructor for class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Creates a one-class LibSVM trainer using the supplied parameters and
Trainer.DEFAULT_SEED
. - LibSVMAnomalyTrainer(SVMParameters<Event>, long) - Constructor for class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Creates a one-class LibSVM trainer using the supplied parameters and RNG seed.
- LibSVMClassificationModel - Class in org.tribuo.classification.libsvm
-
A classification model that uses an underlying LibSVM model to make the predictions.
- LibSVMClassificationTrainer - Class in org.tribuo.classification.libsvm
-
A trainer for classification models that uses LibSVM.
- LibSVMClassificationTrainer() - Constructor for class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
-
For OLCUT.
- LibSVMClassificationTrainer(SVMParameters<Label>) - Constructor for class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
-
Constructs a classification LibSVM trainer using the specified parameters and
Trainer.DEFAULT_SEED
. - LibSVMClassificationTrainer(SVMParameters<Label>, long) - Constructor for class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
-
Constructs a classification LibSVM trainer using the specified parameters and seed.
- LibSVMDataSource<T extends Output<T>> - Class in org.tribuo.datasource
-
A DataSource which can read LibSVM formatted data.
- LibSVMDataSource(URL, OutputFactory<T>) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied URL and output factory.
- LibSVMDataSource(URL, OutputFactory<T>, boolean, int) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied URL and output factory.
- LibSVMDataSource(Path, OutputFactory<T>) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied path and output factory.
- LibSVMDataSource(Path, OutputFactory<T>, boolean, int) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied path and output factory.
- LibSVMDataSource.LibSVMDataSourceProvenance - Class in org.tribuo.datasource
-
The provenance for a
LibSVMDataSource
. - LibSVMDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
-
Constructs a provenance during unmarshalling.
- LibSVMModel<T extends Output<T>> - Class in org.tribuo.common.libsvm
-
A model that uses an underlying libSVM model to make the predictions.
- LibSVMModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, List<svm_model>) - Constructor for class org.tribuo.common.libsvm.LibSVMModel
-
Constructs a LibSVMModel from the supplied arguments.
- libsvmOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for LibSVM trainers.
- libsvmOptions - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
-
The LibSVM options.
- LibSVMOptions - Class in org.tribuo.classification.libsvm
-
CLI options for training a LibSVM classification model.
- LibSVMOptions() - Constructor for class org.tribuo.classification.libsvm.LibSVMOptions
- LibSVMOptions() - Constructor for class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
- LibSVMRegressionModel - Class in org.tribuo.regression.libsvm
-
A regression model that uses an underlying libSVM model to make the predictions.
- LibSVMRegressionTrainer - Class in org.tribuo.regression.libsvm
-
A trainer for regression models that uses LibSVM.
- LibSVMRegressionTrainer() - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
For olcut.
- LibSVMRegressionTrainer(SVMParameters<Regressor>) - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
Constructs a LibSVMRegressionTrainer using the supplied parameters without standardizing the regression variables.
- LibSVMRegressionTrainer(SVMParameters<Regressor>, boolean) - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
Constructs a LibSVMRegressionTrainer using the supplied parameters and
Trainer.DEFAULT_SEED
. - LibSVMRegressionTrainer(SVMParameters<Regressor>, boolean, long) - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
Constructs a LibSVMRegressionTrainer using the supplied parameters and seed.
- LibSVMTrainer<T extends Output<T>> - Class in org.tribuo.common.libsvm
-
A trainer that will train using libsvm's Java implementation.
- LibSVMTrainer() - Constructor for class org.tribuo.common.libsvm.LibSVMTrainer
-
For olcut.
- LibSVMTrainer(SVMParameters<T>, long) - Constructor for class org.tribuo.common.libsvm.LibSVMTrainer
-
Constructs a LibSVMTrainer from the parameters.
- LIMEBase - Class in org.tribuo.classification.explanations.lime
-
LIMEBase merges the lime_base.py and lime_tabular.py implementations, and deals with simple matrices of numerical or categorical data.
- LIMEBase(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int) - Constructor for class org.tribuo.classification.explanations.lime.LIMEBase
-
Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).
- LIMEColumnar - Class in org.tribuo.classification.explanations.lime
-
Uses the columnar data processing infrastructure to mix text and tabular data.
- LIMEColumnar(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int, RowProcessor<Label>, Tokenizer) - Constructor for class org.tribuo.classification.explanations.lime.LIMEColumnar
-
Constructs a LIME explainer for a model which uses the columnar data processing system.
- LIMEExplanation - Class in org.tribuo.classification.explanations.lime
-
An
Explanation
using LIME. - LIMEExplanation(SparseModel<Regressor>, Prediction<Label>, RegressionEvaluation) - Constructor for class org.tribuo.classification.explanations.lime.LIMEExplanation
-
Constructs a LIME explanation.
- LIMEText - Class in org.tribuo.classification.explanations.lime
-
Uses a Tribuo
TextFeatureExtractor
to explain the prediction for a given piece of text. - LIMEText(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int, TextFeatureExtractor<Label>, Tokenizer) - Constructor for class org.tribuo.classification.explanations.lime.LIMEText
-
Constructs a LIME explainer for a model which uses text data.
- LIMETextCLI - Class in org.tribuo.classification.explanations.lime
-
A CLI for interacting with
LIMEText
. - LIMETextCLI() - Constructor for class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Constructs a LIME CLI.
- LIMETextCLI.LIMETextCLIOptions - Class in org.tribuo.classification.explanations.lime
-
Command line options.
- LIMETextCLIOptions() - Constructor for class org.tribuo.classification.explanations.lime.LIMETextCLI.LIMETextCLIOptions
- Linear - Class in org.tribuo.math.kernel
-
A linear kernel, u.dot(v).
- Linear() - Constructor for class org.tribuo.math.kernel.Linear
-
A linear kernel, u.dot(v).
- LINEAR - Enum constant in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Uses a
Linear
kernel. - LINEAR - Enum constant in enum class org.tribuo.common.libsvm.KernelType
-
A linear kernel function (i.e., a dot product).
- LINEAR - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A boosted linear model.
- LINEAR - Enum constant in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Squared error loss function.
- LinearAnomalyType - Class in org.tribuo.anomaly.liblinear
-
The carrier type for liblinear anomaly detection modes.
- LinearAnomalyType(LinearAnomalyType.LinearType) - Constructor for class org.tribuo.anomaly.liblinear.LinearAnomalyType
-
Constructs the type of the liblinear anomaly detector.
- LinearAnomalyType.LinearType - Enum Class in org.tribuo.anomaly.liblinear
-
The different model types available for classification.
- LinearClassificationType - Class in org.tribuo.classification.liblinear
-
The carrier type for liblinear classification modes.
- LinearClassificationType(LinearClassificationType.LinearType) - Constructor for class org.tribuo.classification.liblinear.LinearClassificationType
-
Constructs a LinearClassificationType using the supplied algorithm.
- LinearClassificationType.LinearType - Enum Class in org.tribuo.classification.liblinear
-
The different model types available for classification.
- LinearParameters - Class in org.tribuo.math
-
A
Parameters
for producing linear models. - LinearParameters(int, int) - Constructor for class org.tribuo.math.LinearParameters
-
Constructor.
- LinearParameters(DenseMatrix) - Constructor for class org.tribuo.math.LinearParameters
-
Constructs a LinearParameters wrapped around a weight matrix.
- LinearRegressionType - Class in org.tribuo.regression.liblinear
-
The carrier type for liblinear linear regression modes.
- LinearRegressionType(LinearRegressionType.LinearType) - Constructor for class org.tribuo.regression.liblinear.LinearRegressionType
-
Constructs a LinearRegressionType with the specified LibLinear algorithm.
- LinearRegressionType.LinearType - Enum Class in org.tribuo.regression.liblinear
-
The type of linear regression algorithm.
- LinearScalingTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which takes an observed distribution and rescales it so all values are between the desired min and max.
- LinearScalingTransformation() - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation
-
Defaults to zero - one.
- LinearScalingTransformation(double, double) - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation
-
Constructs a LinearScalingTransformation which puts feature values into the specified range.
- LinearScalingTransformation.LinearScalingTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
LinearScalingTransformation
. - LinearScalingTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
-
Deserialization constructor.
- LINEARSGD - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
SGD with a linear-decay learning rate.
- LinearSGDModel - Class in org.tribuo.classification.sgd.linear
-
The inference time version of a linear model trained using SGD.
- LinearSGDModel - Class in org.tribuo.multilabel.sgd.linear
-
The inference time version of a multi-label linear model trained using SGD.
- LinearSGDModel - Class in org.tribuo.regression.sgd.linear
-
The inference time version of a linear model trained using SGD.
- linearSGDOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for Linear SGD trainers.
- LinearSGDOptions - Class in org.tribuo.classification.sgd.linear
-
CLI options for training a linear classifier.
- LinearSGDOptions - Class in org.tribuo.multilabel.sgd.linear
-
CLI options for training a linear classifier.
- LinearSGDOptions() - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDOptions
- LinearSGDOptions() - Constructor for class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
- LinearSGDOptions.LossEnum - Enum Class in org.tribuo.classification.sgd.linear
-
Available loss types.
- LinearSGDOptions.LossEnum - Enum Class in org.tribuo.multilabel.sgd.linear
-
Available loss types.
- LinearSGDTrainer - Class in org.tribuo.classification.sgd.linear
-
A trainer for a linear classifier using SGD.
- LinearSGDTrainer - Class in org.tribuo.multilabel.sgd.linear
-
A trainer for a multi-label linear model which uses SGD.
- LinearSGDTrainer - Class in org.tribuo.regression.sgd.linear
-
A trainer for a linear regression model which uses SGD.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(MultiLabelObjective, StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- list - Variable in class org.tribuo.transform.TransformationMap.TransformationList
-
The list of transformations.
- ListDataSource<T extends Output<T>> - Class in org.tribuo.datasource
-
A data source which wraps up a list of
Example
s along with theirDataSourceProvenance
and anOutputFactory
. - ListDataSource(List<Example<T>>, OutputFactory<T>, DataSourceProvenance) - Constructor for class org.tribuo.datasource.ListDataSource
-
Constructs an in-memory data source wrapping the supplied examples.
- ListExample<T extends Output<T>> - Class in org.tribuo.impl
-
This class will not be performant until value types are available in Java.
- ListExample(Example<T>) - Constructor for class org.tribuo.impl.ListExample
-
Copies the supplied example's features, weight, output and metadata into this example.
- ListExample(T) - Constructor for class org.tribuo.impl.ListExample
-
Constructs a ListExample for the specified output with a weight of
Example.DEFAULT_WEIGHT
. - ListExample(T, float) - Constructor for class org.tribuo.impl.ListExample
-
Constructs a ListExample for the specified output and weight.
- ListExample(T, String[], double[]) - Constructor for class org.tribuo.impl.ListExample
-
Constructs a ListExample from the specified output, feature names and feature values.
- ListExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.ListExample
-
Constructs a ListExample using the specified output and feature list.
- listIterator() - Method in class org.tribuo.util.infotheory.impl.RowList
- listIterator(int) - Method in class org.tribuo.util.infotheory.impl.RowList
- load(Path, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Test.ConfigurableTestOptions) - Static method in class org.tribuo.classification.experiments.Test
-
Loads in the model and the dataset from the options.
- load(OutputFactory<T>) - Method in class org.tribuo.data.DataOptions
-
Loads the training and testing data from
DataOptions.trainingPath
andDataOptions.testingPath
according to the other parameters specified in this class. - loadDataset(CommandInterpreter, File) - Method in class org.tribuo.data.DatasetExplorer
-
Loads a serialized dataset.
- loadDataSource(URL, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Loads a model in from disk.
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.ModelExplorer
-
Loads a model.
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Loads a model.
- localValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainCliqueValues
-
The per element values.
- log - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Logs the inputs (base_e)
- log() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that applies
Math.log(double)
. - LOG - Enum constant in enum class org.tribuo.classification.sgd.fm.FMClassificationOptions.LossEnum
-
Log loss (i.e., a logistic regression).
- LOG - Enum constant in enum class org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Log loss, i.e., cross-entropy.
- LOG_2 - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
Log base 2.
- LOG_2 - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Log base 2.
- LOG_BASE - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
Sets the base of the logarithm used in the information theoretic calculations.
- LOG_BASE - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Sets the base of the logarithm used in the information theoretic calculations.
- LOG_E - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
Log base e.
- LOG_E - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Log base e.
- loggingInterval - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Log the objective after n examples.
- loggingInterval - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- loggingInterval - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- loggingInterval - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Interval between logging the loss.
- loggingInterval - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Log the objective after n examples.
- loggingInterval - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
Log the objective after n examples.
- LogisticRegressionTrainer - Class in org.tribuo.classification.sgd.linear
-
A logistic regression trainer that uses a reasonable objective, optimiser, number of epochs and minibatch size.
- LogisticRegressionTrainer() - Constructor for class org.tribuo.classification.sgd.linear.LogisticRegressionTrainer
-
Constructs a simple logistic regression, using
AdaGrad
with a learning rate of 1.0 as the gradient optimizer, training for 5 epochs. - logModel - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Print out feature, label and other model details.
- LogMulticlass - Class in org.tribuo.classification.sgd.objectives
-
A multiclass version of the log loss.
- LogMulticlass() - Constructor for class org.tribuo.classification.sgd.objectives.LogMulticlass
-
Constructs a multiclass log loss.
- logVector(Logger, Level, double[]) - Static method in class org.tribuo.util.Util
-
Logs the supplied array to the supplied logger at the specified level.
- logVector(Logger, Level, float[]) - Static method in class org.tribuo.util.Util
-
Logs the supplied array to the supplied logger at the specified level.
- logZ - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
-
The normalization constant.
- LongPair() - Constructor for class org.tribuo.util.MurmurHash3.LongPair
- lookup(String) - Method in class org.tribuo.Example
-
Returns the Feature in this Example which has the supplied name, if it's present.
- lookup(String) - Method in class org.tribuo.impl.ArrayExample
- lookup(String) - Method in class org.tribuo.impl.BinaryFeaturesExample
- lookup(String) - Method in class org.tribuo.impl.ListExample
- loss - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Loss function.
- loss - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
Loss function.
- loss() - Method in class org.tribuo.interop.tensorflow.LabelConverter
-
Returns a cross-entropy loss.
- loss() - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
-
Returns a sigmoid cross-entropy loss.
- loss() - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
The loss function associated with this prediction type.
- loss() - Method in class org.tribuo.interop.tensorflow.RegressorConverter
-
Returns a mean squared error loss.
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
-
Deprecated.
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.Huber
-
Deprecated.
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
-
Deprecated.
- loss(DenseVector, SGDVector) - Method in interface org.tribuo.regression.sgd.RegressionObjective
-
Deprecated.In 4.1 to move to the new name, lossAndGradient.
- lossAndGradient(Integer, SGDVector) - Method in interface org.tribuo.classification.sgd.LabelObjective
- lossAndGradient(Integer, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.Hinge
- lossAndGradient(Integer, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- lossAndGradient(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- lossAndGradient(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.Huber
- lossAndGradient(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- lossAndGradient(DenseVector, SGDVector) - Method in interface org.tribuo.regression.sgd.RegressionObjective
- lossAndGradient(SGDVector, SGDVector) - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
- lossAndGradient(SGDVector, SGDVector) - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
- lossAndGradient(T, SGDVector) - Method in interface org.tribuo.common.sgd.SGDObjective
-
Scores a prediction, returning the loss and a vector of per output dimension gradients.
- LOWERCASE - Enum constant in enum class org.tribuo.data.text.impl.CasingPreprocessor.CasingOperation
-
Lowercase the input text.
M
- m - Variable in class org.tribuo.FeatureMap
-
Map from the feature names to their info.
- MACRO - Enum constant in enum class org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
The macro average.
- macroAveragedF1() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged F_1 across all the labels.
- macroAveragedF1() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The macro averaged F1.
- macroAveragedF1() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAveragedPrecision() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged precision.
- macroAveragedPrecision() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The macro averaged precision.
- macroAveragedPrecision() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAveragedRecall() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged recall.
- macroAveragedRecall() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The macro averaged recall.
- macroAveragedRecall() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAverageTarget() - Static method in class org.tribuo.evaluation.metrics.MetricTarget
-
Get the singleton
MetricTarget
which contains theEvaluationMetric.Average.MACRO
. - macroFN() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of false negatives.
- macroFN() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the macro averaged false negative count.
- macroFN() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroFP() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of false positives, averaged across the labels.
- macroFP() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the macro averaged false positive count.
- macroFP() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroTN() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of true negatives.
- macroTN() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the macro averaged true negative count.
- macroTN() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroTP() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of true positives, averaged across the labels.
- macroTP() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the macro averaged true positive count.
- macroTP() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- mae() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Mean Absolute Error for all dimensions.
- mae(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error based on the supplied statistics.
- mae(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Mean Absolute Error for that dimension.
- mae(Regressor, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error based on the supplied statistics for a single dimension.
- MAE - Enum constant in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error of the predictions.
- MAE - Enum constant in enum class org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Use
MeanAbsoluteError
. - main(String[]) - Static method in class org.tribuo.classification.dtree.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.experiments.ConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.classification.experiments.RunAll
-
Runs the RunALL CLI.
- main(String[]) - Static method in class org.tribuo.classification.experiments.Test
-
Runs the Test CLI.
- main(String[]) - Static method in class org.tribuo.classification.experiments.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Runs a LIMETextCLI.
- main(String[]) - Static method in class org.tribuo.classification.liblinear.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.libsvm.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.mnb.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.sequence.SeqTrainTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.crf.SeqTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.fm.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.kernel.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.sgd.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.classification.xgboost.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.clustering.hdbscan.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.clustering.kmeans.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.data.CompletelyConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.data.ConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.data.DatasetExplorer
-
Runs a dataset explorer.
- main(String[]) - Static method in class org.tribuo.data.PreprocessAndSerialize
-
Run the PreprocessAndSerialize CLI.
- main(String[]) - Static method in class org.tribuo.data.sql.SQLToCSV
-
Reads an SQL query from the standard input and writes the results of the query to the standard output.
- main(String[]) - Static method in class org.tribuo.data.text.SplitTextData
-
Runs the SplitTextData CLI.
- main(String[]) - Static method in class org.tribuo.interop.oci.OCIModelCLI
-
Entry point for the OCIModelCLI.
- main(String[]) - Static method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Test harness for running a BERT model and inspecting the output.
- main(String[]) - Static method in class org.tribuo.interop.tensorflow.TrainTest
-
CLI entry point.
- main(String[]) - Static method in class org.tribuo.json.StripProvenance
-
Runs StripProvenance.
- main(String[]) - Static method in class org.tribuo.ModelExplorer
-
Entry point.
- main(String[]) - Static method in class org.tribuo.regression.liblinear.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.regression.libsvm.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.regression.rtree.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.regression.sgd.fm.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.sgd.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.regression.slm.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.regression.xgboost.TrainTest
-
Runs a TrainTest CLI.
- main(String[]) - Static method in class org.tribuo.sequence.SequenceModelExplorer
-
Runs the sequence model explorer.
- main(String[]) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
Runs a simple demo of the information theory functions.
- MAJOR_VERSION - Static variable in class org.tribuo.Tribuo
-
The major version number.
- makeAuthProvider(Path, String) - Static method in class org.tribuo.interop.oci.OCIModel
-
Makes an authentication provider from the config file and profile.
- makeDefaultSource(int, long) - Static method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
-
Generates a multi label output drawn from a series of functions.
- makeIDInfo(int) - Method in class org.tribuo.CategoricalIDInfo
- makeIDInfo(int) - Method in class org.tribuo.CategoricalInfo
- makeIDInfo(int) - Method in class org.tribuo.RealIDInfo
- makeIDInfo(int) - Method in class org.tribuo.RealInfo
- makeIDInfo(int) - Method in interface org.tribuo.VariableInfo
-
Generates a VariableIDInfo subclass which represents the same feature.
- makeTokens() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Make one or more tokens from our current collected characters.
- mandatoryAttributeNames - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The mandatory attribute names.
- map(String, List<Feature>) - Method in interface org.tribuo.data.text.FeatureTransformer
-
Transforms features into a new list of features
- map(String, List<Feature>) - Method in class org.tribuo.data.text.impl.FeatureHasher
- MAP_TYPE - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- MAP_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- mapScore - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
-
The score for this result.
- mapValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
-
The viterbi states.
- MASK_VALUE - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Mask value.
- MATCH_ALL - Enum constant in enum class org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Triggers feature generation if the whole string matches.
- MATCH_CONTAINS - Enum constant in enum class org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Triggers feature generation if the string contains a match.
- Matrix - Interface in org.tribuo.math.la
-
Interface for 2 dimensional
Tensor
s. - MatrixHeapMerger - Class in org.tribuo.math.util
- MatrixHeapMerger() - Constructor for class org.tribuo.math.util.MatrixHeapMerger
- MatrixIterator - Interface in org.tribuo.math.la
- matrixMultiply(Matrix) - Method in class org.tribuo.math.la.DenseMatrix
- matrixMultiply(Matrix) - Method in class org.tribuo.math.la.DenseSparseMatrix
- matrixMultiply(Matrix) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by another
Matrix
returning a matrix of the appropriate size. - matrixMultiply(Matrix, boolean, boolean) - Method in class org.tribuo.math.la.DenseMatrix
- matrixMultiply(Matrix, boolean, boolean) - Method in class org.tribuo.math.la.DenseSparseMatrix
- matrixMultiply(Matrix, boolean, boolean) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by another
Matrix
returning a matrix of the appropriate size. - MatrixTuple - Class in org.tribuo.math.la
-
A mutable tuple used to avoid allocation when iterating a matrix.
- MatrixTuple() - Constructor for class org.tribuo.math.la.MatrixTuple
-
Constructs an empty matrix tuple.
- MatrixTuple(int, int, int) - Constructor for class org.tribuo.math.la.MatrixTuple
-
Constructs a matrix tuple with the specified values.
- max - Variable in class org.tribuo.RealInfo
-
The maximum observed feature value.
- max() - Static method in interface org.tribuo.util.Merger
-
A merger which takes the maximum element.
- MAX - Enum constant in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the maximum feature value in the list.
- maxDepth - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Maximum tree depth.
- maxIterations - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- maxIterations - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
Max iterations over the data.
- maxMap - Variable in class org.tribuo.regression.RegressionInfo
- maxNumFeatures - Variable in class org.tribuo.regression.slm.SLMTrainer
- maxNumFeatures - Variable in class org.tribuo.regression.slm.TrainTest.SLMOptions
-
Set the maximum number of features.
- maxTokenLength - Variable in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
The length of the longest token that we will generate.
- maxValue() - Method in class org.tribuo.math.la.DenseVector
- maxValue() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the maximum value.
- maxValue() - Method in class org.tribuo.math.la.SparseVector
- maxValue() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- MCSVM_CS - Enum constant in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
multi-class support vector classification by Crammer and Singer
- mean - Variable in class org.tribuo.RealInfo
-
The feature mean.
- mean(double[]) - Static method in class org.tribuo.util.Util
-
Returns the mean of the input array.
- mean(double[], int) - Static method in class org.tribuo.util.Util
-
Computes the mean of the first length elements of array.
- mean(Collection<V>) - Static method in class org.tribuo.util.Util
-
Computes the mean of the collection.
- MEAN - Enum constant in enum class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.OutputPooling
-
Takes the average of all the token embeddings
- MEAN - Enum constant in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the mean of the training data outputs.
- MeanAbsoluteError - Class in org.tribuo.regression.rtree.impurity
-
Measures the mean absolute error over a set of inputs.
- MeanAbsoluteError() - Constructor for class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- meanAndVariance(double[]) - Static method in class org.tribuo.util.Util
-
Returns the mean and variance of the input.
- meanAndVariance(double[], int) - Static method in class org.tribuo.util.Util
-
Returns the mean and variance of the input's first length elements.
- meanMap - Variable in class org.tribuo.regression.RegressionInfo
- MeanSquaredError - Class in org.tribuo.regression.rtree.impurity
-
Measures the mean squared error over a set of inputs.
- MeanSquaredError() - Constructor for class org.tribuo.regression.rtree.impurity.MeanSquaredError
- MeanStdDevTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which takes an observed distribution and rescales it so it has the desired mean and standard deviation.
- MeanStdDevTransformation() - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation
-
Defaults to zero mean, one std dev.
- MeanStdDevTransformation(double, double) - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation
-
Constructs a MeanStdDevTransformation targetting the specified mean and standard deviation.
- MeanStdDevTransformation.MeanStdDevTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
MeanStdDevTransformation
. - MeanStdDevTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
-
Deserialization constructor.
- MeanVarianceAccumulator - Class in org.tribuo.util
-
An accumulator for online calculation of the mean and variance of a stream of doubles.
- MeanVarianceAccumulator() - Constructor for class org.tribuo.util.MeanVarianceAccumulator
-
Constructs an empty mean/variance accumulator.
- MeanVarianceAccumulator(double[]) - Constructor for class org.tribuo.util.MeanVarianceAccumulator
-
Constructs a mean/variance accumulator and observes the supplied array.
- MeanVarianceAccumulator(MeanVarianceAccumulator) - Constructor for class org.tribuo.util.MeanVarianceAccumulator
-
Copy constructor.
- measureDistance(ImmutableFeatureMap, long, SparseVector, SparseVector) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Measures the distance between an input point and a sampled point.
- MEDIAN - Enum constant in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the median of the training data outputs.
- MEMBERS - Static variable in class org.tribuo.provenance.EnsembleModelProvenance
-
The name of the provenance field where the member provenances are stored.
- merge(double, double) - Method in interface org.tribuo.util.Merger
-
Merges first and second.
- merge(List<int[]>, IntArrayContainer, IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Merges the list of int arrays into a single int array, using the two supplied buffers.
- merge(List<SparseVector>, int, int[], double[]) - Static method in class org.tribuo.math.util.HeapMerger
-
Merges a list of sparse vectors into a single sparse vector, summing the values.
- merge(IntArrayContainer, int[], IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Merges input and otherArray writing to output.
- merge(DenseSparseMatrix[]) - Method in class org.tribuo.math.util.HeapMerger
- merge(DenseSparseMatrix[]) - Method in class org.tribuo.math.util.MatrixHeapMerger
- merge(DenseSparseMatrix[]) - Method in interface org.tribuo.math.util.Merger
-
Merges an array of DenseSparseMatrix into a single DenseSparseMatrix.
- merge(SparseVector[]) - Method in class org.tribuo.math.util.HeapMerger
- merge(SparseVector[]) - Method in class org.tribuo.math.util.MatrixHeapMerger
- merge(SparseVector[]) - Method in interface org.tribuo.math.util.Merger
-
Merges an array of SparseVector into a single SparseVector.
- merge(Tensor[][], int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- merge(Tensor[][], int) - Method in class org.tribuo.common.sgd.FMParameters
- merge(Tensor[][], int) - Method in class org.tribuo.math.LinearParameters
- merge(Tensor[][], int) - Method in interface org.tribuo.math.Parameters
-
Merge together an array of gradient arrays.
- mergeAlgorithm(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- mergeElemType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- mergeFrom(OnnxMl.AttributeProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- mergeFrom(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- mergeFrom(OnnxMl.ModelProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- mergeFrom(OnnxMl.NodeProto) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- mergeFrom(OnnxMl.OperatorSetIdProto) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- mergeFrom(OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- mergeFrom(OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- mergeFrom(OnnxMl.TensorAnnotation) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- mergeFrom(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- mergeFrom(OnnxMl.TensorProto.Segment) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- mergeFrom(OnnxMl.TensorShapeProto) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- mergeFrom(OnnxMl.TensorShapeProto.Dimension) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- mergeFrom(OnnxMl.TrainingInfoProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- mergeFrom(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- mergeFrom(OnnxMl.TypeProto.Map) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- mergeFrom(OnnxMl.TypeProto.Opaque) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- mergeFrom(OnnxMl.TypeProto.Sequence) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- mergeFrom(OnnxMl.TypeProto.SparseTensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- mergeFrom(OnnxMl.TypeProto.Tensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- mergeFrom(OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- mergeFrom(CodedInputStream, ExtensionRegistryLite) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- mergeFrom(Message) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- mergeG(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- mergeGraph(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- mergeIndices(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- mergeInitialization(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- mergeMapType(OnnxMl.TypeProto.Map) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- mergeOpaqueType(OnnxMl.TypeProto.Opaque) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- Merger - Interface in org.tribuo.math.util
-
An interface for merging an array of
DenseSparseMatrix
into a singleDenseSparseMatrix
. - Merger - Interface in org.tribuo.util
-
An interface which can merge double values.
- mergeSegment(OnnxMl.TensorProto.Segment) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- mergeSequenceType(OnnxMl.TypeProto.Sequence) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- mergeShape(OnnxMl.TensorShapeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- mergeShape(OnnxMl.TensorShapeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- mergeSparseTensor(OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- mergeSparseTensorType(OnnxMl.TypeProto.SparseTensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- mergeT(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- mergeTensorType(OnnxMl.TypeProto.Tensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- mergeType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- mergeUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- mergeValues(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- mergeValueType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- MessageDigestHasher - Class in org.tribuo.hash
-
Hashes Strings using the supplied MessageDigest type.
- MessageDigestHasher(String, String) - Constructor for class org.tribuo.hash.MessageDigestHasher
-
Constructs a message digest hasher.
- MessageDigestHasher.MessageDigestHasherProvenance - Class in org.tribuo.hash
-
Provenance for
MessageDigestHasher
. - MessageDigestHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
-
Deserialization constructor.
- metadata - Variable in class org.tribuo.Example
-
The example metadata.
- METADATA_PROPS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- metadataName - Variable in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- MetricContext<T extends Output<T>> - Class in org.tribuo.evaluation.metrics
-
The context for a metric or set of metrics.
- MetricContext(Model<T>, List<Prediction<T>>) - Constructor for class org.tribuo.evaluation.metrics.MetricContext
- MetricContext(SequenceModel<T>, List<Prediction<T>>) - Constructor for class org.tribuo.evaluation.metrics.MetricContext
- MetricID<T extends Output<T>> - Class in org.tribuo.evaluation.metrics
-
Just an easier-to-read alias for
Pair<MetricTarget<T>, String>
. - MetricID(MetricTarget<T>, String) - Constructor for class org.tribuo.evaluation.metrics.MetricID
-
Constructs a metric id.
- MetricTarget<T extends Output<T>> - Class in org.tribuo.evaluation.metrics
-
Used by a given
EvaluationMetric
to determine whether it should compute its value for a specificOutput
value or whether it should average them. - MetricTarget(EvaluationMetric.Average) - Constructor for class org.tribuo.evaluation.metrics.MetricTarget
-
Builds a metric target for an average.
- MetricTarget(T) - Constructor for class org.tribuo.evaluation.metrics.MetricTarget
-
Builds a metric target for an output.
- mi(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted mutual information, using histogram probability estimators.
- mi(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon mutual information, using histogram probability estimators.
- mi(Set<List<T1>>, Set<List<T2>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the mutual information between the two sets of random variables.
- mi(PairDistribution<T1, T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon mutual information, using histogram probability estimators.
- mi(PairDistribution<T1, T2>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted mutual information, using histogram probability estimators.
- mi(WeightedPairDistribution<T1, T2>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted mutual information, using histogram probability estimators.
- MICRO - Enum constant in enum class org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
The micro average.
- microAveragedF1() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged F_1 across all labels.
- microAveragedF1() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The micro averaged F1.
- microAveragedF1() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAveragedPrecision() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged precision.
- microAveragedPrecision() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The micro averaged precision.
- microAveragedPrecision() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAveragedRecall() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged recall.
- microAveragedRecall() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The micro averaged recall.
- microAveragedRecall() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAverageTarget() - Static method in class org.tribuo.evaluation.metrics.MetricTarget
-
Get the singleton
MetricTarget
which contains theEvaluationMetric.Average.MICRO
. - min - Variable in class org.tribuo.RealInfo
-
The minimum observed feature value.
- min() - Static method in interface org.tribuo.util.Merger
-
A merger which takes the minimum element.
- MIN - Enum constant in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the minimum feature value in the list.
- MIN_EXAMPLES - Static variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Default minimum weight of examples allowed in a leaf node.
- MIN_LENGTH - Static variable in class org.tribuo.hash.Hasher
-
The minimum length of the salt.
- minChildWeight - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Minimum weight of examples allowed in a leaf.
- minChildWeight - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Minimum child weight.
- minClusterSize - Variable in class org.tribuo.clustering.hdbscan.HdbscanOptions
-
The minimum number of points required to form a cluster.
- minCount - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Remove features which occur fewer than m times.
- minCount - Variable in class org.tribuo.data.DataOptions
-
Minimum cardinality of the features.
- minCount(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows the number of features that occurred more than minCount times.
- minCount(CommandInterpreter, int) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the number of features which occurred more than minCount times in the dataset.
- minCount(CommandInterpreter, int) - Method in class org.tribuo.ModelExplorer
-
Shows the number of features which occurred more than min count times.
- minCount(CommandInterpreter, int) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows the number of features which occurred more than minCount times in the training data.
- minibatchSize - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- minibatchSize - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- minibatchSize - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Minibatch size.
- minibatchSize - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
-
Minibatch size.
- minImpurityDecrease - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Minimum impurity decrease.
- minImpurityDecrease - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Minimumum decrease in impurity required in order for the node to be split.
- MinimumCardinalityDataset<T extends Output<T>> - Class in org.tribuo.dataset
-
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.
- MinimumCardinalityDataset(Dataset<T>, int) - Constructor for class org.tribuo.dataset.MinimumCardinalityDataset
- MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance - Class in org.tribuo.dataset
-
Provenance for
MinimumCardinalityDataset
. - MinimumCardinalityDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
-
Deserialization constructor.
- MinimumCardinalitySequenceDataset<T extends Output<T>> - Class in org.tribuo.sequence
-
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.
- MinimumCardinalitySequenceDataset(SequenceDataset<T>, int) - Constructor for class org.tribuo.sequence.MinimumCardinalitySequenceDataset
- MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance - Class in org.tribuo.sequence
-
Provenance for
MinimumCardinalitySequenceDataset
. - MinimumCardinalitySequenceDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
-
Deserialization constructor.
- minMap - Variable in class org.tribuo.regression.RegressionInfo
- MINOR_VERSION - Static variable in class org.tribuo.Tribuo
-
The minor version number.
- minValue() - Method in class org.tribuo.math.la.DenseVector
- minValue() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the minimum value.
- minValue() - Method in class org.tribuo.math.la.SparseVector
- minValue() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- minWeight - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).
- minWeight - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).
- mkTrainingNode(Dataset<Label>, AbstractTrainingNode.LeafDeterminer) - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- mkTrainingNode(Dataset<Regressor>, AbstractTrainingNode.LeafDeterminer) - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- mkTrainingNode(Dataset<Regressor>, AbstractTrainingNode.LeafDeterminer) - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- mkTrainingNode(Dataset<T>, AbstractTrainingNode.LeafDeterminer) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
-
Makes the initial training node.
- MLPExamples - Class in org.tribuo.interop.tensorflow.example
-
Static factory methods which produce Multi-Layer Perceptron architectures.
- MNB - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
MultinomialNaiveBayesTrainer
. - mnbAlpha - Variable in class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
-
Smoothing parameter for the conditional probabilities.
- mnbOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for Multinomial Naive Bayes trainers.
- mnbOptions - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
-
The multinomial naive bayes options.
- MOD - Enum constant in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Takes the String hash code mod some value.
- mode - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Deploy or score an OCI DS model.
- model - Variable in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Transient as we rely upon the native serialisation mechanism to bytes rather than Java serializing the Booster.
- model() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns the value of the
model
record component. - Model<T extends Output<T>> - Class in org.tribuo
-
A prediction model, which is used to predict outputs for unseen instances.
- Model(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean) - Constructor for class org.tribuo.Model
-
Constructs a new model, storing the supplied fields.
- MODEL_VERSION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- modelDeploymentId - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
The id of the model deployment.
- modelDescription - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The model description.
- modelDescription(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows the model description.
- modelDescription(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows the model description.
- modelDisplayName - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Model display name.
- modelEquals(svm_model, svm_model) - Static method in class org.tribuo.common.libsvm.LibSVMModel
-
Checks for equality between two svm_models.
- ModelExplorer - Class in org.tribuo
-
A command line interface for loading in models and inspecting their feature and output spaces.
- ModelExplorer() - Constructor for class org.tribuo.ModelExplorer
-
Builds a new model explorer shell.
- ModelExplorer.ModelExplorerOptions - Class in org.tribuo
-
CLI options for
ModelExplorer
. - ModelExplorerOptions() - Constructor for class org.tribuo.ModelExplorer.ModelExplorerOptions
- modelFilename - Variable in class org.tribuo.classification.explanations.lime.LIMETextCLI.LIMETextCLIOptions
-
Model file to load.
- modelFilename - Variable in class org.tribuo.data.DatasetExplorer.DatasetExplorerOptions
-
Dataset file to load.
- modelFilename - Variable in class org.tribuo.ModelExplorer.ModelExplorerOptions
-
Model file to load.
- modelFilename - Variable in class org.tribuo.sequence.SequenceModelExplorer.SequenceModelExplorerOptions
-
Model file to load.
- modelGraph - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- modelHashingAlgorithm - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Hash the model during training.
- modelHashingAlgorithm - Variable in class org.tribuo.hash.HashingOptions
-
Hash the model during training, options are {NONE,MOD,HC,SHA1,SHA256}
- modelHashingSalt - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Salt for hashing the model.
- modelHashingSalt - Variable in class org.tribuo.hash.HashingOptions
-
Salt for hashing the model
- modelId - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
The id of the model.
- modelID - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The ID of the model artifact to deploy.
- modelName - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The model display name.
- modelParameters - Variable in class org.tribuo.common.sgd.AbstractSGDModel
-
The weights for this model.
- modelPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Load a trainer from the config file.
- modelPath - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Path to the serialized model to deploy to OCI DS.
- modelProvenance(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the model provenance.
- ModelProvenance - Class in org.tribuo.provenance
-
Contains provenance information for an instance of a
Model
. - ModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance) - Constructor for class org.tribuo.provenance.ModelProvenance
-
Creates a model provenance tracking the class name, creation time, dataset provenance and trainer provenance.
- ModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>) - Constructor for class org.tribuo.provenance.ModelProvenance
-
Creates a model provenance tracking the class name, creation time, dataset provenance, trainer provenance and any instance specific provenance.
- ModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>, boolean) - Constructor for class org.tribuo.provenance.ModelProvenance
-
Creates a model provenance tracking the class name, creation time, dataset provenance, trainer provenance and any instance specific provenance.
- ModelProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.ModelProvenance
-
Used by the provenance unmarshalling system.
- ModelReproduction(Model<T>, ReproUtil.FeatureDiff, ReproUtil.OutputDiff<T>, String) - Constructor for record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Creates an instance of a
ModelReproduction
record class. - models - Variable in class org.tribuo.common.liblinear.LibLinearModel
-
The list of LibLinear models.
- models - Variable in class org.tribuo.common.libsvm.LibSVMModel
-
The LibSVM models.
- models - Variable in class org.tribuo.common.xgboost.XGBoostModel
-
The XGBoost4J Boosters.
- models - Variable in class org.tribuo.ensemble.EnsembleModel
- modelType - Variable in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
OCI DS model type string.
- ModHashCodeHasher - Class in org.tribuo.hash
-
Hashes names using String.hashCode(), then reduces the dimension.
- ModHashCodeHasher(int, String) - Constructor for class org.tribuo.hash.ModHashCodeHasher
-
Constructs a ModHashCodeHasher with the supplied parameters.
- ModHashCodeHasher(String) - Constructor for class org.tribuo.hash.ModHashCodeHasher
-
Constructs a ModHashCodeHasher with a fixed dimensionality of 100.
- ModHashCodeHasher.ModHashCodeHasherProvenance - Class in org.tribuo.hash
-
Provenance for the
ModHashCodeHasher
. - ModHashCodeHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
-
Deserialization constructor.
- momentum - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Use momentum in SGD.
- MOMENTUM - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Gradient descent with momentum.
- MONTH - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The month.
- MOST_FREQUENT - Enum constant in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the most frequent training label.
- MSE - Enum constant in enum class org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Use
MeanSquaredError
. - mStep(ForkJoinPool, DenseVector[], Map<Integer, List<Integer>>, SGDVector[], double[]) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
-
Runs the mStep, writing to the
centroidVectors
array. - mul - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Multiplies by the specified constant.
- mul(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that multiplies each value by the operand.
- MUL - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise multiplication with broadcasting.
- multiDimDenseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- multiDimDenseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- multiDimSparseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- multiDimSparseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- MultiLabel - Class in org.tribuo.multilabel
-
A class for multi-label classification.
- MultiLabel(String) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel with a single String label.
- MultiLabel(Set<Label>) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel object from a Set of Labels.
- MultiLabel(Set<Label>, double) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel object from a Set of Labels, when the whole set has a score as well as (optionally) the individual labels.
- MultiLabel(Label) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel from a single Label.
- MultiLabelConfusionMatrix - Class in org.tribuo.multilabel.evaluation
-
A
ConfusionMatrix
which acceptsMultiLabel
s. - MultiLabelConfusionMatrix(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
-
Constructs a multi-label confusion matrix for the specified model and predictions.
- MultiLabelConverter - Class in org.tribuo.interop.tensorflow
-
Can convert a
MultiLabel
into aTensor
containing a binary encoding of the label vector and can convert aTFloat16
orTFloat32
into aPrediction
or aMultiLabel
. - MultiLabelConverter() - Constructor for class org.tribuo.interop.tensorflow.MultiLabelConverter
-
Constructs a MultiLabelConverter.
- MultiLabelDataGenerator - Class in org.tribuo.multilabel.example
-
Generates three example train and test datasets, used for unit testing.
- MultiLabelEvaluation - Interface in org.tribuo.multilabel.evaluation
-
A
MultiLabel
specificClassifierEvaluation
. - MultiLabelEvaluationImpl - Class in org.tribuo.multilabel.evaluation
-
The implementation of a
MultiLabelEvaluation
using the default metrics. - MultiLabelEvaluator - Class in org.tribuo.multilabel.evaluation
-
An
Evaluator
forMultiLabel
problems. - MultiLabelEvaluator() - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- MultiLabelFactory - Class in org.tribuo.multilabel
-
A factory for generating MultiLabel objects and their associated OutputInfo and Evaluator objects.
- MultiLabelFactory() - Constructor for class org.tribuo.multilabel.MultiLabelFactory
-
Construct a MultiLabelFactory.
- MultiLabelFactory.MultiLabelFactoryProvenance - Class in org.tribuo.multilabel
-
Provenance for
MultiLabelFactory
. - MultiLabelFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
-
Constructs a multi-label factory provenance from the empty marshalled form.
- MultiLabelGaussianDataSource - Class in org.tribuo.multilabel.example
-
Generates a multi label output drawn from a series of functions.
- MultiLabelGaussianDataSource(int, float[], float[], float[], float[], boolean[], float, float[], float[], long) - Constructor for class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
-
Generates a multi-label output drawn from three gaussian functions.
- MultiLabelGaussianDataSource.MultiLabelGaussianDataSourceProvenance - Class in org.tribuo.multilabel.example
-
Provenance for
MultiLabelGaussianDataSource
. - MultiLabelGaussianDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.multilabel.example.MultiLabelGaussianDataSource.MultiLabelGaussianDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- MultiLabelInfo - Class in org.tribuo.multilabel
-
The base class for information about
MultiLabel
outputs. - MultiLabelMetric - Class in org.tribuo.multilabel.evaluation
-
A
EvaluationMetric
for evaluatingMultiLabel
problems. - MultiLabelMetric(MetricTarget<MultiLabel>, String, BiFunction<MetricTarget<MultiLabel>, MultiLabelMetric.Context, Double>) - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelMetric
-
Constructs a multi-label metric.
- MultiLabelMetrics - Enum Class in org.tribuo.multilabel.evaluation
-
An enum of the default
MultiLabelMetric
s supported by the multi-label classification evaluation package. - MultiLabelObjective - Interface in org.tribuo.multilabel.sgd
-
An interface for multi-label prediction objectives.
- MultiLabelTransformer - Class in org.tribuo.interop.onnx
- MultiLabelTransformer() - Constructor for class org.tribuo.interop.onnx.MultiLabelTransformer
-
Constructs a MultiLabelTransformer with a threshold of
MultiLabelTransformer.DEFAULT_THRESHOLD
which assumes the model emits probabilities. - MultiLabelTransformer(double, boolean) - Constructor for class org.tribuo.interop.onnx.MultiLabelTransformer
-
Constructs a MultiLabelTransformer with the supplied threshold.
- MultiLabelVotingCombiner - Class in org.tribuo.multilabel.ensemble
-
A combiner which performs a weighted or unweighted vote independently across the predicted labels in each multi-label.
- MultiLabelVotingCombiner() - Constructor for class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
-
Constructs a voting combiner.
- MULTINOMIAL_CLASSIFICATION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Multi-class classification, maps to Tribuo's
Label
. - MultinomialNaiveBayesModel - Class in org.tribuo.classification.mnb
-
A
Model
for multinomial Naive Bayes with Laplace smoothing. - MultinomialNaiveBayesOptions - Class in org.tribuo.classification.mnb
-
CLI options for a multinomial naive bayes model.
- MultinomialNaiveBayesOptions() - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
- MultinomialNaiveBayesTrainer - Class in org.tribuo.classification.mnb
-
A
Trainer
which trains a multinomial Naive Bayes model with Laplace smoothing. - MultinomialNaiveBayesTrainer() - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
-
Constructs a multinomial naive bayes trainer using a smoothing value of 1.0.
- MultinomialNaiveBayesTrainer(double) - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
-
Constructs a multinomial naive bayes trainer with the specified smoothing value.
- MULTIPLY - Enum constant in enum class org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Multiplies the scores.
- MULTIPLY - Enum constant in enum class org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Belief Propagation
- multiplyWeights(List<Prediction<Label>>, List<SUB>) - Static method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
-
A scoring method which multiplies together the per prediction scores.
- MurmurHash3 - Class in org.tribuo.util
-
The MurmurHash3 algorithm was created by Austin Appleby and placed in the public domain.
- MurmurHash3() - Constructor for class org.tribuo.util.MurmurHash3
- murmurhash3_x64_128(byte[], int, int, int, MurmurHash3.LongPair) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x64_128 hash, placing the result in "out".
- murmurhash3_x86_32(byte[], int, int, int) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x86_32 hash.
- murmurhash3_x86_32(CharSequence, int, int, int) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x86_32 hash of the UTF-8 bytes of the String without actually encoding the string to a temporary buffer.
- MurmurHash3.LongPair - Class in org.tribuo.util
-
128 bits of state
- MutableAnomalyInfo - Class in org.tribuo.anomaly
-
An
MutableOutputInfo
object forEvent
s. - MutableClusteringInfo - Class in org.tribuo.clustering
-
A mutable
ClusteringInfo
. - MutableDataset<T extends Output<T>> - Class in org.tribuo
-
A MutableDataset is a
Dataset
with aMutableFeatureMap
which grows over time. - MutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates a dataset from a data source.
- MutableDataset(DataSource<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates a dataset from a data source.
- MutableDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates an empty dataset.
- MutableFeatureMap - Class in org.tribuo
-
A feature map that can record new feature value observations.
- MutableFeatureMap() - Constructor for class org.tribuo.MutableFeatureMap
-
Creates an empty feature map which converts high cardinality categorical variable infos into reals.
- MutableFeatureMap(boolean) - Constructor for class org.tribuo.MutableFeatureMap
-
Creates an empty feature map which can optionally convert high cardinality categorical variable infos into reals.
- MutableLabelInfo - Class in org.tribuo.classification
-
A mutable
LabelInfo
. - MutableLabelInfo(LabelInfo) - Constructor for class org.tribuo.classification.MutableLabelInfo
-
Constructs a mutable deep copy of the supplied label info.
- MutableMultiLabelInfo - Class in org.tribuo.multilabel
-
A MutableOutputInfo for working with multi-label tasks.
- MutableMultiLabelInfo(MultiLabelInfo) - Constructor for class org.tribuo.multilabel.MutableMultiLabelInfo
-
Construct a MutableMultiLabelInfo with it's state copied from another MultiLabelInfo.
- MutableOutputInfo<T extends Output<T>> - Interface in org.tribuo
-
A mutable OutputInfo that can record observed output values.
- MutableRegressionInfo - Class in org.tribuo.regression
-
A
MutableOutputInfo
forRegressor
s. - MutableRegressionInfo(RegressionInfo) - Constructor for class org.tribuo.regression.MutableRegressionInfo
-
Constructs a mutable copy of the supplied regression info.
- MutableSequenceDataset<T extends Output<T>> - Class in org.tribuo.sequence
-
A MutableSequenceDataset is a
SequenceDataset
with aMutableFeatureMap
which grows over time. - MutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Creates a dataset from a data source.
- MutableSequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Creates an empty sequence dataset.
- MutableSequenceDataset(ImmutableSequenceDataset<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Copies the immutable dataset into a mutable dataset.
- MutableSequenceDataset(SequenceDataSource<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Builds a dataset from the supplied data source.
N
- NADAM - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The Nadam optimiser.
- name - Variable in class org.tribuo.Feature
-
The feature name.
- name - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
-
The feature name.
- name - Variable in class org.tribuo.Model
-
The model's name.
- name - Variable in class org.tribuo.sequence.SequenceModel
- name - Variable in class org.tribuo.SkeletalVariableInfo
-
The name of the feature.
- NAME - Static variable in class org.tribuo.Example
-
By convention the example name is stored using this metadata key.
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ValueInfoProto
- nameFeature(String, int) - Method in class org.tribuo.classification.explanations.lime.LIMEText
-
Generate the feature name by combining the word and index.
- nameFeature(String, String, int) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
-
Generate the feature name by combining the word and index.
- NAMESPACE - Static variable in interface org.tribuo.data.columnar.FieldProcessor
-
The namespacing separator.
- NEG - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise negation.
- NEGATIVE_LABEL - Static variable in class org.tribuo.multilabel.MultiLabel
-
A Label representing the binary negative label.
- NEGATIVE_LABEL_STRING - Static variable in class org.tribuo.multilabel.MultiLabel
-
The string for the binary negative label.
- NEGATIVE_NAME - Static variable in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
The default negative response.
- NER - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Named Entity Recognition, no strict Tribuo mapping.
- NESTEROV - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Gradient descent with Nesterov momentum.
- NESTEROV - Enum constant in enum class org.tribuo.math.optimisers.SGD.Momentum
-
Nesterov momentum.
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- newBuilder() - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- newBuilder(OnnxMl.AttributeProto) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- newBuilder(OnnxMl.GraphProto) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- newBuilder(OnnxMl.ModelProto) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- newBuilder(OnnxMl.NodeProto) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- newBuilder(OnnxMl.OperatorSetIdProto) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- newBuilder(OnnxMl.SparseTensorProto) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- newBuilder(OnnxMl.StringStringEntryProto) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- newBuilder(OnnxMl.TensorAnnotation) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- newBuilder(OnnxMl.TensorProto) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- newBuilder(OnnxMl.TensorProto.Segment) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- newBuilder(OnnxMl.TensorShapeProto) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- newBuilder(OnnxMl.TensorShapeProto.Dimension) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- newBuilder(OnnxMl.TrainingInfoProto) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- newBuilder(OnnxMl.TypeProto) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- newBuilder(OnnxMl.TypeProto.Map) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- newBuilder(OnnxMl.TypeProto.Opaque) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- newBuilder(OnnxMl.TypeProto.Sequence) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- newBuilder(OnnxMl.TypeProto.SparseTensor) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- newBuilder(OnnxMl.TypeProto.Tensor) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- newBuilder(OnnxMl.ValueInfoProto) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- newBuilderForType() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.GraphProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.ModelProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.NodeProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TensorProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- newBuilderForType(GeneratedMessageV3.BuilderParent) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- newCapacity(int) - Method in class org.tribuo.impl.ArrayExample
-
Returns a capacity at least as large as the given minimum capacity.
- newCapacity(int) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Returns a capacity at least as large as the given minimum capacity.
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.GraphProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.ModelProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.NodeProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TensorProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- newInstance(GeneratedMessageV3.UnusedPrivateParameter) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- NewsPreprocessor - Class in org.tribuo.data.text.impl
-
A document pre-processor for 20 newsgroup data.
- NewsPreprocessor() - Constructor for class org.tribuo.data.text.impl.NewsPreprocessor
-
Constructor.
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.LARSLassoTrainer
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.LARSTrainer
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.SLMTrainer
- next() - Method in class org.tribuo.data.columnar.ColumnarIterator
- ngram - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Ngram size to generate when using standard text format.
- ngram - Variable in class org.tribuo.data.DataOptions
-
Ngram size to generate when using standard text format.
- NGRAM - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
An NGRAM corresponds to a token that might correspond to a character ngram - i.e.
- NgramProcessor - Class in org.tribuo.data.text.impl
-
A text processor that will generate token ngrams of a particular size.
- NgramProcessor(Tokenizer, int, double) - Constructor for class org.tribuo.data.text.impl.NgramProcessor
-
Creates a processor that will generate token ngrams of size
n
. - NO_SPLIT - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
the current character is added to the in-progress token (i.e.
- NO_SPLIT_INFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is infix.
- NO_SPLIT_NGRAM - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is a ngram.
- NO_SPLIT_PREFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is a prefix.
- NO_SPLIT_PUNCTUATION - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is punctuation.
- NO_SPLIT_SUFFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is a suffix.
- NO_SPLIT_UNKNOWN - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is unknown.
- NO_SPLIT_WHITESPACE - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is whitespace.
- NO_SPLIT_WORD - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Not a split, is a word.
- Node<T extends Output<T>> - Interface in org.tribuo.common.tree
-
A node in a decision tree.
- NODE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- NoisyInterlockingCrescentsDataSource - Class in org.tribuo.classification.example
-
A data source of two interleaved half circles with some zero mean Gaussian noise applied to each point.
- NoisyInterlockingCrescentsDataSource(int, long, double) - Constructor for class org.tribuo.classification.example.NoisyInterlockingCrescentsDataSource
-
Constructs a noisy interlocking crescents data source.
- NON - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
NonTokenizer
. - NONE - Enum constant in enum class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
No label features.
- NONE - Enum constant in enum class org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
No confidence predction.
- NONE - Enum constant in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
No hashing applied.
- NONE - Enum constant in enum class org.tribuo.math.optimisers.SGD.Momentum
-
No momentum.
- NonlinearGaussianDataSource - Class in org.tribuo.regression.example
-
Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
- NonlinearGaussianDataSource(int, float[], float, float, float, float, float, float, long) - Constructor for class org.tribuo.regression.example.NonlinearGaussianDataSource
-
Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
- NonlinearGaussianDataSource(int, long) - Constructor for class org.tribuo.regression.example.NonlinearGaussianDataSource
-
Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
- NonlinearGaussianDataSource.NonlinearGaussianDataSourceProvenance - Class in org.tribuo.regression.example
-
Provenance for
NonlinearGaussianDataSource
. - NonlinearGaussianDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.example.NonlinearGaussianDataSource.NonlinearGaussianDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- NonTokenizer - Class in org.tribuo.util.tokens.impl
-
A convenience class for when you are required to provide a tokenizer but you don't actually want to split up the text into tokens.
- NonTokenizer() - Constructor for class org.tribuo.util.tokens.impl.NonTokenizer
-
Constructs a NonTokenizer.
- NoopFeatureExtractor - Class in org.tribuo.classification.sequence.viterbi
-
A label feature extractor that doesn't produce any label based features.
- NoopFeatureExtractor() - Constructor for class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- NoopNormalizer - Class in org.tribuo.math.util
-
NoopNormalizer returns a copy in
NoopNormalizer.normalize(double[])
and is a no-op in place. - NoopNormalizer() - Constructor for class org.tribuo.math.util.NoopNormalizer
- normaliseWeights(Map<T, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Normalizes the weights in the map, i.e., divides each weight by it's count.
- normalize - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Normalize the leaf outputs so each leaf sums to 1.0.
- normalize - Variable in class org.tribuo.regression.slm.SLMTrainer
- normalize(double[]) - Method in class org.tribuo.math.util.ExpNormalizer
- normalize(double[]) - Method in class org.tribuo.math.util.NoopNormalizer
- normalize(double[]) - Method in class org.tribuo.math.util.Normalizer
- normalize(double[]) - Method in class org.tribuo.math.util.SigmoidNormalizer
- normalize(double[]) - Method in interface org.tribuo.math.util.VectorNormalizer
-
Normalizes the input array in some fashion specified by the class.
- normalize(VectorNormalizer) - Method in class org.tribuo.math.la.DenseVector
- normalize(VectorNormalizer) - Method in interface org.tribuo.math.la.SGDVector
-
Normalizes the vector using the supplied vector normalizer.
- normalize(VectorNormalizer) - Method in class org.tribuo.math.la.SparseVector
- NORMALIZED_MI - Enum constant in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
The normalized mutual information between the two clusterings
- normalizedMI() - Method in interface org.tribuo.clustering.evaluation.ClusteringEvaluation
-
Calculates the normalized MI between the ground truth clustering ids and the predicted ones.
- normalizedMI(ClusteringMetric.Context) - Static method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Calculates the normalized mutual information between two clusterings.
- normalizeInPlace(double[]) - Method in class org.tribuo.math.util.ExpNormalizer
- normalizeInPlace(double[]) - Method in class org.tribuo.math.util.NoopNormalizer
- normalizeInPlace(double[]) - Method in class org.tribuo.math.util.Normalizer
- normalizeInPlace(double[]) - Method in class org.tribuo.math.util.SigmoidNormalizer
- normalizeInPlace(double[]) - Method in interface org.tribuo.math.util.VectorNormalizer
-
In place normalization of the array.
- Normalizer - Class in org.tribuo.math.util
-
Normalizes, but first subtracts the minimum value (to ensure positivity).
- Normalizer() - Constructor for class org.tribuo.math.util.Normalizer
- normalizeRows(VectorNormalizer) - Method in class org.tribuo.math.la.DenseMatrix
-
Normalizes each row using the supplied normalizer in place.
- normalizeToDistribution(double[]) - Static method in class org.tribuo.util.Util
-
Generates a normalized version of the input array.
- normalizeToDistribution(float[]) - Static method in class org.tribuo.util.Util
-
Generates a normalized version of the input array.
- nsplits - Variable in class org.tribuo.evaluation.KFoldSplitter
- NU_SVC - Enum constant in enum class org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Classification SVM, optimization in dual space.
- NU_SVR - Enum constant in enum class org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
optimization in dual space.
- numActiveElements() - Method in class org.tribuo.math.la.DenseVector
- numActiveElements() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the number of non-zero elements (on construction, an element could be set to zero and it would still remain active).
- numActiveElements() - Method in class org.tribuo.math.la.SparseVector
- numActiveElements(int) - Method in class org.tribuo.math.la.DenseMatrix
- numActiveElements(int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- numActiveElements(int) - Method in interface org.tribuo.math.la.Matrix
-
The number of non-zero elements in that row.
- numActiveFeatures - Variable in class org.tribuo.common.sgd.AbstractSGDModel.PredAndActive
-
The number of active features used in the prediction.
- numExamples - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- numExamples(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the number of examples in this dataset.
- numFeatures(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows the number of features.
- numFeatures(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the number of features in this dataset.
- numFeatures(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the number of features.
- numFeatures(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows the number of features in this model.
- numFolds - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
The number of cross validation folds.
- numInputs - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The number of inputs.
- numMembers - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- numMembers - Variable in class org.tribuo.ensemble.BaggingTrainer
- numOptionalInputs - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The number of optional inputs.
- numOutputs - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The number of outputs.
- numSamples - Variable in class org.tribuo.classification.example.DemoLabelDataSource
- numSamples - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- numStates - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
-
The number of states.
- numThreads - Variable in class org.tribuo.clustering.hdbscan.HdbscanOptions
-
Number of threads to use for training the hdbscan model.
- numThreads - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
-
Number of computation threads in K-Means.
- numThreads - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
-
Number of threads to use (range (1, num hw threads)).
- numThreads - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Number of threads to use (default 4, range (1, num hw threads)).
- numThreads - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Number of threads to use (default 4, range (1, num hw threads)).
- numTrainingExamples - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- numTrees - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- numValidFeatures - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
O
- OBJECT_LOCALIZATION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Object localization, no Tribuo mapping.
- observe(double) - Method in class org.tribuo.CategoricalInfo
- observe(double) - Method in class org.tribuo.RealInfo
- observe(double) - Method in class org.tribuo.SkeletalVariableInfo
-
Records the value.
- observe(double) - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Observes a value, i.e., updates the sufficient statistics for computing mean, variance, max and min.
- observe(double[]) - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Observes a value, i.e., updates the sufficient statistics for computing mean, variance, max and min.
- observe(List<Prediction<T>>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Records all the supplied predictions.
- observe(Event) - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- observe(Label) - Method in class org.tribuo.classification.MutableLabelInfo
- observe(ClusterID) - Method in class org.tribuo.clustering.MutableClusteringInfo
- observe(MultiLabel) - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
-
Throws IllegalStateException if the MultiLabel contains a Label which has a "," in it.
- observe(Prediction<T>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Records the supplied prediction.
- observe(Regressor) - Method in class org.tribuo.regression.MutableRegressionInfo
- observe(T) - Method in interface org.tribuo.MutableOutputInfo
-
Records an output value or statistics thereof.
- observed() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The values this confusion matrix has seen.
- observed() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- observed() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- observedCount - Variable in class org.tribuo.CategoricalInfo
-
The count of the observed value if it's only seen a single one.
- observedValue - Variable in class org.tribuo.CategoricalInfo
-
The observed value if it's only seen a single one.
- observeSparse() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Deprecated.
- observeSparse() - Method in interface org.tribuo.transform.TransformStatistics
-
Deprecated.in 4.1 as it's unnecessary.
- observeSparse(int) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
No-op on this TransformStatistics.
- observeSparse(int) - Method in interface org.tribuo.transform.TransformStatistics
-
Observes
count
sparse values. - observeValue(double) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
No-op on this TransformStatistics.
- observeValue(double) - Method in interface org.tribuo.transform.TransformStatistics
-
Observes a value and updates the statistics.
- observeValue(double, int) - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Observes a value for this feature.
- ociConfigFile - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
OCI config file path.
- ociConfigProfile - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
OCI profile in the config file.
- OCIDSConfig(String, String) - Constructor for class org.tribuo.interop.oci.OCIUtil.OCIDSConfig
-
Constructs an OCIDSConfig.
- OCILabelConverter - Class in org.tribuo.interop.oci
- OCILabelConverter(boolean) - Constructor for class org.tribuo.interop.oci.OCILabelConverter
-
Constructs an OCILabelConverter with the specified parameters.
- OCIModel<T extends Output<T>> - Class in org.tribuo.interop.oci
-
A wrapper class around an OCI Data Science Model Deployment endpoint which sends off inputs for scoring and converts the output into a Tribuo prediction.
- OCIModel.PredictionJson - Class in org.tribuo.interop.oci
-
Carrier type for easy deserialization from JSON.
- OCIModelArtifactConfig(OCIUtil.OCIDSConfig, String, String, String, int, String, String) - Constructor for class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
Constructs an OCIModelArtifactConfig, used to create an OCI DS model.
- OCIModelCLI - Class in org.tribuo.interop.oci
-
This class provides a CLI for deploying and scoring a Tribuo Classification model.
- OCIModelCLI.OCIModelOptions - Class in org.tribuo.interop.oci
-
Options for the OCIModelCLI.
- OCIModelCLI.OCIModelOptions.Mode - Enum Class in org.tribuo.interop.oci
-
Mode for the CLI.
- OCIModelDeploymentConfig(OCIUtil.OCIDSConfig, String, String, String, int, int) - Constructor for class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
Constructs an OCI DS Model Deployment configuration.
- OCIModelOptions() - Constructor for class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
- OCIMultiLabelConverter - Class in org.tribuo.interop.oci
- OCIMultiLabelConverter(double, boolean) - Constructor for class org.tribuo.interop.oci.OCIMultiLabelConverter
-
Constructs an OCILabelConverter with the specified parameters.
- OCIOutputConverter<T extends Output<T>> - Interface in org.tribuo.interop.oci
-
Converter for a
DenseMatrix
received from OCI Data Science Model Deployment. - OCIRegressorConverter - Class in org.tribuo.interop.oci
- OCIRegressorConverter() - Constructor for class org.tribuo.interop.oci.OCIRegressorConverter
-
Constructs an OCIRegressorConverter.
- OCIUtil - Class in org.tribuo.interop.oci
-
Utils for uploading and deploying models to OCI Data Science.
- OCIUtil.OCIDSConfig - Class in org.tribuo.interop.oci
-
Configuration for OCI DS.
- OCIUtil.OCIModelArtifactConfig - Class in org.tribuo.interop.oci
-
Configuration for an OCI DS Model artifact.
- OCIUtil.OCIModelDeploymentConfig - Class in org.tribuo.interop.oci
-
Configuration for an OCI DS Model Deployment.
- OCIUtil.OCIModelType - Enum Class in org.tribuo.interop.oci
-
Enum for OCI model types.
- of(TType) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
Makes a TensorTuple out of this tensor.
- OffsetDateTimeExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and translates it to an
OffsetDateTime
based on the specifiedDateTimeFormatter
. - OffsetDateTimeExtractor(String, String, String) - Constructor for class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
-
Constructs a date time extractor that emits an OffsetDateTime by applying the supplied format to the specified field.
- OffsetDateTimeExtractor(String, String, String, String, String) - Constructor for class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
-
Constructs a date time extractor that emits an OffsetDateTime by applying the supplied format to the specified field.
- ONE_CLASS - Enum constant in enum class org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Anomaly detection SVM.
- ONECLASS_SVM - Enum constant in enum class org.tribuo.anomaly.liblinear.LinearAnomalyType.LinearType
-
Linear one-class SVM
- oneNorm() - Method in class org.tribuo.math.la.DenseVector
- oneNorm() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the Manhattan norm for this vector.
- oneNorm() - Method in class org.tribuo.math.la.SparseVector
- OnlineEvaluator<T extends Output<T>,
E extends Evaluation<T>> - Class in org.tribuo.evaluation -
An evaluator which aggregates predictions and produces
Evaluation
s covering all thePrediction
s it has seen or created. - OnlineEvaluator(Evaluator<T, E>, Model<T>, DataProvenance) - Constructor for class org.tribuo.evaluation.OnlineEvaluator
-
Constructs an
OnlineEvaluator
which accumulates predictions. - ONNXAttribute - Class in org.tribuo.util.onnx
-
The spec for an attribute, used to produce the attribute proto at construction time.
- ONNXAttribute(String, OnnxMl.AttributeProto.AttributeType, boolean) - Constructor for class org.tribuo.util.onnx.ONNXAttribute
-
Constructs an attribute placeholder of the appropriate name and type.
- onnxContext() - Method in class org.tribuo.util.onnx.ONNXRef
-
The context this reference operates in.
- ONNXContext - Class in org.tribuo.util.onnx
-
Context object used to scope and manage the creation of ONNX
OnnxMl.GraphProto
andOnnxMl.ModelProto
instances. - ONNXContext() - Constructor for class org.tribuo.util.onnx.ONNXContext
-
Creates an empty ONNX context.
- onnxDomain - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The ONNX domain name.
- ONNXExportable - Interface in org.tribuo
-
An interface which denotes this
Model
can be exported as an ONNX model. - ONNXExternalModel<T extends Output<T>> - Class in org.tribuo.interop.onnx
-
A Tribuo wrapper around a ONNX model.
- ONNXInitializer - Class in org.tribuo.util.onnx
-
A subclass of
ONNXRef
specialized forOnnxMl.TensorProto
. - ONNXMathUtils - Class in org.tribuo.math.onnx
-
Tribuo Math specific helper functions for building ONNX protos.
- OnnxMl - Class in ai.onnx.proto
- OnnxMl.AttributeProto - Class in ai.onnx.proto
-
Attributes A named attribute containing either singular float, integer, string, graph, and tensor values, or repeated float, integer, string, graph, and tensor values.
- OnnxMl.AttributeProto.AttributeType - Enum Class in ai.onnx.proto
-
Note: this enum is structurally identical to the OpSchema::AttrType enum defined in schema.h.
- OnnxMl.AttributeProto.Builder - Class in ai.onnx.proto
-
Attributes A named attribute containing either singular float, integer, string, graph, and tensor values, or repeated float, integer, string, graph, and tensor values.
- OnnxMl.AttributeProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.GraphProto - Class in ai.onnx.proto
-
Graphs A graph defines the computational logic of a model and is comprised of a parameterized list of nodes that form a directed acyclic graph based on their inputs and outputs.
- OnnxMl.GraphProto.Builder - Class in ai.onnx.proto
-
Graphs A graph defines the computational logic of a model and is comprised of a parameterized list of nodes that form a directed acyclic graph based on their inputs and outputs.
- OnnxMl.GraphProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.ModelProto - Class in ai.onnx.proto
-
Models ModelProto is a top-level file/container format for bundling a ML model and associating its computation graph with metadata.
- OnnxMl.ModelProto.Builder - Class in ai.onnx.proto
-
Models ModelProto is a top-level file/container format for bundling a ML model and associating its computation graph with metadata.
- OnnxMl.ModelProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.NodeProto - Class in ai.onnx.proto
-
Nodes Computation graphs are made up of a DAG of nodes, which represent what is commonly called a "layer" or "pipeline stage" in machine learning frameworks.
- OnnxMl.NodeProto.Builder - Class in ai.onnx.proto
-
Nodes Computation graphs are made up of a DAG of nodes, which represent what is commonly called a "layer" or "pipeline stage" in machine learning frameworks.
- OnnxMl.NodeProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.OperatorSetIdProto - Class in ai.onnx.proto
-
Operator Sets OperatorSets are uniquely identified by a (domain, opset_version) pair.
- OnnxMl.OperatorSetIdProto.Builder - Class in ai.onnx.proto
-
Operator Sets OperatorSets are uniquely identified by a (domain, opset_version) pair.
- OnnxMl.OperatorSetIdProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.SparseTensorProto - Class in ai.onnx.proto
-
A serialized sparse-tensor value
- OnnxMl.SparseTensorProto.Builder - Class in ai.onnx.proto
-
A serialized sparse-tensor value
- OnnxMl.SparseTensorProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.StringStringEntryProto - Class in ai.onnx.proto
-
StringStringEntryProto follows the pattern for cross-proto-version maps.
- OnnxMl.StringStringEntryProto.Builder - Class in ai.onnx.proto
-
StringStringEntryProto follows the pattern for cross-proto-version maps.
- OnnxMl.StringStringEntryProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TensorAnnotation - Class in ai.onnx.proto
-
Protobuf type
onnx.TensorAnnotation
- OnnxMl.TensorAnnotation.Builder - Class in ai.onnx.proto
-
Protobuf type
onnx.TensorAnnotation
- OnnxMl.TensorAnnotationOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TensorProto - Class in ai.onnx.proto
-
Tensors A serialized tensor value.
- OnnxMl.TensorProto.Builder - Class in ai.onnx.proto
-
Tensors A serialized tensor value.
- OnnxMl.TensorProto.DataLocation - Enum Class in ai.onnx.proto
-
Location of the data for this tensor.
- OnnxMl.TensorProto.DataType - Enum Class in ai.onnx.proto
-
Protobuf enum
onnx.TensorProto.DataType
- OnnxMl.TensorProto.Segment - Class in ai.onnx.proto
-
For very large tensors, we may want to store them in chunks, in which case the following fields will specify the segment that is stored in the current TensorProto.
- OnnxMl.TensorProto.Segment.Builder - Class in ai.onnx.proto
-
For very large tensors, we may want to store them in chunks, in which case the following fields will specify the segment that is stored in the current TensorProto.
- OnnxMl.TensorProto.SegmentOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TensorProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TensorShapeProto - Class in ai.onnx.proto
-
Defines a tensor shape.
- OnnxMl.TensorShapeProto.Builder - Class in ai.onnx.proto
-
Defines a tensor shape.
- OnnxMl.TensorShapeProto.Dimension - Class in ai.onnx.proto
-
Protobuf type
onnx.TensorShapeProto.Dimension
- OnnxMl.TensorShapeProto.Dimension.Builder - Class in ai.onnx.proto
-
Protobuf type
onnx.TensorShapeProto.Dimension
- OnnxMl.TensorShapeProto.Dimension.ValueCase - Enum Class in ai.onnx.proto
- OnnxMl.TensorShapeProto.DimensionOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TensorShapeProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TrainingInfoProto - Class in ai.onnx.proto
-
Training information TrainingInfoProto stores information for training a model.
- OnnxMl.TrainingInfoProto.Builder - Class in ai.onnx.proto
-
Training information TrainingInfoProto stores information for training a model.
- OnnxMl.TrainingInfoProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto - Class in ai.onnx.proto
-
Types The standard ONNX data types.
- OnnxMl.TypeProto.Builder - Class in ai.onnx.proto
-
Types The standard ONNX data types.
- OnnxMl.TypeProto.Map - Class in ai.onnx.proto
-
map<K,V>
- OnnxMl.TypeProto.Map.Builder - Class in ai.onnx.proto
-
map<K,V>
- OnnxMl.TypeProto.MapOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto.Opaque - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.Opaque
- OnnxMl.TypeProto.Opaque.Builder - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.Opaque
- OnnxMl.TypeProto.OpaqueOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto.Sequence - Class in ai.onnx.proto
-
repeated T
- OnnxMl.TypeProto.Sequence.Builder - Class in ai.onnx.proto
-
repeated T
- OnnxMl.TypeProto.SequenceOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto.SparseTensor - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.SparseTensor
- OnnxMl.TypeProto.SparseTensor.Builder - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.SparseTensor
- OnnxMl.TypeProto.SparseTensorOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto.Tensor - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.Tensor
- OnnxMl.TypeProto.Tensor.Builder - Class in ai.onnx.proto
-
Protobuf type
onnx.TypeProto.Tensor
- OnnxMl.TypeProto.TensorOrBuilder - Interface in ai.onnx.proto
- OnnxMl.TypeProto.ValueCase - Enum Class in ai.onnx.proto
- OnnxMl.TypeProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.ValueInfoProto - Class in ai.onnx.proto
-
Defines information on value, including the name, the type, and the shape of the value.
- OnnxMl.ValueInfoProto.Builder - Class in ai.onnx.proto
-
Defines information on value, including the name, the type, and the shape of the value.
- OnnxMl.ValueInfoProtoOrBuilder - Interface in ai.onnx.proto
- OnnxMl.Version - Enum Class in ai.onnx.proto
-
Versioning ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md To be compatible with both proto2 and proto3, we will use a version number that is not defined by the default value but an explicit enum number.
- onnxModelName() - Method in class org.tribuo.classification.sgd.fm.FMClassificationModel
- onnxModelName() - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- onnxModelName() - Method in class org.tribuo.common.sgd.AbstractFMModel
- onnxModelName() - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
- onnxModelName() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelModel
- onnxModelName() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDModel
- onnxModelName() - Method in class org.tribuo.regression.sgd.fm.FMRegressionModel
- onnxModelName() - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- onnxModelVersion - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelArtifactConfig
-
The ONNX model version.
- ONNXNode - Class in org.tribuo.util.onnx
-
A subclass of
ONNXRef
specialized forOnnxMl.NodeProto
. - ONNXOperators - Enum Class in org.tribuo.util.onnx
-
The supported ONNX operators.
- onnxOutput(ONNXNode) - Method in class org.tribuo.classification.sgd.fm.FMClassificationModel
- onnxOutput(ONNXNode) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- onnxOutput(ONNXNode) - Method in class org.tribuo.common.sgd.AbstractFMModel
-
Takes the unnormalized ONNX output of this model and applies an appropriate normalizer from the concrete class.
- onnxOutput(ONNXNode) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
-
Takes the unnormalized ONNX output of this model and applies an appropriate normalizer from the concrete class.
- onnxOutput(ONNXNode) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelModel
- onnxOutput(ONNXNode) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDModel
- onnxOutput(ONNXNode) - Method in class org.tribuo.regression.sgd.fm.FMRegressionModel
- onnxOutput(ONNXNode) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- ONNXPlaceholder - Class in org.tribuo.util.onnx
-
A subclass of
ONNXRef
specialized forOnnxMl.ValueInfoProto
. - ONNXRef<T extends com.google.protobuf.GeneratedMessageV3> - Class in org.tribuo.util.onnx
-
An abstract reference that represents both a node in an ONNX computation graph and a container for a specific ONNX proto object that denotes that node.
- ONNXUtils - Class in org.tribuo.util.onnx
-
Helper functions for building ONNX protos.
- OP_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- OPAQUE_TYPE - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- OPAQUE_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- operation(ONNXOperators, List<T>, String) - Method in class org.tribuo.util.onnx.ONNXContext
-
Method for creating
ONNXNode
s fromONNXOperators
and inputs. - operation(ONNXOperators, List<T>, String, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXContext
-
Method for creating
ONNXNode
s fromONNXOperators
and inputs. - operation(ONNXOperators, List<T>, List<String>, Map<String, Object>) - Method in class org.tribuo.util.onnx.ONNXContext
-
Base method for creating
ONNXNode
s fromONNXOperators
and inputs. - opName - Variable in enum class org.tribuo.util.onnx.ONNXOperators
-
The operator name.
- OPSET_IMPORT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- optimiser - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- optimiser - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
The gradient optimizer to use.
- org.tribuo - package org.tribuo
-
Provides the core interfaces and classes for using Tribuo.
- org.tribuo.anomaly - package org.tribuo.anomaly
-
Provides classes and infrastructure for anomaly detection problems.
- org.tribuo.anomaly.evaluation - package org.tribuo.anomaly.evaluation
-
Evaluation classes for anomaly detection.
- org.tribuo.anomaly.example - package org.tribuo.anomaly.example
-
Provides anomaly data generators used for demos and testing implementations.
- org.tribuo.anomaly.liblinear - package org.tribuo.anomaly.liblinear
-
Provides an interface to LibLinear-java for anomaly detection problems.
- org.tribuo.anomaly.libsvm - package org.tribuo.anomaly.libsvm
-
Provides an interface to LibSVM for anomaly detection problems.
- org.tribuo.classification - package org.tribuo.classification
-
Provides classes and infrastructure for multiclass classification problems.
- org.tribuo.classification.baseline - package org.tribuo.classification.baseline
-
Provides simple baseline multiclass classifiers.
- org.tribuo.classification.dtree - package org.tribuo.classification.dtree
-
Provides implementations of decision trees for classification problems.
- org.tribuo.classification.dtree.impl - package org.tribuo.classification.dtree.impl
-
Provides internal implementation classes for classification decision trees.
- org.tribuo.classification.dtree.impurity - package org.tribuo.classification.dtree.impurity
-
Provides classification impurity metrics for decision trees.
- org.tribuo.classification.ensemble - package org.tribuo.classification.ensemble
-
Provides majority vote ensemble combiners for classification along with an implementation of multiclass Adaboost.
- org.tribuo.classification.evaluation - package org.tribuo.classification.evaluation
-
Evaluation classes for multi-class classification.
- org.tribuo.classification.example - package org.tribuo.classification.example
-
Provides a multiclass data generator used for testing implementations, along with several synthetic data generators for 2d binary classification problems to be used in demos or tutorials.
- org.tribuo.classification.experiments - package org.tribuo.classification.experiments
-
Provides a set of main methods for interacting with classification tasks.
- org.tribuo.classification.explanations - package org.tribuo.classification.explanations
-
Provides core infrastructure for local model based explanations.
- org.tribuo.classification.explanations.lime - package org.tribuo.classification.explanations.lime
-
Provides an implementation of LIME (Locally Interpretable Model Explanations).
- org.tribuo.classification.liblinear - package org.tribuo.classification.liblinear
-
Provides an interface to LibLinear-java for classification problems.
- org.tribuo.classification.libsvm - package org.tribuo.classification.libsvm
-
Provides an interface to LibSVM for classification problems.
- org.tribuo.classification.mnb - package org.tribuo.classification.mnb
-
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
- org.tribuo.classification.sequence - package org.tribuo.classification.sequence
-
Provides infrastructure for
SequenceModel
s which emitLabel
s at each step of the sequence. - org.tribuo.classification.sequence.example - package org.tribuo.classification.sequence.example
-
Provides a classification sequence data generator for smoke testing implementations.
- org.tribuo.classification.sequence.viterbi - package org.tribuo.classification.sequence.viterbi
-
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label
based classification model. - org.tribuo.classification.sgd - package org.tribuo.classification.sgd
-
Provides infrastructure for Stochastic Gradient Descent for classification problems.
- org.tribuo.classification.sgd.crf - package org.tribuo.classification.sgd.crf
-
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
- org.tribuo.classification.sgd.fm - package org.tribuo.classification.sgd.fm
-
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
- org.tribuo.classification.sgd.kernel - package org.tribuo.classification.sgd.kernel
-
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
- org.tribuo.classification.sgd.linear - package org.tribuo.classification.sgd.linear
-
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
- org.tribuo.classification.sgd.objectives - package org.tribuo.classification.sgd.objectives
-
Provides classification loss functions for Stochastic Gradient Descent.
- org.tribuo.classification.xgboost - package org.tribuo.classification.xgboost
-
Provides an interface to XGBoost for classification problems.
- org.tribuo.clustering - package org.tribuo.clustering
-
Provides classes and infrastructure for working with clustering problems.
- org.tribuo.clustering.evaluation - package org.tribuo.clustering.evaluation
-
Evaluation classes for clustering.
- org.tribuo.clustering.example - package org.tribuo.clustering.example
-
Provides clustering data generators used for demos and testing implementations.
- org.tribuo.clustering.hdbscan - package org.tribuo.clustering.hdbscan
-
Provides an implementation of HDBSCAN*.
- org.tribuo.clustering.kmeans - package org.tribuo.clustering.kmeans
-
Provides a multithreaded implementation of K-Means, with a configurable distance function.
- org.tribuo.common.liblinear - package org.tribuo.common.liblinear
-
Provides base classes for using liblinear from Tribuo.
- org.tribuo.common.libsvm - package org.tribuo.common.libsvm
-
The base interface to LibSVM.
- org.tribuo.common.nearest - package org.tribuo.common.nearest
-
Provides a K-Nearest Neighbours implementation which works across all Tribuo
Output
types. - org.tribuo.common.sgd - package org.tribuo.common.sgd
-
Provides the base classes for models trained with stochastic gradient descent.
- org.tribuo.common.tree - package org.tribuo.common.tree
-
Provides common functionality for building decision trees, irrespective of the predicted
Output
. - org.tribuo.common.tree.impl - package org.tribuo.common.tree.impl
-
Provides internal implementation classes for building decision trees.
- org.tribuo.common.xgboost - package org.tribuo.common.xgboost
-
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. - org.tribuo.data - package org.tribuo.data
-
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for things like cross-validation and train-test splits.
- org.tribuo.data.columnar - package org.tribuo.data.columnar
-
Provides classes for processing columnar data and generating
Example
s. - org.tribuo.data.columnar.extractors - package org.tribuo.data.columnar.extractors
-
Provides implementations of
FieldExtractor
. - org.tribuo.data.columnar.processors.feature - package org.tribuo.data.columnar.processors.feature
-
Provides implementations of
FeatureProcessor
. - org.tribuo.data.columnar.processors.field - package org.tribuo.data.columnar.processors.field
-
Provides implementations of
FieldProcessor
. - org.tribuo.data.columnar.processors.response - package org.tribuo.data.columnar.processors.response
-
Provides implementations of
ResponseProcessor
. - org.tribuo.data.csv - package org.tribuo.data.csv
-
Provides classes which can load columnar data (using a
RowProcessor
) from a CSV (or other character delimited format) file. - org.tribuo.data.sql - package org.tribuo.data.sql
-
Provides classes which can load columnar data (using a
RowProcessor
) from a SQL source. - org.tribuo.data.text - package org.tribuo.data.text
- org.tribuo.data.text.impl - package org.tribuo.data.text.impl
-
Provides implementations of text data processors.
- org.tribuo.dataset - package org.tribuo.dataset
-
Provides utility datasets which subsample or otherwise transform the wrapped dataset.
- org.tribuo.datasource - package org.tribuo.datasource
-
Simple data sources for ingesting or aggregating data.
- org.tribuo.ensemble - package org.tribuo.ensemble
-
Provides an interface for model prediction combinations, two base classes for ensemble models, a base class for ensemble excuses, and a Bagging implementation.
- org.tribuo.evaluation - package org.tribuo.evaluation
-
Evaluation base classes, along with code for train/test splits and cross validation.
- org.tribuo.evaluation.metrics - package org.tribuo.evaluation.metrics
-
This package contains the infrastructure classes for building evaluation metrics.
- org.tribuo.hash - package org.tribuo.hash
-
Provides the base interface and implementations of the
Model
hashing which obscures the feature names stored in a model. - org.tribuo.impl - package org.tribuo.impl
-
Provides implementations of base classes and interfaces from
org.tribuo
. - org.tribuo.interop - package org.tribuo.interop
-
This package contains the abstract implementation of an external model trained by something outside of Tribuo.
- org.tribuo.interop.oci - package org.tribuo.interop.oci
-
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed in Oracle Cloud Infrastructure Data Science.
- org.tribuo.interop.onnx - package org.tribuo.interop.onnx
-
This package contains a Tribuo wrapper around the ONNX Runtime.
- org.tribuo.interop.onnx.extractors - package org.tribuo.interop.onnx.extractors
-
Provides feature extraction implementations which use ONNX models.
- org.tribuo.interop.tensorflow - package org.tribuo.interop.tensorflow
-
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported Tribuo output type.
- org.tribuo.interop.tensorflow.example - package org.tribuo.interop.tensorflow.example
-
Example architectures for use with Tribuo's TF interface.
- org.tribuo.interop.tensorflow.sequence - package org.tribuo.interop.tensorflow.sequence
-
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel
abstraction. - org.tribuo.json - package org.tribuo.json
-
Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
- org.tribuo.math - package org.tribuo.math
-
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of math related utils.
- org.tribuo.math.kernel - package org.tribuo.math.kernel
-
Provides a
Kernel
interface for Mercer kernels, along with implementations of standard kernels. - org.tribuo.math.la - package org.tribuo.math.la
-
Provides a linear algebra system used for numerical operations in Tribuo.
- org.tribuo.math.onnx - package org.tribuo.math.onnx
- org.tribuo.math.optimisers - package org.tribuo.math.optimisers
-
Provides implementations of
StochasticGradientOptimiser
. - org.tribuo.math.optimisers.util - package org.tribuo.math.optimisers.util
-
Provides some utility tensors for use in gradient optimisers.
- org.tribuo.math.util - package org.tribuo.math.util
-
Provides math related util classes.
- org.tribuo.multilabel - package org.tribuo.multilabel
-
Provides classes and infrastructure for working with multi-label classification problems.
- org.tribuo.multilabel.baseline - package org.tribuo.multilabel.baseline
-
Provides implementations of binary relevance based multi-label classification algorithms.
- org.tribuo.multilabel.ensemble - package org.tribuo.multilabel.ensemble
-
Provides a multi-label ensemble combiner that performs a (possibly weighted) majority vote among each label independently, along with an implementation of classifier chain ensembles.
- org.tribuo.multilabel.evaluation - package org.tribuo.multilabel.evaluation
-
Evaluation classes for multi-label classification using
MultiLabel
. - org.tribuo.multilabel.example - package org.tribuo.multilabel.example
-
Provides a multi-label data generator for testing implementations and a configurable data source suitable for demos and tests.
- org.tribuo.multilabel.sgd - package org.tribuo.multilabel.sgd
-
Provides infrastructure for Stochastic Gradient Descent for multi-label classification problems.
- org.tribuo.multilabel.sgd.fm - package org.tribuo.multilabel.sgd.fm
-
Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
- org.tribuo.multilabel.sgd.linear - package org.tribuo.multilabel.sgd.linear
-
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
- org.tribuo.multilabel.sgd.objectives - package org.tribuo.multilabel.sgd.objectives
-
Provides multi-label classification loss functions for Stochastic Gradient Descent.
- org.tribuo.provenance - package org.tribuo.provenance
-
Provides Tribuo specific infrastructure for the
Provenance
system which tracks models and datasets. - org.tribuo.provenance.impl - package org.tribuo.provenance.impl
-
Provides internal implementations for empty provenance classes and TrainerProvenance.
- org.tribuo.regression - package org.tribuo.regression
-
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
- org.tribuo.regression.baseline - package org.tribuo.regression.baseline
-
Provides simple baseline regression predictors.
- org.tribuo.regression.ensemble - package org.tribuo.regression.ensemble
-
Provides
EnsembleCombiner
implementations for working with multi-output regression problems. - org.tribuo.regression.evaluation - package org.tribuo.regression.evaluation
-
Evaluation classes for single or multi-dimensional regression.
- org.tribuo.regression.example - package org.tribuo.regression.example
-
Provides some example regression data generators for testing implementations.
- org.tribuo.regression.impl - package org.tribuo.regression.impl
- org.tribuo.regression.liblinear - package org.tribuo.regression.liblinear
-
Provides an interface to liblinear for regression problems.
- org.tribuo.regression.libsvm - package org.tribuo.regression.libsvm
-
Provides an interface to LibSVM for regression problems.
- org.tribuo.regression.rtree - package org.tribuo.regression.rtree
-
Provides an implementation of decision trees for regression problems.
- org.tribuo.regression.rtree.impl - package org.tribuo.regression.rtree.impl
-
Provides internal implementation classes for the regression trees.
- org.tribuo.regression.rtree.impurity - package org.tribuo.regression.rtree.impurity
-
Provides implementations of regression tree impurity metrics.
- org.tribuo.regression.sgd - package org.tribuo.regression.sgd
-
Provides infrastructure for Stochastic Gradient Descent based regression models.
- org.tribuo.regression.sgd.fm - package org.tribuo.regression.sgd.fm
-
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
- org.tribuo.regression.sgd.linear - package org.tribuo.regression.sgd.linear
-
Provides an implementation of linear regression using Stochastic Gradient Descent.
- org.tribuo.regression.sgd.objectives - package org.tribuo.regression.sgd.objectives
-
Provides regression loss functions for Stochastic Gradient Descent.
- org.tribuo.regression.slm - package org.tribuo.regression.slm
-
Provides implementations of sparse linear regression using various forms of regularisation penalty.
- org.tribuo.regression.xgboost - package org.tribuo.regression.xgboost
-
Provides an interface to XGBoost for regression problems.
- org.tribuo.reproducibility - package org.tribuo.reproducibility
-
Reproducibility utility based on Tribuo's provenance objects.
- org.tribuo.sequence - package org.tribuo.sequence
-
Provides core classes for working with sequences of
Example
s. - org.tribuo.tests - package org.tribuo.tests
-
This package provides helper classes for Tribuo's unit tests.
- org.tribuo.transform - package org.tribuo.transform
-
Provides infrastructure for applying transformations to a
Dataset
. - org.tribuo.transform.transformations - package org.tribuo.transform.transformations
-
Provides implementations of standard transformations like binning, scaling, taking logs and exponents.
- org.tribuo.util - package org.tribuo.util
-
Provides utilities which don't have other Tribuo dependencies.
- org.tribuo.util.infotheory - package org.tribuo.util.infotheory
-
This package provides static classes of information theoretic functions.
- org.tribuo.util.infotheory.example - package org.tribuo.util.infotheory.example
-
This package provides demos for the information theoretic function classes in
org.tribuo.util.infotheory
. - org.tribuo.util.infotheory.impl - package org.tribuo.util.infotheory.impl
-
This package provides the implementations and helper classes for the information theoretic functions in
org.tribuo.util.infotheory
. - org.tribuo.util.onnx - package org.tribuo.util.onnx
-
Interfaces and utilities for writing ONNX models from Java.
- org.tribuo.util.tokens - package org.tribuo.util.tokens
-
Core definitions for tokenization.
- org.tribuo.util.tokens.impl - package org.tribuo.util.tokens.impl
-
Simple fixed rule tokenizers.
- org.tribuo.util.tokens.impl.wordpiece - package org.tribuo.util.tokens.impl.wordpiece
-
Provides an implementation of a Wordpiece tokenizer which implements to the Tribuo
Tokenizer
API. - org.tribuo.util.tokens.options - package org.tribuo.util.tokens.options
-
OLCUT
Options
implementations which can constructTokenizer
s of various types. - org.tribuo.util.tokens.universal - package org.tribuo.util.tokens.universal
-
An implementation of a "universal" tokenizer which will split on word boundaries or character boundaries for languages where word boundaries are contextual.
- originalFeatures() - Method in record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Returns the value of the
originalFeatures
record component. - originalOutput() - Method in record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Returns the value of the
originalOutput
record component. - OS_STRING - Static variable in class org.tribuo.provenance.ModelProvenance
- osString - Variable in class org.tribuo.provenance.ModelProvenance
- OTHER - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Other prediction types, currently used as the mapping for Tribuo's
MultiLabel
. - outer(SGDVector) - Method in class org.tribuo.math.la.DenseVector
- outer(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Generates the matrix representing the outer product between the two vectors.
- outer(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
This generates the outer product when dotted with another
SparseVector
. - output - Variable in class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
-
path to serialize the dataset
- output - Variable in class org.tribuo.Example
-
The output associated with this example.
- Output<T extends Output<T>> - Interface in org.tribuo
-
Output is the root interface for the supported prediction types.
- OUTPUT_FACTORY - Static variable in interface org.tribuo.provenance.DataSourceProvenance
-
The name of the provenance field for the output factory.
- OUTPUT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- OUTPUT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
- OUTPUT_FILE_MODIFIED_TIME - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
The name of the output file modified time provenance field.
- OUTPUT_RESOURCE_HASH - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
-
The name of the provenance field for the output file hash.
- outputConverter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
- outputConverter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- outputConverter - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- OutputConverter<T extends Output<T>> - Interface in org.tribuo.interop.tensorflow
-
Converts the
Output
into aTensor
and vice versa. - outputCountsIterable() - Method in class org.tribuo.anomaly.AnomalyInfo
- outputCountsIterable() - Method in class org.tribuo.classification.LabelInfo
- outputCountsIterable() - Method in class org.tribuo.clustering.ClusteringInfo
- outputCountsIterable() - Method in class org.tribuo.multilabel.MultiLabelInfo
- outputCountsIterable() - Method in interface org.tribuo.OutputInfo
-
An Iterable over the possible outputs and the number of times they were observed.
- outputCountsIterable() - Method in class org.tribuo.regression.RegressionInfo
- outputDiff() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns the value of the
outputDiff
record component. - OutputDiff(Set<T>, Set<T>) - Constructor for record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Creates an instance of a
OutputDiff
record class. - outputFactory - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
The output factory to construct.
- outputFactory - Variable in class org.tribuo.data.text.DirectoryFileSource
-
The factory that converts a String into an
Output
. - outputFactory - Variable in class org.tribuo.data.text.TextDataSource
-
The factory that converts a String into an
Output
. - outputFactory - Variable in class org.tribuo.Dataset
-
A factory for making
OutputInfo
andOutput
of the appropriate type. - outputFactory - Variable in class org.tribuo.sequence.SequenceDataset
-
A factory for making
OutputInfo
andOutput
of the appropriate type. - OutputFactory<T extends Output<T>> - Interface in org.tribuo
-
An interface associated with a specific
Output
, which can generate the appropriate Output subclass, andOutputInfo
subclass. - OutputFactoryProvenance - Interface in org.tribuo.provenance
-
A tag provenance for an output factory.
- outputFile - Variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.BERTFeatureExtractorOptions
-
Output json file.
- outputID - Variable in class org.tribuo.impl.IndexedArrayExample
-
Output id from the internal output map.
- outputIDInfo - Variable in class org.tribuo.ImmutableDataset
-
Output information, and id numbers for outputs found in this dataset.
- outputIDInfo - Variable in class org.tribuo.Model
-
The outputs this model predicts.
- outputIDInfo - Variable in class org.tribuo.sequence.ImmutableSequenceDataset
-
A map from labels to IDs for the labels found in this dataset.
- outputIDMap - Variable in class org.tribuo.sequence.SequenceModel
- outputInfo - Variable in class org.tribuo.sequence.MutableSequenceDataset
-
A map from labels to IDs for the labels found in this dataset.
- outputInfo(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the output information.
- outputInfo(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the output info.
- outputInfo(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows the output information.
- OutputInfo<T extends Output<T>> - Interface in org.tribuo
-
Tracks relevant properties of the appropriate
Output
subclass. - outputMap - Variable in class org.tribuo.MutableDataset
-
Information about the outputs in this dataset.
- outputModel - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
The location to write out the stripped model.
- outputName - Variable in class org.tribuo.interop.tensorflow.example.GraphDefTuple
-
Name of the output operation.
- outputName - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- outputName - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Name of the output operation.
- outputPath - Variable in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
-
Path to serialize model to.
- outputPath - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Path to serialize model to.
- outputPath - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Path to serialize model to.
- outputPath - Variable in class org.tribuo.data.DataOptions
-
Path to serialize model to.
- outputPath - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
File to write query results as CSV, defaults to stdout
- outputPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Path to serialize model to.
- outputRequired - Variable in class org.tribuo.data.columnar.ColumnarDataSource
- OutputTransformer<T extends Output<T>> - Interface in org.tribuo.interop.onnx
- outputTransformFunction() - Method in class org.tribuo.interop.tensorflow.LabelConverter
-
Applies a softmax.
- outputTransformFunction() - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
-
Applies a softmax.
- outputTransformFunction() - Method in interface org.tribuo.interop.tensorflow.OutputConverter
-
Produces an output transformation function that applies the operation to the graph from the supplied
Ops
, taking a graph output operation. - outputTransformFunction() - Method in class org.tribuo.interop.tensorflow.RegressorConverter
-
Applies the identity function
- overallCount - Variable in class org.tribuo.regression.RegressionInfo
- overrideParameters - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
P
- pairDescendingValueComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by value.
- PairDistribution<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
A count distribution over
CachedPair
objects. - PairDistribution(long, LinkedHashMap<CachedPair<T1, T2>, MutableLong>, LinkedHashMap<T1, MutableLong>, LinkedHashMap<T2, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.PairDistribution
-
Constructs a pair distribution.
- PairDistribution(long, Map<CachedPair<T1, T2>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.PairDistribution
-
Constructs a pair distribution.
- pairIndexComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by index.
- pairValueComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by value.
- paramAve - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Use parameter averaging.
- ParameterAveraging - Class in org.tribuo.math.optimisers
-
Averages the parameters across a gradient run.
- ParameterAveraging(StochasticGradientOptimiser) - Constructor for class org.tribuo.math.optimisers.ParameterAveraging
-
Adds parameter averaging around a gradient optimiser.
- parameters - Variable in class org.tribuo.common.libsvm.LibSVMTrainer
-
The SVM parameters suitable for use by LibSVM.
- parameters - Variable in class org.tribuo.common.libsvm.SVMParameters
- parameters - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- Parameters - Interface in org.tribuo.math
-
An interface to a
Tensor
[] array which accepts updates to the parameters. - paramName - Variable in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
The parameter value used by the XGBoost native library.
- paramName - Variable in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
The parameter name used by the XGBoost native library.
- paramName - Variable in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
The parameter name used by the XGBoost native library.
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseDelimitedFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseDelimitedFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseElement(int, String) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- parseElement(String) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form:
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(byte[]) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(byte[], ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(ByteString) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(ByteString, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(CodedInputStream) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(CodedInputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(InputStream) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(InputStream, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(ByteBuffer) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parseFrom(ByteBuffer, ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- parseLine(String, int) - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- parser() - Static method in class ai.onnx.proto.OnnxMl.AttributeProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.GraphProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.ModelProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.NodeProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- parser() - Static method in class ai.onnx.proto.OnnxMl.TensorProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- parser() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- parser() - Static method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- parser() - Static method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- parser() - Static method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.NodeProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.SparseTensorProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.StringStringEntryProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TensorAnnotation
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto.Segment
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TensorShapeProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TrainingInfoProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Map
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
-
Deprecated.
- PARSER - Static variable in class ai.onnx.proto.OnnxMl.ValueInfoProto
-
Deprecated.
- parseString(String) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form: dimension-name=output,...,dimension-name=output where output must be readable by
Boolean.parseBoolean(String)
. - parseString(String) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- parseString(String, char) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form:
- parseString(String, char) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- partialExpandRegexMapping(Collection<String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Caveat Implementor! This method contains the logic of
RowProcessor.expandRegexMapping(org.tribuo.Model<T>)
without any of the checks that ensure the RowProcessor is in a valid state. - password - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
Password for the SQL database
- path - Variable in class org.tribuo.data.text.TextDataSource
-
The path that data was read from.
- Pegasos - Class in org.tribuo.math.optimisers
-
An implementation of the Pegasos gradient optimiser used primarily for solving the SVM problem.
- Pegasos(double, double) - Constructor for class org.tribuo.math.optimisers.Pegasos
-
Constructs a Pegasos optimiser with the specified parameters.
- PEGASOS - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The Pegasos optimiser.
- PLACEHOLDER - Static variable in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
The name of the placeholder op.
- PLUSPLUS - Enum constant in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Initialisation
-
KMeans++ initialisation.
- POINT_VERSION - Static variable in class org.tribuo.Tribuo
-
The patch release number.
- POLY - Enum constant in enum class org.tribuo.common.libsvm.KernelType
-
A polynomial kernel of the form (gamma*u'*v + coef0)^degree
- Polynomial - Class in org.tribuo.math.kernel
-
A polynomial kernel, (gamma*u.dot(v) + intercept)^degree.
- Polynomial(double, double, double) - Constructor for class org.tribuo.math.kernel.Polynomial
-
A polynomial kernel, (gamma*u.dot(v) + intercept)^degree.
- POLYNOMIAL - Enum constant in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Uses a
Polynomial
kernel. - POSITIVE_NAME - Static variable in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
The default positive response.
- postConfig() - Method in class org.tribuo.anomaly.example.GaussianAnomalyDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.example.CheckerboardDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.example.ConcentricCirclesDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.example.DemoLabelDataSource
-
Configures the class.
- postConfig() - Method in class org.tribuo.classification.example.GaussianLabelDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.example.NoisyInterlockingCrescentsDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.clustering.example.GaussianClusterDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.nearest.KNNTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.sgd.AbstractFMTrainer
- postConfig() - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.tree.ExtraTreesTrainer
- postConfig() - Method in class org.tribuo.common.tree.RandomForestTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- postConfig() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- postConfig() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- postConfig() - Method in class org.tribuo.data.columnar.RowProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.csv.CSVDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.BasicPipeline
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.NgramProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.TokenPipeline
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.datasource.IDXDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.ensemble.BaggingTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.hash.HashCodeHasher
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.hash.MessageDigestHasher
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.hash.ModHashCodeHasher
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
- postConfig() - Method in class org.tribuo.interop.onnx.ImageTransformer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.onnx.LabelOneVOneTransformer
- postConfig() - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.ImageConverter
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.json.JsonDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.math.optimisers.RMSProp
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- postConfig() - Method in class org.tribuo.multilabel.example.MultiLabelGaussianDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.example.GaussianDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.example.NonlinearGaussianDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.RegressionFactory
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.sgd.objectives.Huber
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.TransformationMap
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.BinningTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- postConfig() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Used by the OLCUT configuration system, and should not be called by external code.
- POW - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise exponentiation with broadcasting.
- PRCurve(double[], double[], double[]) - Constructor for class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
-
Constructs a precision-recall curve.
- precision - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
-
The precision at the corresponding threshold.
- precision(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the precision based upon the supplied statistics.
- precision(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The precision for this label.
- precision(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the precision for this metric target.
- precision(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- precision(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the precision of this label, i.e., the number of true positives divided by the number of true positives plus false positives.
- PRECISION - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The precision, i.e., the true positives divided by the predicted positives.
- PRECISION - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The precision, i.e., the number of true positives divided by the number of predicted positives.
- PRECISION - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The precision, i.e., the number of true positives divided by the number of predicted positives.
- precisionRecallCurve(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Calculates the Precision Recall curve for a single label.
- precisionRecallCurve(Label, List<Prediction<Label>>) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
- predict(CommandInterpreter, String[]) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Makes a prediction using the loaded model.
- predict(Iterable<Example<T>>) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Uses the model to predict the label for multiple examples.
- predict(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Uses the model to predict the output for multiple examples.
- predict(Iterable<SequenceExample<T>>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the output for multiple examples.
- predict(Dataset<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Uses the model to predict the labels for multiple examples contained in a data set.
- predict(Dataset<T>) - Method in class org.tribuo.Model
-
Uses the model to predict the outputs for multiple examples contained in a data set.
- predict(Dataset<T>) - Method in class org.tribuo.transform.TransformedModel
- predict(Example<Event>) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyModel
- predict(Example<Event>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
- predict(Example<Label>) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- predict(Example<Label>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- predict(Example<Label>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- predict(Example<Label>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- predict(Example<Label>) - Method in class org.tribuo.classification.sgd.fm.FMClassificationModel
- predict(Example<Label>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- predict(Example<Label>) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- predict(Example<ClusterID>) - Method in class org.tribuo.clustering.hdbscan.HdbscanModel
- predict(Example<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- predict(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.ClassifierChainModel
- predict(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- predict(Example<MultiLabel>) - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelModel
- predict(Example<MultiLabel>) - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.sgd.fm.FMRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- predict(Example<T>) - Method in class org.tribuo.common.nearest.KNNModel
- predict(Example<T>) - Method in class org.tribuo.common.tree.TreeModel
- predict(Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
- predict(Example<T>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- predict(Example<T>) - Method in class org.tribuo.interop.ExternalModel
- predict(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
- predict(Example<T>) - Method in class org.tribuo.Model
-
Uses the model to predict the output for a single example.
- predict(Example<T>) - Method in class org.tribuo.transform.TransformedModel
- predict(SGDVector) - Method in class org.tribuo.common.sgd.FMParameters
-
Generates an unnormalised prediction by multiplying the weights with the incoming features, adding the bias and adding the feature factors.
- predict(SGDVector) - Method in interface org.tribuo.math.FeedForwardParameters
-
Generates an un-normalized prediction by feeding the features through the parameters.
- predict(SGDVector) - Method in class org.tribuo.math.LinearParameters
-
Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features.
- predict(SGDVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate a prediction using Viterbi.
- predict(SequenceDataset<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- predict(SequenceDataset<T>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the labels for multiple examples contained in a data set.
- predict(SequenceExample<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- predict(SequenceExample<Label>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- predict(SequenceExample<T>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
- predict(SequenceExample<T>) - Method in class org.tribuo.sequence.IndependentSequenceModel
- predict(SequenceExample<T>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the output for a single example.
- predictAndObserve(Iterable<Example<T>>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Feeds the examples to the model, records the predictions and returns them.
- predictAndObserve(Example<T>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Feeds the example to the model, records the prediction and returns it.
- predictConfidenceUsingCBP(SGDVector[], List<Chunk>) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
This predicts per chunk confidence using the constrained forward backward algorithm from Culotta and McCallum 2004.
- prediction - Variable in class org.tribuo.common.sgd.AbstractSGDModel.PredAndActive
-
The vector prediction.
- prediction - Variable in class org.tribuo.interop.oci.OCIModel.PredictionJson
- Prediction<T extends Output<T>> - Class in org.tribuo
-
A prediction made by a
Model
. - Prediction(Prediction<T>, int, Example<T>) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- Prediction(T, int, Example<T>) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- Prediction(T, Map<String, T>, int, Example<T>, boolean) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- PredictionJson(double[][]) - Constructor for class org.tribuo.interop.oci.OCIModel.PredictionJson
- predictionPath - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Path to write model predictions
- predictionPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Path to write model predictions
- predictMarginals(SGDVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate a prediction using Belief Propagation.
- predictOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceModel
- predictOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- predictSingle(Example<T>) - Method in class org.tribuo.common.sgd.AbstractSGDModel
-
Generates the dense vector prediction from the supplied example.
- PREFIX - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
Some tokenizers produce "sub-word" tokens.
- PreprocessAndSerialize - Class in org.tribuo.data
-
Reads in a Datasource, processes all the data, and writes it out as a serialized dataset.
- PreprocessAndSerialize.PreprocessAndSerializeOptions - Class in org.tribuo.data
-
Command line options.
- PreprocessAndSerializeOptions() - Constructor for class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
- preprocessors - Variable in class org.tribuo.data.text.DirectoryFileSource
-
Document preprocessors that should be run on the documents that make up this data set.
- preprocessors - Variable in class org.tribuo.data.text.TextDataSource
-
Document preprocessors that should be run on the documents that make up this data set.
- preTrainingHook(Session, SequenceDataset<T>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
-
A hook for modifying the session state before training starts.
- printFeatureMap(Map<String, List<Pair<String, Double>>>, List<String>, PrintStream) - Static method in class org.tribuo.util.HTMLOutput
-
Formats a feature ranking as a HTML table.
- printTree - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Prints the decision tree.
- probability - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
-
The probability of that statistic.
- process(String) - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Processes the field value and generates a (possibly empty) list of
ColumnarFeature
s. - process(String) - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Deprecated.
- process(String) - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
Deprecated.
- process(String) - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Deprecated.
- process(String) - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Deprecated.
- process(String) - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Deprecated.use
ResponseProcessor.process(List)
and support multiple values instead. Returns Optional.empty() if it failed to process out a response. - process(String) - Method in class org.tribuo.data.text.impl.NgramProcessor
- process(String) - Method in interface org.tribuo.data.text.TextProcessor
-
Extracts features from the supplied text.
- process(String, String) - Method in class org.tribuo.data.text.impl.BasicPipeline
- process(String, String) - Method in class org.tribuo.data.text.impl.NgramProcessor
- process(String, String) - Method in class org.tribuo.data.text.impl.TokenPipeline
- process(String, String) - Method in interface org.tribuo.data.text.TextPipeline
-
Extracts a list of features from the supplied text, using the tag to prepend the feature names.
- process(String, String) - Method in interface org.tribuo.data.text.TextProcessor
-
Extracts features from the supplied text.
- process(String, String) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Tokenizes the input using the loaded tokenizer, truncates the token list if it's longer than
maxLength
- 2 (to account for [CLS] and [SEP] tokens), and then passes the token list toBERTFeatureExtractor.extractExample(java.util.List<java.lang.String>)
. - process(List<String>) - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- process(List<String>) - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
This method always returns
Optional.empty()
. - process(List<String>) - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- process(List<String>) - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- process(List<String>) - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Returns Optional.empty() if it failed to process out a response.This method has a default implementation for backwards compatibility with Tribuo 4.0 and 4.1.
- process(List<ColumnarFeature>) - Method in interface org.tribuo.data.columnar.FeatureProcessor
-
Processes a list of
ColumnarFeature
s, transforming it by adding conjunctions or removing unnecessary features. - process(List<ColumnarFeature>) - Method in class org.tribuo.data.columnar.processors.feature.UniqueProcessor
- processDoc(String) - Method in interface org.tribuo.data.text.DocumentPreprocessor
-
Processes the content of part of a document stored as a string, returning a new string.
- processDoc(String) - Method in class org.tribuo.data.text.impl.CasingPreprocessor
- processDoc(String) - Method in class org.tribuo.data.text.impl.NewsPreprocessor
- processWeights(List<String>) - Static method in class org.tribuo.classification.experiments.ConfigurableTrainTest
-
Converts the weight text input format into an object suitable for use in a Trainer.
- PRODUCER_NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- PRODUCER_VERSION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- projectID - Variable in class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions
-
Project ID.
- projectID - Variable in class org.tribuo.interop.oci.OCIUtil.OCIDSConfig
-
OCI Data Science project ID.
- protobufPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Path to the protobuf containing the network description.
- provenance - Variable in class org.tribuo.data.text.impl.SimpleTextDataSource
- provenance - Variable in class org.tribuo.Model
-
The model provenance.
- PROVENANCE_METADATA_FIELD - Static variable in interface org.tribuo.ONNXExportable
-
The name of the ONNX metadata field where the provenance information is stored in exported models.
- provenanceDiff() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns the value of the
provenanceDiff
record component. - provenanceFile - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
Write out the stripped provenance as json.
- provenanceOutput - Variable in class org.tribuo.Model
-
The cached toString of the model provenance.
- provenanceOutput - Variable in class org.tribuo.sequence.SequenceModel
- PSEUDOHUBER - Enum constant in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Pseudo-huber loss, a differentiable approximation to absolute error
- punct(char, int) - Method in class org.tribuo.util.tokens.universal.Range
-
Sets this range to represent a punctuation character.
- PUNCTUATION - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
A PUNCTUATION corresponds to tokens consisting of punctuation characters.
- put(VariableInfo) - Method in class org.tribuo.MutableFeatureMap
-
Adds a variable info into the feature map.
Q
- QUANT_PARAMETER_TENSOR_NAMES_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorAnnotation
- QUANTIZATION_ANNOTATION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- Quartile - Class in org.tribuo.data.columnar.processors.response
-
A quartile to split data into 4 chunks.
- Quartile(double, double, double) - Constructor for class org.tribuo.data.columnar.processors.response.Quartile
-
Constructs a quartile with the specified values.
- QUARTILE - Enum constant in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the training data output at the specified fraction of the sorted output.
- QuartileResponseProcessor<T extends Output<T>> - Class in org.tribuo.data.columnar.processors.response
-
Processes the response into quartiles and emits them as classification outputs.
- QuartileResponseProcessor(String, String, Quartile, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Constructs a response processor which emits 4 distinct bins for the output factory to process.
- QuartileResponseProcessor(List<String>, List<Quartile>, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Constructs a response processor which emits 4 distinct bins for the output factory to process.
- quiet - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Make the XGBoost training procedure quiet.
- quiet - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Make the XGBoost training procedure quiet.
- QUOTE - Static variable in class org.tribuo.data.csv.CSVIterator
-
Default quote character.
R
- r2() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates R2 for all dimensions.
- r2(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates R^2 based on the supplied statistics.
- r2(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates R2 for the supplied dimension.
- r2(Regressor, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates R^2 based on the supplied statistics for a single dimension.
- R2 - Enum constant in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the R^2 of the predictions.
- RANDOM - Enum constant in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Initialisation
-
Initialize centroids by choosing uniformly at random from the data points.
- RANDOM - Enum constant in enum class org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Uniformly randomly generated data.
- RandomForestTrainer<T extends Output<T>> - Class in org.tribuo.common.tree
-
A trainer which produces a random forest.
- RandomForestTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int) - Constructor for class org.tribuo.common.tree.RandomForestTrainer
-
Constructs a RandomForestTrainer with the default seed
Trainer.DEFAULT_SEED
. - RandomForestTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int, long) - Constructor for class org.tribuo.common.tree.RandomForestTrainer
-
Constructs a RandomForestTrainer with the supplied seed, trainer, combining function and number of members.
- randperm(int, Random) - Static method in class org.tribuo.util.Util
-
Shuffles the indices in the range [0,size).
- randperm(int, SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles the indices in the range [0,size).
- randpermInPlace(double[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles the input.
- randpermInPlace(int[], Random) - Static method in class org.tribuo.util.Util
-
Shuffles the input.
- randpermInPlace(int[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles the input.
- Range - Class in org.tribuo.util.tokens.universal
-
A range currently being segmented.
- RAW_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- rawLines - Variable in class org.tribuo.data.text.impl.SimpleStringDataSource
-
Used because OLCUT doesn't support generic Iterables.
- RBF - Class in org.tribuo.math.kernel
-
A Radial Basis Function (RBF) kernel, exp(-gamma*|u-v|^2).
- RBF - Enum constant in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Uses an
RBF
kernel. - RBF - Enum constant in enum class org.tribuo.common.libsvm.KernelType
-
An RBF kernel of the form exp(-gamma*|u-v|^2)
- RBF(double) - Constructor for class org.tribuo.math.kernel.RBF
-
A Radial Basis Function (RBF) kernel, exp(-gamma*|u-v|^2).
- read() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- read() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- read() - Method in class org.tribuo.data.text.TextDataSource
-
Reads the data from the Path.
- REAL - Enum constant in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Real valued features.
- RealIDInfo - Class in org.tribuo
-
Same as a
RealInfo
, but with an additional int id field. - RealIDInfo(String, int, double, double, double, double, int) - Constructor for class org.tribuo.RealIDInfo
-
Constructs a real id info from the supplied arguments.
- RealIDInfo(RealInfo, int) - Constructor for class org.tribuo.RealIDInfo
-
Constructs a deep copy of the supplied real info and id.
- RealInfo - Class in org.tribuo
-
Stores information about real valued features.
- RealInfo(String) - Constructor for class org.tribuo.RealInfo
-
Creates an empty real info with the supplied name.
- RealInfo(String, int) - Constructor for class org.tribuo.RealInfo
-
Creates a real info with the supplied starting conditions.
- RealInfo(String, int, double, double, double, double) - Constructor for class org.tribuo.RealInfo
-
Creates a real info with the supplied starting conditions.
- RealInfo(RealInfo) - Constructor for class org.tribuo.RealInfo
-
Copy constructor.
- RealInfo(RealInfo, String) - Constructor for class org.tribuo.RealInfo
-
Copy constructor which renames the feature.
- rebuild(OrtSession.SessionOptions) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Closes the session and rebuilds it using the supplied options.
- rebuildTensor() - Method in class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
Recreates the Tensor from the serialized form.
- recall - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
-
The recall at the corresponding threshold.
- recall(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the recall based upon the supplied statistics.
- recall(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The recall for this label.
- recall(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the recall for this metric target.
- recall(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- recall(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the recall of this label, i.e., the number of true positives divided by the number of true positives plus false negatives.
- RECALL - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The recall, i.e., the true positives divided by the ground truth positives.
- RECALL - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The recall, i.e., the number of true positives divided by the number of ground truth positives.
- RECALL - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The recall, i.e., the number of true positives divided by the number of ground truth positives.
- RECOMMENDER - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Recommender system, no Tribuo mapping.
- reconfigureOrtSession(OrtSession.SessionOptions) - Method in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Reconstructs the OrtSession using the supplied options.
- recoverDataset() - Method in class org.tribuo.reproducibility.ReproUtil
-
Return a
Dataset
used when a model was trained. - recoverTrainer() - Method in class org.tribuo.reproducibility.ReproUtil
-
Extract the trainer from this repro util.
- reduce(double, DoubleUnaryOperator, DoubleBinaryOperator) - Method in class org.tribuo.math.la.DenseVector
-
Performs a reduction from left to right of this vector.
- reduce(double, DoubleUnaryOperator, DoubleBinaryOperator) - Method in interface org.tribuo.math.la.SGDVector
-
Reduces the vector, applying the transformation to every value (including the implicit zeros) and reducing the output by applying the supplied reduction operator (where the right argument is the current reduction value, and the left argument is the transformed value).
- reduce(double, DoubleUnaryOperator, DoubleBinaryOperator) - Method in class org.tribuo.math.la.SparseVector
- REDUCE_MEAN - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Computes the mean of the input tensor's element along the provided axes.
- REDUCE_MIN - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Compute the minimum along the specified axes of the tensor.
- REDUCE_SUM - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Compute the sum along the specified axes of the tensor, the axes are the second input.
- reduceByName(Merger) - Method in class org.tribuo.Example
-
Merges features with the same name using the supplied
Merger
. - reduceByName(Merger) - Method in class org.tribuo.impl.ArrayExample
- reduceByName(Merger) - Method in class org.tribuo.impl.BinaryFeaturesExample
- reduceByName(Merger) - Method in class org.tribuo.impl.IndexedArrayExample
- reduceByName(Merger) - Method in class org.tribuo.impl.ListExample
- reduceByName(Merger) - Method in class org.tribuo.sequence.SequenceExample
-
Reduces the features in each example using the supplied
Merger
. - REF_ATTR_NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- regenerateFeatureInfo() - Method in class org.tribuo.MutableDataset
-
Rebuilds the feature info by inspecting each example.
- regenerateOutputInfo() - Method in class org.tribuo.MutableDataset
-
Rebuilds the output info by inspecting each example.
- RegexFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which applies a regex to a field and generatesColumnarFeature
s based on the matches. - RegexFieldProcessor(String, String, EnumSet<RegexFieldProcessor.Mode>) - Constructor for class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Constructs a field processor which emits features when the field value matches the supplied regex.
- RegexFieldProcessor(String, Pattern, EnumSet<RegexFieldProcessor.Mode>) - Constructor for class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Constructs a field processor which emits features when the field value matches the supplied regex.
- RegexFieldProcessor.Mode - Enum Class in org.tribuo.data.columnar.processors.field
-
Matching mode.
- regexMappingProcessors - Variable in class org.tribuo.data.columnar.RowProcessor
- registerAllExtensions(ExtensionRegistry) - Static method in class ai.onnx.proto.OnnxMl
- registerAllExtensions(ExtensionRegistryLite) - Static method in class ai.onnx.proto.OnnxMl
- REGRESSION - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Regression, maps to Tribuo's
Regressor
. - RegressionDataGenerator - Class in org.tribuo.regression.example
-
Generates two example train and test datasets, used for unit testing.
- RegressionEvaluation - Interface in org.tribuo.regression.evaluation
-
Defines methods that calculate regression performance.
- RegressionEvaluator - Class in org.tribuo.regression.evaluation
- RegressionEvaluator() - Constructor for class org.tribuo.regression.evaluation.RegressionEvaluator
-
By default, don't use example weights.
- RegressionEvaluator(boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionEvaluator
-
Construct an evaluator.
- regressionFactory - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- RegressionFactory - Class in org.tribuo.regression
-
A factory for creating
Regressor
s andRegressionInfo
s. - RegressionFactory() - Constructor for class org.tribuo.regression.RegressionFactory
-
Builds a regression factory using the default split character
RegressionFactory.DEFAULT_SPLIT_CHAR
. - RegressionFactory(char) - Constructor for class org.tribuo.regression.RegressionFactory
-
Sets the split character used to parse
Regressor
instances from Strings. - RegressionFactory.RegressionFactoryProvenance - Class in org.tribuo.regression
-
Provenance for
RegressionFactory
. - RegressionFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
-
Constructs a provenance from it's marshalled form.
- RegressionInfo - Class in org.tribuo.regression
-
The base class for regression information using
Regressor
s. - RegressionMetric - Class in org.tribuo.regression.evaluation
-
A
EvaluationMetric
forRegressor
s which calculates the metric based on a the true values and the predicted values. - RegressionMetric(MetricTarget<Regressor>, String, ToDoubleBiFunction<MetricTarget<Regressor>, RegressionMetric.Context>) - Constructor for class org.tribuo.regression.evaluation.RegressionMetric
-
Construct a new
RegressionMetric
for the supplied metric target, using the supplied function. - RegressionMetric(MetricTarget<Regressor>, String, ToDoubleBiFunction<MetricTarget<Regressor>, RegressionMetric.Context>, boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionMetric
-
Construct a new
RegressionMetric
for the supplied metric target, using the supplied function. - RegressionMetrics - Enum Class in org.tribuo.regression.evaluation
-
An enum of the default
RegressionMetric
s supported by the multi-dimensional regression evaluation package. - RegressionObjective - Interface in org.tribuo.regression.sgd
-
An interface for regression objectives.
- RegressionSufficientStatistics - Class in org.tribuo.regression.evaluation
-
The sufficient statistics for regression metrics (i.e., each prediction and each true value).
- RegressionSufficientStatistics(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>, boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionSufficientStatistics
-
Constructs the sufficient statistics for regression metrics.
- RegressionTreeOptions() - Constructor for class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
- Regressor - Class in org.tribuo.regression
-
An
Output
for n-dimensional real valued regression. - Regressor(String[], double[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied named values.
- Regressor(String[], double[], double[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied named values.
- Regressor(String, double) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor containing a single dimension, using
Double.NaN
as the variance. - Regressor(String, double, double) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor containing a single dimension.
- Regressor(Regressor.DimensionTuple[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied dimension tuples.
- Regressor.DimensionTuple - Class in org.tribuo.regression
-
A
Regressor
which contains a single dimension, used internally when the model implementation doesn't natively support multi-dimensional regression outputs. - RegressorConverter - Class in org.tribuo.interop.tensorflow
- RegressorConverter() - Constructor for class org.tribuo.interop.tensorflow.RegressorConverter
-
Constructs a RegressorConverter.
- RegressorImpurity - Interface in org.tribuo.regression.rtree.impurity
-
Calculates a tree impurity score based on the regression targets.
- RegressorImpurity.ImpurityTuple - Class in org.tribuo.regression.rtree.impurity
-
Tuple class for the impurity and summed weight.
- RegressorTrainingNode - Class in org.tribuo.regression.rtree.impl
-
A decision tree node used at training time.
- RegressorTrainingNode(RegressorImpurity, RegressorTrainingNode.InvertedData, int, String, int, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, AbstractTrainingNode.LeafDeterminer) - Constructor for class org.tribuo.regression.rtree.impl.RegressorTrainingNode
-
Constructs a tree training node for regression problems.
- RegressorTrainingNode.InvertedData - Class in org.tribuo.regression.rtree.impl
-
Tuple containing an inverted dataset (i.e., feature-wise not exmaple-wise).
- RegressorTransformer - Class in org.tribuo.interop.onnx
- RegressorTransformer() - Constructor for class org.tribuo.interop.onnx.RegressorTransformer
-
Constructs a RegressorTransformer.
- remove(int) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- remove(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- removeAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- removeAttribute(int) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- removeDim(int) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- removeExternalData(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- removeFeatures(List<Feature>) - Method in class org.tribuo.Example
-
Removes all features in this list from the Example.
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.ArrayExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.BinaryFeaturesExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.IndexedArrayExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.ListExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.sequence.SequenceExample
-
Removes the features in the supplied list from each example contained in this sequence.
- removeGraphs(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- removeInitializationBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- removeInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- removeInput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- removeMetadataProps(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- removeNode(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- removeOpsetImport(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- removeOther(IntArrayContainer, int[], IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Copies from input to output excluding the values in otherArray.
- removeOutput(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- removeProvenances - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
The provenances to remove
- removeQuantizationAnnotation(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- removeQuantParameterTensorNames(int) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- removeSparseInitializer(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- removeSparseTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- removeTensors(int) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- removeTrainingInfo(int) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- removeUpdateBinding(int) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- removeValueInfo(int) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- rename(String) - Method in class org.tribuo.CategoricalIDInfo
- rename(String) - Method in class org.tribuo.CategoricalInfo
- rename(String) - Method in class org.tribuo.RealIDInfo
- rename(String) - Method in class org.tribuo.RealInfo
- rename(String) - Method in interface org.tribuo.VariableInfo
-
Rename generates a fresh VariableInfo with the new name.
- replaceNewlinesWithSpaces - Variable in class org.tribuo.data.columnar.RowProcessor
- reproducedFeatures() - Method in record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Returns the value of the
reproducedFeatures
record component. - reproducedOutput() - Method in record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Returns the value of the
reproducedOutput
record component. - reproduceFromModel() - Method in class org.tribuo.reproducibility.ReproUtil
-
Using a supplied
Model
object, recreates an identical model object that the provenance describes. - reproduceFromProvenance() - Method in class org.tribuo.reproducibility.ReproUtil
-
Recreates a model object using the
ModelProvenance
supplied when the ReproUtil object was created. - ReproUtil<T extends Output<T>> - Class in org.tribuo.reproducibility
-
Reproducibility utility based on Tribuo's provenance objects.
- ReproUtil(Model<T>) - Constructor for class org.tribuo.reproducibility.ReproUtil
-
Creates a ReproUtil instance.
- ReproUtil(ModelProvenance, Class<T>) - Constructor for class org.tribuo.reproducibility.ReproUtil
-
Creates a ReproUtil instance
- ReproUtil.FeatureDiff - Record Class in org.tribuo.reproducibility
-
Record for any differences between feature sets.
- ReproUtil.ModelReproduction<T extends Output<T>> - Record Class in org.tribuo.reproducibility
-
Record for a model reproduction.
- ReproUtil.OutputDiff<T extends Output<T>> - Record Class in org.tribuo.reproducibility
-
Record for any differences between output domains.
- reset() - Method in class org.tribuo.math.optimisers.AdaDelta
- reset() - Method in class org.tribuo.math.optimisers.AdaGrad
- reset() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- reset() - Method in class org.tribuo.math.optimisers.Adam
- reset() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- reset() - Method in class org.tribuo.math.optimisers.Pegasos
- reset() - Method in class org.tribuo.math.optimisers.RMSProp
- reset() - Method in class org.tribuo.math.optimisers.SGD
- reset() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Resets the optimiser so it's ready to optimise a new
Parameters
. - reset() - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Resets this accumulator to the starting state.
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
- reset(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Resets the tokenizer so that it operates on a new sequence of characters.
- reset(CharSequence) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Reset state of tokenizer to clean slate.
- reshape(int[]) - Method in class org.tribuo.math.la.DenseMatrix
- reshape(int[]) - Method in class org.tribuo.math.la.DenseSparseMatrix
- reshape(int[]) - Method in class org.tribuo.math.la.DenseVector
- reshape(int[]) - Method in class org.tribuo.math.la.SparseVector
- reshape(int[]) - Method in interface org.tribuo.math.la.Tensor
-
Reshapes the Tensor to the supplied shape.
- RESOURCE_HASH - Static variable in interface org.tribuo.provenance.DataSourceProvenance
-
The name of the provenance field for the resource hash.
- Resources - Class in org.tribuo.tests
-
Utils for working with classpath resources at test time.
- responseProcessor - Variable in class org.tribuo.data.columnar.RowProcessor
- ResponseProcessor<T extends Output<T>> - Interface in org.tribuo.data.columnar
-
An interface that will take the response field and produce an
Output
. - restoreMarshalledVariables(Session, Map<String, TensorFlowUtil.TensorTuple>) - Static method in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
Writes a map containing the name of each Tensorflow VariableV2 and the associated parameter array into the supplied session.
- ResultSetIterator - Class in org.tribuo.data.sql
-
An iterator over a ResultSet returned from JDBC.
- ResultSetIterator(ResultSet) - Constructor for class org.tribuo.data.sql.ResultSetIterator
-
Construct a result set iterator over the supplied result set.
- ResultSetIterator(ResultSet, int) - Constructor for class org.tribuo.data.sql.ResultSetIterator
-
Constructs a result set iterator over the supplied result set using the specified fetch buffer size.
- retainAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- RF - Enum constant in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Creates a
RandomForestTrainer
. - rho - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Rho for RMSProp, AdaDelta, SGD with Momentum.
- rho - Variable in class org.tribuo.math.optimisers.SGD
- rightMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseMatrix
- rightMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.
- rightMultiply(SGDVector) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by a
SGDVector
returning a vector of the appropriate size. - rmse() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the RMSE for all dimensions.
- rmse(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the RMSE based on the supplied statistics.
- rmse(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.
- rmse(Regressor, RegressionSufficientStatistics) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the RMSE based on the supplied statistics for a single dimension.
- RMSE - Enum constant in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Root Mean Squared Error of the predictions.
- RMSProp - Class in org.tribuo.math.optimisers
-
An implementation of the RMSProp gradient optimiser.
- RMSProp(double, double) - Constructor for class org.tribuo.math.optimisers.RMSProp
-
Constructs an RMSProp gradient optimiser using the specified parameters with epsilon set to 1e-8 and decay to 0.0.
- RMSProp(double, double, double, double) - Constructor for class org.tribuo.math.optimisers.RMSProp
-
Constructs an RMSProp gradient optimiser using the specified parameters.
- RMSPROP - Enum constant in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
The RMSprop optimiser.
- RMSPROP - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
The RMSProp optimiser.
- rng - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- rng - Variable in class org.tribuo.classification.example.DemoLabelDataSource
- rng - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- rng - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- rng - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- rng - Variable in class org.tribuo.ensemble.BaggingTrainer
- rng - Variable in class org.tribuo.evaluation.KFoldSplitter
- rng - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- ROC(double[], double[], double[]) - Constructor for class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
-
Constructs an ROC curve.
- ROUNDROBIN - Enum constant in enum class org.tribuo.datasource.AggregateDataSource.IterationOrder
-
Round-robins the iterators (i.e., chooses one from each in turn).
- Row<T> - Class in org.tribuo.util.infotheory.impl
-
A row of values from a
RowList
. - Row(long, List<String>, Map<String, String>) - Constructor for class org.tribuo.data.columnar.ColumnarIterator.Row
-
Constructs a row from a columnar source.
- rowIterator() - Method in class org.tribuo.data.columnar.ColumnarDataSource
-
The iterator that emits
ColumnarIterator.Row
objects from the underlying data source. - rowIterator() - Method in class org.tribuo.data.csv.CSVDataSource
- rowIterator() - Method in class org.tribuo.data.sql.SQLDataSource
- rowIterator() - Method in class org.tribuo.json.JsonDataSource
- RowList<T> - Class in org.tribuo.util.infotheory.impl
-
An implementation of a List which wraps a set of lists.
- RowList(Set<List<T>>) - Constructor for class org.tribuo.util.infotheory.impl.RowList
-
Constructs a RowList from a set of lists.
- rowProcessor - Variable in class org.tribuo.data.columnar.ColumnarDataSource
- rowProcessor - Variable in class org.tribuo.data.DataOptions
-
The name of the row processor from the config file.
- RowProcessor<T extends Output<T>> - Class in org.tribuo.data.columnar
-
A processor which takes a Map of String to String and returns an
Example
. - RowProcessor() - Constructor for class org.tribuo.data.columnar.RowProcessor
-
For olcut.
- RowProcessor(List<FieldExtractor<?>>, FieldExtractor<Float>, ResponseProcessor<T>, Map<String, FieldProcessor>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(List<FieldExtractor<?>>, FieldExtractor<Float>, ResponseProcessor<T>, Map<String, FieldProcessor>, Map<String, FieldProcessor>, Set<FeatureProcessor>, boolean) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(List<FieldExtractor<?>>, FieldExtractor<Float>, ResponseProcessor<T>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(List<FieldExtractor<?>>, ResponseProcessor<T>, Map<String, FieldProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(ResponseProcessor<T>, Map<String, FieldProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(ResponseProcessor<T>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- rowScaleInPlace(DenseVector) - Method in class org.tribuo.math.la.DenseMatrix
- rowScaleInPlace(DenseVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
- rowScaleInPlace(DenseVector) - Method in interface org.tribuo.math.la.Matrix
-
Scales each row by the appropriate value in the
DenseVector
. - rowSum() - Method in class org.tribuo.math.la.DenseMatrix
- rowSum() - Method in class org.tribuo.math.la.DenseSparseMatrix
- rowSum() - Method in interface org.tribuo.math.la.Matrix
-
Generates a
DenseVector
representing the sum of each row. - rowSum(int) - Method in class org.tribuo.math.la.DenseMatrix
-
Calculates the sum of the specified row.
- rType - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Regression type to use.
- rType - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Regression type to use.
- run(ConfigurationManager, DataOptions, Trainer<Label>) - Static method in class org.tribuo.classification.TrainTestHelper
-
This method trains a model on the specified training data, and evaluates it on the specified test data.
- RunAll - Class in org.tribuo.classification.experiments
-
Trains and tests a model using the supplied data, for each trainer inside a configuration file.
- RunAll() - Constructor for class org.tribuo.classification.experiments.RunAll
- RunAll.RunAllOptions - Class in org.tribuo.classification.experiments
-
Command line options.
- RunAllOptions() - Constructor for class org.tribuo.classification.experiments.RunAll.RunAllOptions
S
- S_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- sampleData(String, List<Token>) - Method in class org.tribuo.classification.explanations.lime.LIMEText
-
Samples a new dataset from the input text.
- sampleFromCDF(double[], Random) - Static method in class org.tribuo.util.Util
-
Samples an index from the supplied cdf.
- sampleFromCDF(double[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Samples an index from the supplied cdf.
- sampleInts(Random, int, int) - Static method in class org.tribuo.util.Util
-
Samples an array of ints from the supplied rng in [0,range).
- samplePoint(Random, ImmutableFeatureMap, long, SparseVector) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Samples a single example from the supplied feature map and input vector.
- SAMPLES_RATIO - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
The ratio of samples to symbols before emitting a warning.
- SAMPLES_RATIO - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
The ratio of samples to symbols before emitting a warning.
- sampleStandardDeviation(Collection<V>) - Static method in class org.tribuo.util.Util
-
Computes the sample standard deviation of the collection.
- sampleVariance(Collection<V>) - Static method in class org.tribuo.util.Util
-
Computes the sample variance of the collection.
- save(Path, boolean) - Method in class org.tribuo.datasource.IDXDataSource.IDXData
-
Writes out this IDXData to the specified path.
- save(Path, Dataset<T>, String) - Method in class org.tribuo.data.csv.CSVSaver
-
Saves the dataset to the specified path.
- save(Path, Dataset<T>, Set<String>) - Method in class org.tribuo.data.csv.CSVSaver
-
Saves the dataset to the specified path.
- saveCSV(CommandInterpreter, String) - Method in class org.tribuo.data.DatasetExplorer
-
Saves out the dataset as a CSV file.
- saveModel(Model<T>) - Method in class org.tribuo.data.DataOptions
-
Saves the model out to the path in
DataOptions.outputPath
. - saveONNXModel(String, long, Path) - Method in interface org.tribuo.ONNXExportable
-
Exports this
Model
as an ONNX file. - scalarAddInPlace(double) - Method in interface org.tribuo.math.la.Tensor
-
Adds
scalar
to each element of thisTensor
. - scalarBuilder(ONNXContext, String, double) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the scalar value.
- scalarBuilder(ONNXContext, String, float) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the scalar value.
- scalarBuilder(ONNXContext, String, int) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the scalar value.
- scalarBuilder(ONNXContext, String, long) - Static method in class org.tribuo.util.onnx.ONNXUtils
-
Builds a TensorProto containing the scalar value.
- scale(double) - Method in class org.tribuo.math.la.DenseVector
- scale(double) - Method in interface org.tribuo.math.la.SGDVector
-
Generates a new vector with each element scaled by
coefficient
. - scale(double) - Method in class org.tribuo.math.la.SparseVector
- scaleFeatures - Variable in class org.tribuo.data.DataOptions
-
Scales the features to the range 0-1 independently.
- scaleIncZeros - Variable in class org.tribuo.data.DataOptions
-
Includes implicit zeros in the scale range calculation.
- scaleInPlace(double) - Method in interface org.tribuo.math.la.Tensor
-
Scales each element of this
Tensor
bycoefficient
. - scaleInPlace(double) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- scaleInPlace(double) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- score - Variable in class org.tribuo.classification.Label
-
The score of the label.
- SCORE - Enum constant in enum class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions.Mode
-
Score a deployed model.
- scoreChunks(SequenceExample<Label>, List<Chunk>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Scores the chunks using constrained belief propagation.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
Makes a prediction for a single dimension.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
Makes a prediction for a single dimension.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.slm.SparseLinearModel
- scores - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
-
The local clique scores (i.e., the linear model scores).
- scores - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
-
The pre-viterbi scores.
- scoreSubsequences(SequenceExample<Label>, List<Prediction<Label>>, List<SUB>) - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
-
The scoring function for the subsequences.
- scoreSubsequences(SequenceExample<Label>, List<Prediction<Label>>, List<SUB>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- SECOND - Enum constant in enum class org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
The second variable is weighted.
- SECOND_CLASS - Static variable in class org.tribuo.classification.example.DemoLabelDataSource
-
The second class.
- secondCount - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
-
The second marginal distribution.
- secondDimensionName - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
-
Name of the second output dimension.
- seed - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- seed - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
-
RNG seed.
- seed - Variable in class org.tribuo.classification.example.DemoLabelDataSource
- seed - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
RNG seed.
- seed - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- seed - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- seed - Variable in class org.tribuo.data.DataOptions
-
RNG seed.
- seed - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
-
Seed for the RNG.
- seed - Variable in class org.tribuo.ensemble.BaggingTrainer
- seed - Variable in class org.tribuo.evaluation.KFoldSplitter
- seed - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- SEGMENT_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- SEMICOLON - Enum constant in enum class org.tribuo.data.DataOptions.Delimiter
-
Semicolon separator.
- SENTIMENT_ANALYSIS - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Sentiment analysis, no strict Tribuo mapping.
- SEPARATOR - Static variable in class org.tribuo.data.csv.CSVIterator
-
Default separator character.
- SEPARATOR_TOKEN - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Default separator token name.
- SeqTest - Class in org.tribuo.classification.sgd.crf
-
Build and run a sequence classifier on a generated dataset.
- SeqTest() - Constructor for class org.tribuo.classification.sgd.crf.SeqTest
- SeqTest.CRFOptions - Class in org.tribuo.classification.sgd.crf
-
Command line options.
- SeqTrainTest - Class in org.tribuo.classification.sequence
-
Build and run a sequence classifier on a generated or serialized dataset using the trainer specified in the configuration file.
- SeqTrainTest() - Constructor for class org.tribuo.classification.sequence.SeqTrainTest
- SeqTrainTest.SeqTrainTestOptions - Class in org.tribuo.classification.sequence
-
Command line options.
- SeqTrainTestOptions() - Constructor for class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
- SEQUENCE_TYPE - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- SEQUENCE_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- SequenceDataGenerator - Class in org.tribuo.classification.sequence.example
-
A data generator for smoke testing sequence label models.
- SequenceDataset<T extends Output<T>> - Class in org.tribuo.sequence
-
A class for sets of data, which are used to train and evaluate classifiers.
- SequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.SequenceDataset
- SequenceDataSource<T extends Output<T>> - Interface in org.tribuo.sequence
-
A interface for things that can be given to a SequenceDataset's constructor.
- SequenceEvaluation<T extends Output<T>> - Interface in org.tribuo.sequence
-
An immutable evaluation of a specific sequence model and dataset.
- SequenceEvaluator<T extends Output<T>,
E extends SequenceEvaluation<T>> - Interface in org.tribuo.sequence -
An evaluation factory which produces immutable
SequenceEvaluation
s of a givenSequenceDataset
using the givenSequenceModel
. - SequenceExample<T extends Output<T>> - Class in org.tribuo.sequence
-
A sequence of examples, used for sequence classification.
- SequenceExample() - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates an empty sequence example.
- SequenceExample(List<Example<T>>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the list of examples.
- SequenceExample(List<Example<T>>, float) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the list of examples, setting the weight.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied outputs and list of list of features.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, boolean) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied weight, outputs and list of list of features.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, float) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied weight, outputs and list of list of features.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, float, boolean) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied weight, outputs and list of list of features.
- SequenceExample(SequenceExample<T>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a deep copy of the supplied sequence example.
- SequenceFeatureConverter - Interface in org.tribuo.interop.tensorflow.sequence
-
Converts a sequence example into a feed dict suitable for TensorFlow.
- SequenceModel<T extends Output<T>> - Class in org.tribuo.sequence
-
A prediction model, which is used to predict outputs for unseen instances.
- SequenceModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.sequence.SequenceModel
-
Builds a SequenceModel.
- SequenceModelExplorer - Class in org.tribuo.sequence
-
A CLI for interacting with a
SequenceModel
. - SequenceModelExplorer() - Constructor for class org.tribuo.sequence.SequenceModelExplorer
-
Builds a sequence model explorer shell.
- SequenceModelExplorer.SequenceModelExplorerOptions - Class in org.tribuo.sequence
-
Command line options.
- SequenceModelExplorerOptions() - Constructor for class org.tribuo.sequence.SequenceModelExplorer.SequenceModelExplorerOptions
- SequenceOutputConverter<T extends Output<T>> - Interface in org.tribuo.interop.tensorflow.sequence
-
Converts a TensorFlow output tensor into a list of predictions, and a Tribuo sequence example into a Tensorflow tensor suitable for training.
- SequenceTrainer<T extends Output<T>> - Interface in org.tribuo.sequence
-
An interface for things that can train sequence prediction models.
- SEQUENTIAL - Enum constant in enum class org.tribuo.datasource.AggregateDataSource.IterationOrder
-
Iterates each dataset sequentially, in the order of the sources list.
- SERIALIZED - Enum constant in enum class org.tribuo.data.DataOptions.InputFormat
-
Serialized Tribuo datasets.
- serializeProvenance(ModelProvenance) - Method in interface org.tribuo.ONNXExportable
-
Serializes the model provenance to a String.
- SERIALIZER - Static variable in interface org.tribuo.ONNXExportable
-
The provenance serializer.
- session - Variable in class org.tribuo.interop.tensorflow.TensorFlowModel
- set(char[], int, int) - Method in class org.tribuo.util.tokens.universal.Range
-
Sets the character range.
- set(char, char, int) - Method in class org.tribuo.util.tokens.universal.Range
-
Sets the first two characters in the range, and the type to NGRAM.
- set(char, int) - Method in class org.tribuo.util.tokens.universal.Range
-
Sets the first character in the range.
- set(int, double) - Method in class org.tribuo.math.la.DenseVector
- set(int, double) - Method in interface org.tribuo.math.la.SGDVector
-
Sets the
index
to thevalue
. - set(int, double) - Method in class org.tribuo.math.la.SparseVector
- set(int, int, double) - Method in class org.tribuo.math.la.DenseMatrix
- set(int, int, double) - Method in class org.tribuo.math.la.DenseSparseMatrix
- set(int, int, double) - Method in interface org.tribuo.math.la.Matrix
-
Sets an element at the supplied location.
- set(int, Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- set(Feature) - Method in class org.tribuo.Example
-
Overwrites the feature with the matching name.
- set(Feature) - Method in class org.tribuo.impl.ArrayExample
- set(Feature) - Method in class org.tribuo.impl.BinaryFeaturesExample
- set(Feature) - Method in class org.tribuo.impl.ListExample
- set(Tensor[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- set(Tensor[]) - Method in class org.tribuo.common.sgd.FMParameters
- set(Tensor[]) - Method in class org.tribuo.math.LinearParameters
- set(Tensor[]) - Method in interface org.tribuo.math.Parameters
-
Set the underlying
Tensor
array to newWeights. - setAlgorithm(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- setAlgorithm(OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field represents a training algorithm step.
- setAttribute(int, OnnxMl.AttributeProto) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- setAttribute(int, OnnxMl.AttributeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
Additional named attributes.
- setBatchSize(int) - Method in class org.tribuo.interop.ExternalModel
-
Sets a new batch size.
- setBatchSize(int) - Method in class org.tribuo.interop.tensorflow.TensorFlowModel
-
Sets a new batch size.
- setBegin(long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 begin = 1;
- setCacheSize(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the cache size.
- setCheckpointDirectory(String) - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Sets the checkpoint directory.
- setCheckpointName(String) - Method in class org.tribuo.interop.tensorflow.TensorFlowCheckpointModel
-
Sets the checkpoint name.
- setCoeff(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the coefficient.
- setConfidenceType(CRFModel.ConfidenceType) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Sets the inference method used for confidence prediction.
- setCost(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the cost for C_SVC.
- setDataLocation(OnnxMl.TensorProto.DataLocation) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
- setDataType(int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The data type of the tensor.
- setDegree(int) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the degree of the polynomial kernel.
- setDenotation(String) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- setDenotation(String) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- setDenotationBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
Standard denotation can optionally be used to denote tensor dimensions with standard semantic descriptions to ensure that operations are applied to the correct axis of a tensor.
- setDenotationBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
An optional denotation can be used to denote the whole type with a standard semantic description as to what is stored inside.
- setDim(int, OnnxMl.TensorShapeProto.Dimension) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- setDim(int, OnnxMl.TensorShapeProto.Dimension.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
-
repeated .onnx.TensorShapeProto.Dimension dim = 1;
- setDimParam(String) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- setDimParamBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
namespace Shape
- setDims(int, long) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The shape of the underlying dense-tensor: [dim_1, dim_2, ...
- setDims(int, long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
The shape of the tensor.
- setDimValue(long) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
-
int64 dim_value = 1;
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- setDocString(String) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
A human-readable documentation for this attribute.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A human-readable documentation for this graph.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
A human-readable documentation for this model.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
A human-readable documentation for this node.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
A human-readable documentation for this tensor.
- setDocStringBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
A human-readable documentation for this value.
- setDomain(String) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- setDomain(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- setDomain(String) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- setDomain(String) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- setDomainBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Domain name of the model.
- setDomainBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The domain of the OperatorSet that specifies the operator named by op_type.
- setDomainBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The domain of the operator set being identified.
- setDomainBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
When missing, the domain is the same as the model's.
- setDoubleData(int, double) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For double Complex128 tensors are encoded as a single array of doubles, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- setElements(DenseVector) - Method in class org.tribuo.math.la.DenseVector
-
Sets all the elements of this vector to be the same as
other
. - setElemType(int) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- setElemType(int) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
This field MUST NOT have the value of UNDEFINED This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- setElemType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- setElemType(OnnxMl.TypeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
-
The type and optional shape of each element of the sequence.
- setEnd(long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
-
optional int64 end = 2;
- setEpsilon(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the termination closeness.
- setExternalData(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- setExternalData(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Data can be stored inside the protobuf file using type-specific fields or raw_data.
- setF(float) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
Exactly ONE of the following fields must be present for this version of the IR
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- setField(Descriptors.FieldDescriptor, Object) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Deprecated.Response processors should be immutable; downstream objects assume that they are Set the field name this ResponseProcessor uses.
- setFloatData(int, float) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For float and complex64 values Complex64 tensors are encoded as a single array of floats, with the real components appearing in odd numbered positions, and the corresponding imaginary component appearing in the subsequent even numbered position.
- setFloats(int, float) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of floats
- setG(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- setG(OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
graph
- setGamma(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets gamma in the RBF kernel.
- setGenerateNgrams(boolean) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Controls if the tokenizer generates ngrams.
- setGenerateUnigrams(boolean) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Controls if the tokenizer generates unigrams.
- setGraph(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- setGraph(OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The parameterized graph that is evaluated to execute the model.
- setGraphs(int, OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- setGraphs(int, OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of graph
- setI(long) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
int
- setIndices(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- setIndices(OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The indices of the non-default values, which may be stored in one of two formats.
- setInitialization(OnnxMl.GraphProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- setInitialization(OnnxMl.GraphProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field describes a graph to compute the initial tensors upon starting the training process.
- setInitializationBinding(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- setInitializationBinding(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.
- setInitializer(int, OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- setInitializer(int, OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
A list of named tensor values, used to specify constant inputs of the graph.
- setInput(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- setInput(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The inputs and outputs of the graph.
- setInput(int, String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- setInt32Data(int, int) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int32, uint8, int8, uint16, int16, bool, and float16 values float16 values must be bit-wise converted to an uint16_t prior to writing to the buffer.
- setInt64Data(int, long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For int64.
- setInts(int, long) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of ints
- setInvocationCount(int) - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- setInvocationCount(int) - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- setInvocationCount(int) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- setInvocationCount(int) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- setInvocationCount(int) - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- setInvocationCount(int) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.nearest.KNNTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- setInvocationCount(int) - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- setInvocationCount(int) - Method in class org.tribuo.ensemble.BaggingTrainer
- setInvocationCount(int) - Method in class org.tribuo.hash.HashingTrainer
- setInvocationCount(int) - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- setInvocationCount(int) - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- setInvocationCount(int) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- setInvocationCount(int) - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- setInvocationCount(int) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- setInvocationCount(int) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- setInvocationCount(int) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- setInvocationCount(int) - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- setInvocationCount(int) - Method in class org.tribuo.regression.slm.SLMTrainer
- setInvocationCount(int) - Method in interface org.tribuo.Trainer
-
Set the internal state of the trainer to the provided number of invocations of the train method.
- setInvocationCount(int) - Method in class org.tribuo.transform.TransformTrainer
- setIrVersion(long) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the IR this model targets.
- setKey(String) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- setKeyBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string key = 1;
- setKeyType(int) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST have a valid TensorProto.DataType value This field MUST be present for this version of the IR.
- setLabelOrder(List<Label>) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Sets the label order used in
LabelConfusionMatrix.toString()
. - setLabelOrder(List<MultiLabel>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
-
Sets the label order used in
MultiLabelConfusionMatrix.toString()
. - setLabelOrder(List<T>) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
Sets the label order this confusion matrix uses in
toString
. - setLabelWeights(Map<Label, Float>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- setLabelWeights(Map<Label, Float>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- setLabelWeights(Map<Label, Float>) - Method in interface org.tribuo.classification.WeightedLabels
-
Sets the label weights used by this trainer.
- setMapType(OnnxMl.TypeProto.Map) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- setMapType(OnnxMl.TypeProto.Map.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a map.
- setMaxTokenLength(int) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Sets the maximum token length this tokenizer will generate.
- setMetadataProps(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- setMetadataProps(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Named metadata values; keys should be distinct.
- setMetadataValue(String, Object) - Method in class org.tribuo.Example
-
Puts the specified key, value pair into the metadata.
- setModelVersion(long) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the graph encoded.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- setName(String) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- setName(String) - Method in class org.tribuo.Model
-
Sets the model name.
- setName(String) - Method in class org.tribuo.sequence.SequenceModel
-
Sets the model name.
- setName(String) - Method in class org.tribuo.util.onnx.ONNXContext
-
Sets the graph name.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The name field MUST be present for this version of the IR.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The name of the graph.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
An optional identifier for this node in a graph.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Optionally, a name for the tensor.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
-
The name is optional but significant when provided.
- setNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR.
- setNode(int, OnnxMl.NodeProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- setNode(int, OnnxMl.NodeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
The nodes in the graph, sorted topologically.
- setNu(double) - Method in class org.tribuo.common.libsvm.SVMParameters
-
Sets the value of nu for NU_SVM.
- setNumFeatures(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Sets the number of features LIME should use in an explanation.
- setNumSamples(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Sets the number of samples to use in LIME.
- setNumThreads(int) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Sets the number of threads to use at prediction time.
- setOpaqueType(OnnxMl.TypeProto.Opaque) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- setOpaqueType(OnnxMl.TypeProto.Opaque.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.Opaque opaque_type = 7;
- setOpsetImport(int, OnnxMl.OperatorSetIdProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- setOpsetImport(int, OnnxMl.OperatorSetIdProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The OperatorSets this model relies on.
- setOpType(String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- setOpTypeBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
The symbolic identifier of the Operator to execute.
- setOutput(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- setOutput(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
repeated .onnx.ValueInfoProto output = 12;
- setOutput(int, String) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
-
namespace Value
- setProbability() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Makes the model that is built provide probability estimates.
- setProducerName(String) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- setProducerNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The name of the framework or tool used to generate this model.
- setProducerVersion(String) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- setProducerVersionBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
The version of the framework or tool used to generate this model.
- setQuantizationAnnotation(int, OnnxMl.TensorAnnotation) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- setQuantizationAnnotation(int, OnnxMl.TensorAnnotation.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
This field carries information to indicate the mapping among a tensor and its quantization parameter tensors.
- setQuantParameterTensorNames(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- setQuantParameterTensorNames(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
<key, value> pairs to annotate tensor specified by <tensor_name> above.
- setRawData(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
Serializations can either use one of the fields above, or use this raw bytes field.
- setRefAttrName(String) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- setRefAttrNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- setRepeatedField(Descriptors.FieldDescriptor, int, Object) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- setS(ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
UTF-8 string
- setSalt(String) - Method in class org.tribuo.hash.HashCodeHasher
- setSalt(String) - Method in class org.tribuo.hash.HashedFeatureMap
-
The salt is not serialised with the
Model
. - setSalt(String) - Method in class org.tribuo.hash.Hasher
-
The salt is transient, it must be set **to the same value as it was trained with** after the
Model
is deserialized. - setSalt(String) - Method in class org.tribuo.hash.MessageDigestHasher
- setSalt(String) - Method in class org.tribuo.hash.ModHashCodeHasher
- setSegment(OnnxMl.TensorProto.Segment) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- setSegment(OnnxMl.TensorProto.Segment.Builder) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
optional .onnx.TensorProto.Segment segment = 3;
- setSequenceType(OnnxMl.TypeProto.Sequence) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- setSequenceType(OnnxMl.TypeProto.Sequence.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a sequence.
- setShape(OnnxMl.TensorShapeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- setShape(OnnxMl.TensorShapeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- setShape(OnnxMl.TensorShapeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- setShape(OnnxMl.TensorShapeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
-
optional .onnx.TensorShapeProto shape = 2;
- setShuffle(boolean) - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
-
Turn on or off shuffling of examples.
- setShuffle(boolean) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Turn on or off shuffling of examples.
- setShuffle(boolean) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Turn on or off shuffling of examples.
- setSparseInitializer(int, OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- setSparseInitializer(int, OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Initializers (see above) stored in sparse format.
- setSparseTensor(OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- setSparseTensor(OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
sparse tensor value
- setSparseTensors(int, OnnxMl.SparseTensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- setSparseTensors(int, OnnxMl.SparseTensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of sparse tensors
- setSparseTensorType(OnnxMl.TypeProto.SparseTensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- setSparseTensorType(OnnxMl.TypeProto.SparseTensor.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
.onnx.TypeProto.SparseTensor sparse_tensor_type = 8;
- setStoreIndices(boolean) - Method in class org.tribuo.dataset.DatasetView
-
Set to true to store the indices in the provenance system.
- setStringData(int, ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For strings.
- setStrings(int, ByteString) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of UTF-8 strings
- setT(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- setT(OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
tensor value
- setTensorName(String) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- setTensorNameBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
-
optional string tensor_name = 1;
- setTensors(int, OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- setTensors(int, OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
list of tensors
- setTensorType(OnnxMl.TypeProto.Tensor) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- setTensorType(OnnxMl.TypeProto.Tensor.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
-
The type of a tensor.
- setTrainingInfo(int, OnnxMl.TrainingInfoProto) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- setTrainingInfo(int, OnnxMl.TrainingInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
-
Training-specific information.
- setType(OnnxMl.AttributeProto.AttributeType) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
-
The type field MUST be present for this version of the IR.
- setType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- setType(OnnxMl.TypeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
-
This field MUST be present in this version of the IR for inputs and outputs of the top-level graph.
- setType(Token.TokenType) - Method in class org.tribuo.util.tokens.universal.Range
-
Sets the token type.
- setUint64Data(int, long) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
-
For uint64 and uint32 values When this field is present, the data_type field MUST be UINT32 or UINT64
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.AttributeProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.ModelProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.NodeProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor.Builder
- setUnknownFields(UnknownFieldSet) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto.Builder
- setUpdateBinding(int, OnnxMl.StringStringEntryProto) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- setUpdateBinding(int, OnnxMl.StringStringEntryProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
-
Gradient-based training is usually an iterative procedure.
- setupParameters(ImmutableOutputInfo<Event>) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
- setupParameters(ImmutableOutputInfo<Label>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- setupParameters(ImmutableOutputInfo<Label>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- setupParameters(ImmutableOutputInfo<T>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Constructs the parameters.
- setupParameters(ImmutableOutputInfo<T>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Constructs the svm_parameter.
- setValue(String) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- setValueBytes(ByteString) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto.Builder
-
optional string value = 2;
- setValueInfo(int, OnnxMl.ValueInfoProto) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- setValueInfo(int, OnnxMl.ValueInfoProto.Builder) - Method in class ai.onnx.proto.OnnxMl.GraphProto.Builder
-
Information for the values in the graph.
- setValues(OnnxMl.TensorProto) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- setValues(OnnxMl.TensorProto.Builder) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto.Builder
-
The sequence of non-default values are encoded as a tensor of shape [NNZ].
- setValueType(OnnxMl.TypeProto) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- setValueType(OnnxMl.TypeProto.Builder) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map.Builder
-
This field MUST be present for this version of the IR.
- setVersion(long) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto.Builder
-
The version of the operator set being identified.
- setWeight(float) - Method in class org.tribuo.Example
-
Sets the example's weight.
- setWeight(float) - Method in class org.tribuo.sequence.SequenceExample
-
Sets the weight of this sequence.
- setWeights(Map<T, Float>) - Method in class org.tribuo.MutableDataset
-
Sets the weights in each example according to their output.
- SFS - Enum constant in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Creates a
SLMTrainer
which performs sequential forward selection of the features. - SFSN - Enum constant in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Creates a
SLMTrainer
which performs sequential forward selection on normalised features. - SGD - Class in org.tribuo.math.optimisers
-
An implementation of single learning rate SGD and optionally momentum.
- SGD() - Constructor for class org.tribuo.math.optimisers.SGD
-
For olcut.
- SGD_KERNEL - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
KernelSVMTrainer
. - SGD_LINEAR - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
LinearSGDTrainer
. - SGD.Momentum - Enum Class in org.tribuo.math.optimisers
-
Momentum types.
- sgdEpochs - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Number of SGD epochs.
- sgdEpochs - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Number of SGD epochs.
- sgdLoggingInterval - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Log the objective after n examples.
- sgdLoggingInterval - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Log the objective after n examples.
- sgdMinibatchSize - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Minibatch size.
- sgdMinibatchSize - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Minibatch size.
- sgdObjective - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Loss function.
- sgdObjective - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Loss function.
- SGDObjective<T> - Interface in org.tribuo.common.sgd
-
An interface for a loss function that can produce the loss and gradient incurred by a single prediction.
- SGDOptions() - Constructor for class org.tribuo.regression.sgd.TrainTest.SGDOptions
- sgdSeed - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Sets the random seed for the LinearSGDTrainer.
- sgdSeed - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
Sets the random seed for the LinearSGDTrainer.
- sgdType() - Method in class org.tribuo.math.optimisers.SGD
-
Override to specify the kind of SGD.
- SGDVector - Interface in org.tribuo.math.la
-
Interface for 1 dimensional
Tensor
s. - sgoOptions - Variable in class org.tribuo.classification.sgd.crf.CRFOptions
-
Options for the gradient optimiser.
- sgoOptions - Variable in class org.tribuo.classification.sgd.fm.FMClassificationOptions
- sgoOptions - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
The gradient descent optimiser options.
- sgoOptions - Variable in class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions
-
The gradient descent optimiser options.
- sgoOptions - Variable in class org.tribuo.multilabel.sgd.linear.LinearSGDOptions
-
The gradient descent optimiser options.
- SHA1 - Enum constant in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Uses SHA-1.
- SHA256 - Enum constant in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Uses SHA-256.
- shape - Variable in class org.tribuo.interop.oci.OCIUtil.OCIModelDeploymentConfig
-
The instance shape.
- shape - Variable in class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
The shape of the tensor.
- SHAPE - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
ShapeTokenizer
. - SHAPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- SHAPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- shapeCheck(Tensor, Tensor) - Static method in interface org.tribuo.math.la.Tensor
-
Checks that the two tensors have compatible shapes.
- shapeSum(int[]) - Static method in interface org.tribuo.math.la.Tensor
-
The number of elements in this shape, i.e., the product of the shape array.
- ShapeTokenizer - Class in org.tribuo.util.tokens.impl
-
This tokenizer is loosely based on the notion of word shape which is a common feature used in NLP.
- ShapeTokenizer() - Constructor for class org.tribuo.util.tokens.impl.ShapeTokenizer
-
Constructs a ShapeTokenizer.
- SHORT - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
A 16-bit integer.
- shouldMakeLeaf(double, float) - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
Determines whether the node to be created should be a
LeafNode
. - showLabelStats(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows the output statistics.
- showOutputStats(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the output statistics.
- showProvenance(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
-
Shows the dataset provenance.
- ShrinkingMatrix - Class in org.tribuo.math.optimisers.util
-
A subclass of
DenseMatrix
which shrinks the value every time a new value is added. - ShrinkingMatrix(DenseMatrix, double, boolean) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingMatrix
-
Constructs a shrinking matrix copy of the supplied dense matrix.
- ShrinkingMatrix(DenseMatrix, double, double) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingMatrix
-
Constructs a shrinking matrix copy of the supplied dense matrix.
- ShrinkingTensor - Interface in org.tribuo.math.optimisers.util
-
An interface which tags a
Tensor
with a convertToDense method. - ShrinkingVector - Class in org.tribuo.math.optimisers.util
-
A subclass of
DenseVector
which shrinks the value every time a new value is added. - ShrinkingVector(DenseVector, double, boolean) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingVector
-
Constructs a shrinking vector copy of the supplied dense matrix.
- ShrinkingVector(DenseVector, double, double) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingVector
-
Constructs a shrinking vector copy of the supplied dense vector.
- shuffle - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Shuffle the data each epoch (default: true).
- shuffle - Variable in class org.tribuo.common.sgd.AbstractSGDTrainer
- shuffle(boolean) - Method in class org.tribuo.Dataset
-
Shuffles the indices, or stops shuffling them.
- shuffle(ArrayList<T>, SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles an ArrayList like
Collections.shuffle(java.util.List<?>)
but using aSplittableRandom
. - shuffle(SGDVector[][], int[][], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
Shuffles a sequence of features, labels and weights, returning a tuple of the shuffled values.
- shuffle(SparseVector[], int[], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
Shuffles the features, labels and weights returning a tuple of the shuffled inputs.
- shuffleInPlace(SGDVector[][], int[][], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
In place shuffle used for sequence problems.
- shuffleInPlace(SGDVector[], T[], double[], SplittableRandom) - Static method in class org.tribuo.common.sgd.AbstractSGDTrainer
-
Shuffles the features, outputs and weights in place.
- shuffleInPlace(SparseVector[], int[], double[], int[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
In place shuffle of the features, labels, weights and indices.
- shuffleInPlace(SparseVector[], int[], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
- shuffleInPlace(SparseVector[], DenseVector[], double[], int[], SplittableRandom) - Static method in class org.tribuo.regression.sgd.Util
-
In place shuffle of the features, labels and weights.
- shuffleInPlace(SparseVector[], DenseVector[], double[], SplittableRandom) - Static method in class org.tribuo.regression.sgd.Util
-
In place shuffle of the features, labels and weights.
- sigmoid(double) - Static method in class org.tribuo.math.util.SigmoidNormalizer
-
A logistic sigmoid function.
- Sigmoid - Class in org.tribuo.math.kernel
-
A sigmoid kernel, tanh(gamma*u.dot(v) + intercept).
- Sigmoid(double, double) - Constructor for class org.tribuo.math.kernel.Sigmoid
-
A sigmoid kernel, tanh(gamma*u.dot(v) + intercept).
- SIGMOID - Enum constant in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Uses a
Sigmoid
kernel. - SIGMOID - Enum constant in enum class org.tribuo.common.libsvm.KernelType
-
A sigmoid kernel of the form tanh(gamma*u'*v + coef0)
- SIGMOID - Enum constant in enum class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions.LossEnum
-
Log loss, i.e., binary cross-entropy.
- SIGMOID - Enum constant in enum class org.tribuo.multilabel.sgd.linear.LinearSGDOptions.LossEnum
-
Log loss, i.e., binary cross-entropy.
- SIGMOID - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Sigmoid element-wise.
- SigmoidNormalizer - Class in org.tribuo.math.util
-
Normalizes the input by applying a logistic sigmoid to each element.
- SigmoidNormalizer() - Constructor for class org.tribuo.math.util.SigmoidNormalizer
- SILENT - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
No logging.
- similarity(SparseVector, SparseVector) - Method in interface org.tribuo.math.kernel.Kernel
-
Calculates the similarity between two
SparseVector
s. - similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Linear
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Polynomial
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.RBF
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Sigmoid
- SIMPLE_DEFAULT_PATTERN - Static variable in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
The default split pattern, which is [\.,]?\s+.
- SimpleDataSourceProvenance - Class in org.tribuo.provenance
-
This class stores a String describing the data source, along with a timestamp.
- SimpleDataSourceProvenance(String, OffsetDateTime, OutputFactory<T>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
This constructor initialises the provenance using the supplied description, time and output factory.
- SimpleDataSourceProvenance(String, OutputFactory<T>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
This constructor initialises the provenance using the current time in the system timezone.
- SimpleDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
Used for provenance deserialization.
- SimpleFieldExtractor<T> - Class in org.tribuo.data.columnar.extractors
-
Extracts a value from a single field to be placed in an
Example
's metadata field. - SimpleFieldExtractor() - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
For olcut.
- SimpleFieldExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Constructs a simple field extractor which reads from the supplied field name and writes out to a metadata field with the same name.
- SimpleFieldExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Constructs a simple field extractor with the supplied field name and metadata field name.
- SimpleStringDataSource<T extends Output<T>> - Class in org.tribuo.data.text.impl
-
A version of
SimpleTextDataSource
that accepts aList
of Strings. - SimpleStringDataSource(List<String>, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleStringDataSource
-
Constructs a simple string data source from the supplied lines.
- SimpleStringDataSource.SimpleStringDataSourceProvenance - Class in org.tribuo.data.text.impl
-
Provenance for
SimpleStringDataSource
. - SimpleStringDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
-
Deserialization constructor.
- SimpleTextDataSource<T extends Output<T>> - Class in org.tribuo.data.text.impl
-
A dataset for a simple data format for text classification experiments.
- SimpleTextDataSource() - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
-
for olcut
- SimpleTextDataSource(File, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
-
Constructs a simple text data source by reading lines from the supplied file.
- SimpleTextDataSource(Path, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
-
Constructs a simple text data source by reading lines from the supplied path.
- SimpleTextDataSource(OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
- SimpleTextDataSource.SimpleTextDataSourceProvenance - Class in org.tribuo.data.text.impl
-
Provenance for
SimpleTextDataSource
. - SimpleTextDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
-
Deserialization constructor.
- SimpleTransform - Class in org.tribuo.transform.transformations
-
This is used for stateless functions such as exp, log, addition or multiplication by a constant.
- SimpleTransform.Operation - Enum Class in org.tribuo.transform.transformations
-
Operations understood by this Transformation.
- SimpleTransform.SimpleTransformProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
SimpleTransform
. - SimpleTransformProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
-
Deserialization constructor.
- SINGLE_DIM_NAME - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
-
Name of the single dimension.
- size - Variable in class org.tribuo.common.tree.impl.IntArrayContainer
-
The number of elements in the array.
- size - Variable in class org.tribuo.ImmutableFeatureMap
-
The number of features.
- size - Variable in class org.tribuo.impl.ArrayExample
-
Number of valid features in this example.
- size - Variable in class org.tribuo.impl.BinaryFeaturesExample
-
Number of valid features in this example.
- size() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of possible event types (i.e., 2).
- size() - Method in class org.tribuo.classification.LabelInfo
-
The number of unique
Label
s this LabelInfo has seen. - size() - Method in class org.tribuo.clustering.ClusteringInfo
- size() - Method in class org.tribuo.dataset.DatasetView
-
Gets the size of the data set.
- size() - Method in class org.tribuo.Dataset
-
Gets the size of the data set.
- size() - Method in class org.tribuo.datasource.IDXDataSource
-
The number of examples loaded.
- size() - Method in class org.tribuo.datasource.LibSVMDataSource
-
The number of examples.
- size() - Method in class org.tribuo.datasource.ListDataSource
-
Number of examples.
- size() - Method in class org.tribuo.Example
-
Return how many features are in this example.
- size() - Method in class org.tribuo.FeatureMap
-
Returns the number of features in the domain.
- size() - Method in class org.tribuo.ImmutableFeatureMap
- size() - Method in class org.tribuo.impl.ArrayExample
- size() - Method in class org.tribuo.impl.BinaryFeaturesExample
- size() - Method in class org.tribuo.impl.ListExample
- size() - Method in class org.tribuo.math.la.DenseVector
- size() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the dimensionality of this vector.
- size() - Method in class org.tribuo.math.la.SparseVector
- size() - Method in class org.tribuo.multilabel.MultiLabelInfo
- size() - Method in interface org.tribuo.OutputInfo
-
Returns the number of possible values this OutputInfo knows about.
- size() - Method in class org.tribuo.regression.RegressionInfo
-
The number of dimensions this OutputInfo has seen.
- size() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- size() - Method in class org.tribuo.regression.Regressor
-
Returns the number of dimensions in this regressor.
- size() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the size of the data set.
- size() - Method in class org.tribuo.sequence.SequenceExample
-
Return how many examples are in this sequence.
- size() - Method in class org.tribuo.transform.TransformerMap
-
Gets the size of the map.
- size() - Method in class org.tribuo.util.infotheory.impl.RowList
- SkeletalIndependentRegressionModel - Class in org.tribuo.regression.impl
-
A
Model
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. - SkeletalIndependentRegressionModel(String, String[], ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
models.size() must equal labelInfo.getDomain().size()
- SkeletalIndependentRegressionSparseModel - Class in org.tribuo.regression.impl
-
A
SparseModel
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. - SkeletalIndependentRegressionSparseModel(String, String[], ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, Map<String, List<String>>) - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
models.size() must equal labelInfo.getDomain().size()
- SkeletalIndependentRegressionSparseTrainer<T> - Class in org.tribuo.regression.impl
-
Base class for training n independent sparse models, one per dimension.
- SkeletalIndependentRegressionSparseTrainer() - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
for olcut.
- SkeletalIndependentRegressionTrainer<T> - Class in org.tribuo.regression.impl
- SkeletalIndependentRegressionTrainer() - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
for olcut.
- SkeletalTrainerProvenance - Class in org.tribuo.provenance
-
The skeleton of a TrainerProvenance that extracts the configured parameters.
- SkeletalTrainerProvenance(SkeletalConfiguredObjectProvenance.ExtractedInfo) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(SequenceTrainer<T>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(Trainer<T>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalVariableInfo - Class in org.tribuo
-
Contains information about a feature and can be stored in the feature map in a
Dataset
. - SkeletalVariableInfo(String) - Constructor for class org.tribuo.SkeletalVariableInfo
-
Constructs a variable info with the supplied name.
- SkeletalVariableInfo(String, int) - Constructor for class org.tribuo.SkeletalVariableInfo
-
Constructs a variable info with the supplied name and initial count.
- SLMOptions() - Constructor for class org.tribuo.regression.slm.TrainTest.SLMOptions
- SLMTrainer - Class in org.tribuo.regression.slm
-
A trainer for a sparse linear regression model.
- SLMTrainer() - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
For OLCUT.
- SLMTrainer(boolean) - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
Constructs a trainer for a sparse linear model using sequential forward selection.
- SLMTrainer(boolean, int) - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
Constructs a trainer for a sparse linear model using sequential forward selection.
- SOFTMAX - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Softmax.
- sort() - Method in class org.tribuo.Example
-
Sorts the example by the string comparator.
- sort() - Method in class org.tribuo.impl.ArrayExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.impl.IndexedArrayExample
- sort() - Method in class org.tribuo.impl.ListExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Sort the list using InvertedFeature's natural ordering.
- sortedDifference(int[], int[]) - Static method in class org.tribuo.util.Util
-
Expects sorted input arrays.
- sourceProvenance - Variable in class org.tribuo.Dataset
-
The provenance of the data source, extracted on construction.
- sourceProvenance - Variable in class org.tribuo.sequence.SequenceDataset
-
The provenance of the data source, extracted on construction.
- SPARSE_INITIALIZER_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- SPARSE_TENSOR - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
SPARSE_TENSOR = 11;
- SPARSE_TENSOR_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- SPARSE_TENSOR_TYPE - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- SPARSE_TENSOR_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- SPARSE_TENSOR_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
SPARSE_TENSOR = 11;
- SPARSE_TENSORS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
SPARSE_TENSORS = 12;
- SPARSE_TENSORS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- SPARSE_TENSORS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
SPARSE_TENSORS = 12;
- SparseLinearModel - Class in org.tribuo.regression.slm
-
The inference time version of a sparse linear regression model.
- SparseModel<T extends Output<T>> - Class in org.tribuo
-
A model which uses a subset of the features it knows about to make predictions.
- SparseModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, List<String>>) - Constructor for class org.tribuo.SparseModel
-
Constructs a sparse model from the supplied arguments.
- SparseTrainer<T extends Output<T>> - Interface in org.tribuo
-
Denotes this trainer emits a
SparseModel
. - sparseTrainTest() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Makes a simple dataset for training and testing.
- sparseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- SparseVector - Class in org.tribuo.math.la
-
A sparse vector.
- SparseVector(int, int[], double) - Constructor for class org.tribuo.math.la.SparseVector
-
Creates a sparse vector of the specified size, with the supplied value at each of the indices.
- sparsify() - Method in class org.tribuo.math.la.DenseVector
-
Generates a
SparseVector
representation from this dense vector, removing all values with absolute value belowVectorTuple.DELTA
. - sparsify(double) - Method in class org.tribuo.math.la.DenseVector
-
Generates a
SparseVector
representation from this dense vector, removing all values with absolute value below the supplied tolerance. - split - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- split(int[], int[], IntArrayContainer, IntArrayContainer) - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Splits this tree feature into two.
- split(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Uses this tokenizer to split a string into it's component substrings.
- split(IntArrayContainer, IntArrayContainer) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Relies upon allLeftIndices being sorted in ascending order.
- split(Dataset<T>, boolean) - Method in class org.tribuo.evaluation.KFoldSplitter
-
Splits a dataset into k consecutive folds; for each fold, the remaining k-1 folds form the training set.
- SPLIT_AFTER - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
The current character will cause the in-progress token to be completed after the current character is appended to the in-progress token.
- SPLIT_AFTER_INFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after infix.
- SPLIT_AFTER_NGRAM - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after a ngram.
- SPLIT_AFTER_PREFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after a prefix.
- SPLIT_AFTER_PUNCTUATION - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after punctuation.
- SPLIT_AFTER_SUFFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after a suffix.
- SPLIT_AFTER_UNKNOWN - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after an unknown value.
- SPLIT_AFTER_WHITESPACE - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after whitespace.
- SPLIT_AFTER_WORD - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split after a word.
- SPLIT_AT - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split at.
- SPLIT_AT - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
The current character will cause the in-progress token to be completed.
- SPLIT_BEFORE - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before.
- SPLIT_BEFORE - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
The current character will cause the in-progress token to be completed the current character will be included in the next token.
- SPLIT_BEFORE_AND_AFTER - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
The current character should cause the in-progress token to be completed.
- SPLIT_BEFORE_AND_AFTER_INFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after infix.
- SPLIT_BEFORE_AND_AFTER_NGRAM - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after a ngram.
- SPLIT_BEFORE_AND_AFTER_PREFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after prefix.
- SPLIT_BEFORE_AND_AFTER_PUNCTUATION - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after punctuation.
- SPLIT_BEFORE_AND_AFTER_SUFFIX - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after suffix.
- SPLIT_BEFORE_AND_AFTER_UNKNOWN - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after unknown.
- SPLIT_BEFORE_AND_AFTER_WHITESPACE - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after whitespace.
- SPLIT_BEFORE_AND_AFTER_WORD - Enum constant in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Split before and after a word.
- SPLIT_CHARACTERS - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
SplitCharactersTokenizer
. - SPLIT_PATTERN - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
SplitPatternTokenizer
. - splitChar - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Character to split the CSV response on to generate multiple regression dimensions.
- SplitCharactersSplitterFunction(char[], char[]) - Constructor for class org.tribuo.util.tokens.impl.SplitCharactersTokenizer.SplitCharactersSplitterFunction
-
Constructs a splitting function using the supplied split characters.
- SplitCharactersTokenizer - Class in org.tribuo.util.tokens.impl
-
This implementation of
Tokenizer
is instantiated with an array of characters that are considered split characters. - SplitCharactersTokenizer() - Constructor for class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Creates a default split characters tokenizer using
SplitCharactersTokenizer.DEFAULT_SPLIT_CHARACTERS
andSplitCharactersTokenizer.DEFAULT_SPLIT_EXCEPTING_IN_DIGITS_CHARACTERS
. - SplitCharactersTokenizer(char[], char[]) - Constructor for class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- SplitCharactersTokenizer.SplitCharactersSplitterFunction - Class in org.tribuo.util.tokens.impl
-
Splits tokens at the supplied characters.
- splitCharactersTokenizerOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
-
Options for the split characters tokenizer.
- SplitCharactersTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
SplitCharactersTokenizer
. - SplitCharactersTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- splitChars - Variable in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
-
The characters to split on.
- SplitDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
-
Deserialization constructor.
- splitFraction - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
-
Split fraction.
- splitFunction - Variable in class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
- SplitFunctionTokenizer - Class in org.tribuo.util.tokens.impl
-
This class supports character-by-character (that is, codepoint-by-codepoint) iteration over input text to create tokens.
- SplitFunctionTokenizer() - Constructor for class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
-
Constructs a tokenizer, used by OLCUT.
- SplitFunctionTokenizer(SplitFunctionTokenizer.SplitFunction) - Constructor for class org.tribuo.util.tokens.impl.SplitFunctionTokenizer
-
Creates a new tokenizer using the supplied split function.
- SplitFunctionTokenizer.SplitFunction - Interface in org.tribuo.util.tokens.impl
-
An interface for checking if the text should be split at the supplied codepoint.
- SplitFunctionTokenizer.SplitResult - Enum Class in org.tribuo.util.tokens.impl
-
A combination of a
SplitFunctionTokenizer.SplitType
and aToken.TokenType
. - SplitFunctionTokenizer.SplitType - Enum Class in org.tribuo.util.tokens.impl
-
Defines different ways that a tokenizer can split the input text at a given character.
- splitID - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- SplitNode<T extends Output<T>> - Class in org.tribuo.common.tree
-
An immutable
Node
with a split and two child nodes. - SplitNode(double, int, double, Node<T>, Node<T>) - Constructor for class org.tribuo.common.tree.SplitNode
-
Constructs a split node with the specified split value, feature id, impurity and child nodes.
- SplitPatternTokenizer - Class in org.tribuo.util.tokens.impl
-
This implementation of
Tokenizer
is instantiated with a regular expression pattern which determines how to split a string into tokens. - SplitPatternTokenizer() - Constructor for class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Initializes a case insensitive tokenizer with the pattern [\.,]?\s+
- SplitPatternTokenizer(String) - Constructor for class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Constructs a splitting tokenizer using the supplied regex.
- splitPatternTokenizerOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
-
Options for the split pattern tokenizer.
- SplitPatternTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
SplitPatternTokenizer
. - SplitPatternTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.SplitPatternTokenizerOptions
- SplitTextData - Class in org.tribuo.data.text
-
Splits data in our standard text format into training and testing portions.
- SplitTextData() - Constructor for class org.tribuo.data.text.SplitTextData
- SplitTextData.TrainTestSplitOptions - Class in org.tribuo.data.text
-
Command line options.
- splitType - Variable in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
The split type.
- splitValue - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- splitValue() - Method in class org.tribuo.common.tree.SplitNode
-
The threshold value.
- splitXDigitsChars - Variable in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
-
Characters to split on unless they appear between digits
- SQLDataSource<T extends Output<T>> - Class in org.tribuo.data.sql
-
A
DataSource
for loading columnar data from a database and applyingFieldProcessor
s to it. - SQLDataSource(String, SQLDBConfig, OutputFactory<T>, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.sql.SQLDataSource
-
Constructs a SQLDataSource.
- SQLDataSource.SQLDataSourceProvenance - Class in org.tribuo.data.sql
-
Provenance for
SQLDataSource
. - SQLDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
-
Deserialization constructor.
- SQLDBConfig - Class in org.tribuo.data.sql
-
N.B.
- SQLDBConfig(String, String, String, String, String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
-
Constructs a SQL database configuration.
- SQLDBConfig(String, String, String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
-
Constructs a SQL database configuration.
- SQLDBConfig(String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
-
Constructs a SQL database configuration.
- SQLToCSV - Class in org.tribuo.data.sql
-
Read an SQL query in on the standard input, write a CSV file containing the results to the standard output.
- SQLToCSV() - Constructor for class org.tribuo.data.sql.SQLToCSV
- SQLToCSV.SQLToCSVOptions - Class in org.tribuo.data.sql
-
Command line options.
- SQLToCSVOptions() - Constructor for class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- SQRTSGD - Enum constant in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
SGD with a square root decay learning rate.
- SQUARED - Enum constant in enum class org.tribuo.regression.sgd.fm.TrainTest.LossEnum
-
Uses
SquaredLoss
. - SQUARED - Enum constant in enum class org.tribuo.regression.sgd.TrainTest.LossEnum
-
Uses
SquaredLoss
. - SquaredLoss - Class in org.tribuo.regression.sgd.objectives
-
Squared loss, i.e., l2.
- SquaredLoss() - Constructor for class org.tribuo.regression.sgd.objectives.SquaredLoss
-
Constructs a SquaredLoss.
- STANDARD - Enum constant in enum class org.tribuo.math.optimisers.SGD.Momentum
-
Standard momentum.
- standardise - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Standardise the output regressors before model fitting.
- standardize - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Standardize the regression outputs internally to the SVM
- standardize(double[]) - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Standardizes the input using the computed mean and variance in this accumulator.
- standardize(double[], double, double) - Static method in class org.tribuo.util.Util
-
Standardizes the input so it has zero mean and unit variance, i.e., subtracts the mean and divides by the variance.
- standardizeInPlace(double[]) - Method in class org.tribuo.util.MeanVarianceAccumulator
-
Standardizes the input using the computed mean and variance in this accumulator.
- standardizeInPlace(double[], double, double) - Static method in class org.tribuo.util.Util
-
Standardizes the input so it has zero mean and unit variance, i.e., subtracts the mean and divides by the variance.
- start - Variable in class org.tribuo.util.tokens.Token
-
The start index.
- start - Variable in class org.tribuo.util.tokens.universal.Range
-
The start index.
- startShell() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Start the command shell
- startShell() - Method in class org.tribuo.data.DatasetExplorer
-
Start the command shell
- startShell() - Method in class org.tribuo.ModelExplorer
-
Start the command shell
- startShell() - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Start the command shell
- STD_DEVS - Enum constant in enum class org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Creates bins based on the mean and then +/- multiples of standard deviations.
- stdDevs(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates bins based on the observed standard deviation of the training data.
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaDelta
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaGrad
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaGradRDA
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.Adam
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.ParameterAveraging
-
This passes the gradient update to the inner optimiser, then updates the average weight values.
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.Pegasos
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.RMSProp
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.SGD
- step(Tensor[], double) - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Take a
Tensor
array of gradients and transform them according to the current weight and learning rates. - StochasticGradientOptimiser - Interface in org.tribuo.math
-
Interface for gradient based optimisation methods.
- storeHash - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
-
Stores a hash of the model provenance in the stripped model.
- storeIndicesInProvenance() - Method in class org.tribuo.dataset.DatasetView
-
Are the indices stored in the provenance system.
- STRATIFIED - Enum constant in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Samples the label proprotional to the training label frequencies.
- STREAMS - Enum constant in enum class org.tribuo.common.nearest.KNNModel.Backend
-
Uses the streams API for parallelism when scoring a batch of predictions.
- STRING - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
STRING = 3;
- STRING - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
string
- STRING_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- STRING_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
STRING = 3;
- STRING_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
string
- STRINGS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
STRINGS = 8;
- STRINGS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- STRINGS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
STRINGS = 8;
- StripProvenance - Class in org.tribuo.json
-
A main class for stripping out and storing provenance from a model.
- StripProvenance.ProvenanceTypes - Enum Class in org.tribuo.json
-
Types of provenance that can be removed.
- StripProvenance.StripProvenanceOptions - Class in org.tribuo.json
-
Command line options.
- StripProvenanceOptions() - Constructor for class org.tribuo.json.StripProvenance.StripProvenanceOptions
- sub - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Subtracts the specified constant.
- sub(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that subtracts the operand from each value.
- SUB - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise subtraction with broadcasting.
- subList(int, int) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- subsample - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Subsample size for each tree (default 1, range (0,1]).
- subsample - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Subsample size for each tree (default 1, range (0,1]).
- subsampleFeatures - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
-
Subsample features for each tree (default 1, range (0,1]).
- subsampleFeatures - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
-
Subsample features for each tree (default 1, range (0,1]).
- subSequence(int, int) - Method in class org.tribuo.util.tokens.universal.Range
- Subsequence(int, int) - Constructor for class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
Constructs a subsequence for the fixed range, exclusive of the end.
- subtract(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
Subtracts
other
from this vector, producing a newDenseVector
. - subtract(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Subtracts
other
from this vector, producing a newSGDVector
. - subtract(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
Subtracts
other
from this vector, producing a newSGDVector
. - SUFFIX - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
Some tokenizers produce "sub-word" tokens.
- sum() - Method in class org.tribuo.math.la.DenseVector
- sum() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the sum of this vector.
- sum() - Method in class org.tribuo.math.la.SparseVector
- sum() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- sum(double[]) - Static method in class org.tribuo.util.Util
-
Computes the sum of the input vector.
- sum(double[], int) - Static method in class org.tribuo.util.Util
-
Computes the sum of the input vector up to length elements.
- sum(float[]) - Static method in class org.tribuo.util.Util
-
Computes the sum of the input vector.
- sum(float[], int) - Static method in class org.tribuo.util.Util
-
Computes the sum of the input vector up to length elements.
- sum(int[], float[]) - Static method in class org.tribuo.util.Util
-
Computes the sum of the specified indices in the input array.
- sum(int[], int, float[]) - Static method in class org.tribuo.util.Util
-
Computes the sum of the specified indices in the input array.
- sum(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
-
Sums this vector, applying the supplied function to each element first.
- SUM - Enum constant in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Add together all the feature values.
- SUM - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Element-wise summation across the supplied inputs with broadcasting.
- SumAggregator - Class in org.tribuo.data.text.impl
-
A feature aggregator that aggregates occurrence counts across a number of feature lists.
- SumAggregator() - Constructor for class org.tribuo.data.text.impl.SumAggregator
- sumLogProbs(double[]) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Sums the log probabilities.
- sumLogProbs(DenseVector) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Sums the log probabilities.
- summarize(List<? extends EvaluationMetric<T, C>>, Model<T>, List<Prediction<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize model performance on dataset across several metrics.
- summarize(List<? extends EvaluationMetric<T, C>>, Model<T>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize model performance on dataset across several metrics.
- summarize(List<R>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize all fields of a list of evaluations.
- summarize(List<R>, ToDoubleFunction<R>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize a single field of an evaluation across several evaluations.
- summarize(Evaluator<T, R>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance using the supplied evaluator across several models on one dataset.
- summarize(Evaluator<T, R>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance according to evaluator for a single model across several datasets.
- summarize(EvaluationMetric<T, C>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance w.r.t.
- summarize(EvaluationMetric<T, C>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize a model's performance w.r.t.
- sumOverOutputs(ImmutableOutputInfo<T>, ToDoubleFunction<T>) - Static method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
Sums the supplied getter over the domain.
- sumSquares - Variable in class org.tribuo.RealInfo
-
The sum of the squared feature values (used to compute the variance).
- sumSquaresMap - Variable in class org.tribuo.regression.RegressionInfo
- support() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of examples this confusion matrix has seen.
- support() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- support() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- support(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- support(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- support(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of examples with this true label this confusion matrix has seen.
- SVM_CLASSIFIER - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
SVM Classifier.
- SVM_REGRESSOR - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
SVM Regressor.
- SVMAnomalyType - Class in org.tribuo.anomaly.libsvm
-
The carrier type for LibSVM anomaly detection modes.
- SVMAnomalyType(SVMAnomalyType.SVMMode) - Constructor for class org.tribuo.anomaly.libsvm.SVMAnomalyType
-
Constructs an SVM anomaly type wrapping the SVM algorithm choice.
- SVMAnomalyType.SVMMode - Enum Class in org.tribuo.anomaly.libsvm
-
Valid SVM modes for anomaly detection.
- SVMClassificationType - Class in org.tribuo.classification.libsvm
-
The carrier type for LibSVM classification modes.
- SVMClassificationType(SVMClassificationType.SVMMode) - Constructor for class org.tribuo.classification.libsvm.SVMClassificationType
-
Constructs an SVMClassificationType using the supplied SVM algorithm.
- SVMClassificationType.SVMMode - Enum Class in org.tribuo.classification.libsvm
-
The classification model types.
- svmCoefficient - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
-
Intercept in kernel function.
- svmDegree - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
-
Degree in polynomial kernel.
- svmGamma - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
-
Gamma value in kernel function.
- svmKernel - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
-
Type of SVM kernel.
- SVMParameters<T extends Output<T>> - Class in org.tribuo.common.libsvm
-
A container for SVM parameters and the kernel.
- SVMParameters(SVMType<T>, KernelType) - Constructor for class org.tribuo.common.libsvm.SVMParameters
-
Constructs the default SVMParameters using the specified SVMType and KernelType.
- svmParamsToString(svm_parameter) - Static method in class org.tribuo.common.libsvm.SVMParameters
-
A sensible toString for svm_parameter.
- SVMRegressionType - Class in org.tribuo.regression.libsvm
-
The carrier type for LibSVM regression modes.
- SVMRegressionType(SVMRegressionType.SVMMode) - Constructor for class org.tribuo.regression.libsvm.SVMRegressionType
-
Constructs an SVMRegressionType using the specified SVM algorithm.
- SVMRegressionType.SVMMode - Enum Class in org.tribuo.regression.libsvm
-
Type of regression SVM.
- svmType - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
-
Type of SVM.
- svmType - Variable in class org.tribuo.common.libsvm.LibSVMTrainer
-
The type of SVM algorithm.
- svmType - Variable in class org.tribuo.common.libsvm.SVMParameters
- svmType - Variable in class org.tribuo.regression.libsvm.TrainTest.LibSVMOptions
-
Type of SVM.
- SVMType<T extends Output<T>> - Interface in org.tribuo.common.libsvm
-
A carrier type for the SVM type.
- SYSTEM - Enum constant in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Selects any system information provenance.
T
- T_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- TAB - Enum constant in enum class org.tribuo.data.DataOptions.Delimiter
-
Tab separator.
- TabularExplainer<T extends Output<T>> - Interface in org.tribuo.classification.explanations
-
An explainer for tabular data.
- TAG_VERSION - Static variable in class org.tribuo.Tribuo
-
Any tag on the version number, e.g., SNAPSHOT, ALPHA, etc.
- Tensor - Interface in org.tribuo.math.la
-
An interface for Tensors, currently Vectors and Matrices.
- TENSOR - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
TENSOR = 4;
- TENSOR_NAME_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorAnnotation
- TENSOR_TYPE - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- TENSOR_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto
- TENSOR_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
TENSOR = 4;
- TensorFlowCheckpointModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
This model encapsulates a simple model with an input feed dict, and produces a single output tensor.
- TensorFlowFrozenExternalModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
A Tribuo wrapper around a TensorFlow frozen model.
- TensorFlowModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
Base class for a TensorFlow model that operates on
Example
s. - TensorFlowModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, GraphDef, int, String, FeatureConverter, OutputConverter<T>) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowModel
-
Builds a TFModel.
- TensorFlowNativeModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
This model encapsulates a TensorFlow model running in graph mode with a single tensor output.
- TensorflowOptions() - Constructor for class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- TensorFlowSavedModelExternalModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
A Tribuo wrapper around a TensorFlow saved model bundle.
- TensorFlowSequenceModel<T extends Output<T>> - Class in org.tribuo.interop.tensorflow.sequence
-
A TensorFlow model which implements SequenceModel, suitable for use in sequential prediction tasks.
- TensorFlowSequenceTrainer<T extends Output<T>> - Class in org.tribuo.interop.tensorflow.sequence
-
A trainer for SequenceModels which use an underlying TensorFlow graph.
- TensorFlowSequenceTrainer(Path, SequenceFeatureConverter, SequenceOutputConverter<T>, int, int, int, long, String, String, String) - Constructor for class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
-
Constructs a TensorFlowSequenceTrainer using the specified parameters.
- TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance - Class in org.tribuo.interop.tensorflow.sequence
-
Provenance for
TensorFlowSequenceTrainer
. - TensorFlowSequenceTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer.TensorFlowSequenceTrainerProvenance
-
Deserialization constructor.
- TensorFlowTrainer<T extends Output<T>> - Class in org.tribuo.interop.tensorflow
-
Trainer for TensorFlow.
- TensorFlowTrainer(Path, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer(Path, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int, Path) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer(Graph, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer(Graph, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int, Path) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer(GraphDef, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer(GraphDef, String, GradientOptimiser, Map<String, Float>, FeatureConverter, OutputConverter<T>, int, int, int, int, Path) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer
-
Constructs a Trainer for a TensorFlow graph.
- TensorFlowTrainer.TensorFlowTrainerProvenance - Class in org.tribuo.interop.tensorflow
-
Provenance for
TensorFlowTrainer
. - TensorFlowTrainer.TFModelFormat - Enum Class in org.tribuo.interop.tensorflow
-
The model format to emit.
- TensorFlowTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowTrainer.TensorFlowTrainerProvenance
-
Deserialization constructor.
- TensorFlowUtil - Class in org.tribuo.interop.tensorflow
-
Helper functions for working with TensorFlow.
- TensorFlowUtil.TensorTuple - Class in org.tribuo.interop.tensorflow
-
A serializable tuple containing the tensor class name, the shape and the data.
- TensorMap - Class in org.tribuo.interop.tensorflow
-
A map of names and tensors to feed into a session.
- TensorMap(String, Tensor) - Constructor for class org.tribuo.interop.tensorflow.TensorMap
-
Creates a TensorMap containing the supplied mapping.
- TensorMap(Map<String, Tensor>) - Constructor for class org.tribuo.interop.tensorflow.TensorMap
-
Creates a new TensorMap wrapping the supplied map.
- TENSORS - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
TENSORS = 9;
- TENSORS_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- TENSORS_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
TENSORS = 9;
- TensorTuple(String, long[], byte[]) - Constructor for class org.tribuo.interop.tensorflow.TensorFlowUtil.TensorTuple
-
Makes a TensorTuple.
- termCounting - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Use term counts instead of boolean when using the standard text format.
- termCounting - Variable in class org.tribuo.data.DataOptions
-
Use term counts instead of boolean when using the standard text format.
- terminationCriterion - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- terminationCriterion - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
-
Tolerance of the optimization termination criterion.
- test - Variable in class org.tribuo.evaluation.KFoldSplitter.TrainTestFold
-
The testing fold.
- Test - Class in org.tribuo.classification.experiments
-
Test a classifier for a standard dataset.
- Test() - Constructor for class org.tribuo.classification.experiments.Test
- Test.ConfigurableTestOptions - Class in org.tribuo.classification.experiments
-
Command line options.
- testBatchSize - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Test time minibatch size.
- testDataset - Variable in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
-
Path to a serialised SequenceDataset used for testing.
- testDataset - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Path to a serialised SequenceDataset used for testing.
- testingPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Path to the testing file.
- testingPath - Variable in class org.tribuo.data.DataOptions
-
Path to the testing file.
- testingPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Path to the libsvm format testing file.
- testSource - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load the testing DataSource from the config file.
- text - Variable in class org.tribuo.util.tokens.Token
-
The token text.
- TEXT - Enum constant in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Text features.
- TEXT - Enum constant in enum class org.tribuo.data.DataOptions.InputFormat
-
Text data in Tribuo's standard format (i.e., each line is "output ## text data").
- TextDataSource<T extends Output<T>> - Class in org.tribuo.data.text
-
A base class for textual data sets.
- TextDataSource() - Constructor for class org.tribuo.data.text.TextDataSource
-
for olcut
- TextDataSource(File, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.TextDataSource
-
Creates a text data set by reading it from a file.
- TextDataSource(Path, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.TextDataSource
-
Creates a text data set by reading it from a path.
- TextExplainer<T extends Output<T>> - Interface in org.tribuo.classification.explanations
-
An explainer for text data.
- TextFeatureExtractor<T extends Output<T>> - Interface in org.tribuo.data.text
-
An interface for things that take text and turn them into examples that we can use to train or evaluate a classifier.
- TextFeatureExtractorImpl<T extends Output<T>> - Class in org.tribuo.data.text.impl
- TextFeatureExtractorImpl(TextPipeline) - Constructor for class org.tribuo.data.text.impl.TextFeatureExtractorImpl
-
Constructs a text feature extractor wrapping the supplied text pipeline.
- TextFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which takes a text field and runs aTextPipeline
on it to generate features. - TextFieldProcessor(String, TextPipeline) - Constructor for class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Constructs a field processor which uses the supplied text pipeline to process the field value.
- TextPipeline - Interface in org.tribuo.data.text
-
A pipeline that takes a String and returns a List of
Feature
s. - TextProcessingException - Exception in org.tribuo.data.text
-
An exception thrown by the text processing system.
- TextProcessingException(String) - Constructor for exception org.tribuo.data.text.TextProcessingException
-
Creates a TextProcessingException with the specified message.
- TextProcessingException(String, Throwable) - Constructor for exception org.tribuo.data.text.TextProcessingException
-
Creates a TextProcessingException wrapping the supplied throwable with the specified message.
- TextProcessingException(Throwable) - Constructor for exception org.tribuo.data.text.TextProcessingException
-
Creates a TextProcessingException wrapping the supplied throwable.
- TextProcessor - Interface in org.tribuo.data.text
-
A TextProcessor takes some text and optionally a feature tag and generates a list of
Feature
s from that text. - THIRD - Enum constant in enum class org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
The third variable is weighted.
- thirdDimensionName - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
-
Name of the third output dimension.
- THREADPOOL - Enum constant in enum class org.tribuo.common.nearest.KNNModel.Backend
-
Uses a thread pool at the outer level (i.e., one thread per prediction).
- threeDimDenseTrainTest(double, boolean) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- threshold - Enum constant in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Min and max thresholds applied to the input.
- threshold() - Method in interface org.tribuo.multilabel.sgd.MultiLabelObjective
-
The default prediction threshold for creating the output.
- threshold() - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
- threshold() - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
- threshold(double, double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that sets values below min to min, and values above max to max.
- THRESHOLD - Static variable in class org.tribuo.CategoricalInfo
-
The default threshold for converting a categorical info into a
RealInfo
. - THRESHOLD - Static variable in class org.tribuo.interop.onnx.DenseTransformer
-
Feature size beyond which a warning is generated (as ONNX requires dense features and large feature spaces are memory hungry).
- THRESHOLD - Static variable in class org.tribuo.interop.tensorflow.DenseFeatureConverter
-
Feature size beyond which a warning is generated (as TensorFlow requires dense features and large feature spaces are memory hungry).
- THRESHOLD - Static variable in class org.tribuo.interop.tensorflow.MultiLabelConverter
-
The threshold to determine if a label has been predicted.
- thresholds - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
-
The threshold values.
- thresholds - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
-
The threshold values.
- time - Variable in class org.tribuo.provenance.ModelProvenance
- TIME_SERIES - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Time series forecasting, no Tribuo mapping.
- TimestampedTrainerProvenance - Class in org.tribuo.provenance.impl
-
A TrainerProvenance with a timestamp, used when there was no trainer involved in model construction (e.g., creating an
EnsembleModel
from existing models). - TimestampedTrainerProvenance() - Constructor for class org.tribuo.provenance.impl.TimestampedTrainerProvenance
-
Creates a TimestampedTrainerProvenance, tracking the creation time and Tribuo version.
- TimestampedTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.TimestampedTrainerProvenance
-
Used for deserializing provenances from the marshalled form.
- tn() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the total number of true negatives.
- tn() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of true negatives.
- tn() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the micro averaged true negative count.
- tn() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tn(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- tn(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
The true negative count for this label.
- tn(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of true negatives, possibly averaged depending on the metric target.
- tn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- tn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tn(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of true negatives for that label, i.e., the number of times it wasn't predicted, and was not the true label.
- tn(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of true negatives for the supplied label.
- TN - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of true negatives.
- TN - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The number of true negatives.
- TN - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of true negatives.
- toArray() - Method in class org.tribuo.math.la.DenseVector
-
Generates a copy of the values in this DenseVector.
- toArray() - Method in interface org.tribuo.math.la.SGDVector
-
Returns an array containing all the values in the vector (including any implicit zeros).
- toArray() - Method in class org.tribuo.math.la.SparseVector
- toArray() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- toArray() - Method in class org.tribuo.util.infotheory.impl.RowList
- toArray(U[]) - Method in class org.tribuo.util.infotheory.impl.RowList
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.GraphProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.ModelProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.NodeProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.TypeProto
- toBuilder() - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
- toDenseArray() - Method in class org.tribuo.math.la.SparseVector
-
Deprecated.
- toDoubleArray(float[]) - Static method in class org.tribuo.util.Util
-
Convert an array of floats to an array of doubles.
- toFloatArray(double[]) - Static method in class org.tribuo.util.Util
-
Convert an array of doubles to an array of floats.
- toFormattedString(LabelEvaluation) - Static method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
This method produces a nicely formatted String output, with appropriate tabs and newlines, suitable for display on a terminal.
- toHTML() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Emits a HTML table representation of the Confusion Matrix.
- toHTML() - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Returns a HTML formatted String representing this evaluation.
- toHTML() - Method in class org.tribuo.Feature
-
Returns the feature name formatted as a table cell.
- toHTML(Pair<String, Double>) - Static method in class org.tribuo.util.HTMLOutput
-
Formats a pair as a HTML table entry.
- toHTML(LabelEvaluation) - Static method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
This method produces a HTML formatted String output, with appropriate tabs and newlines, suitable for integration into a webpage.
- Token - Class in org.tribuo.util.tokens
-
A single token extracted from a String.
- Token(String, int, int) - Constructor for class org.tribuo.util.tokens.Token
-
Constructs a token.
- Token(String, int, int, Token.TokenType) - Constructor for class org.tribuo.util.tokens.Token
-
Constructs a token.
- TOKEN_METADATA - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Metadata key for the token value stored in a Tribuo
Example
. - TOKEN_OUTPUT - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Output name for the token level outputs.
- TOKEN_TYPE_IDS - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Input name for the token type ids.
- TOKEN_TYPE_VALUE - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Token type value for the first sentence.
- Token.TokenType - Enum Class in org.tribuo.util.tokens
-
Tokenizers may product multiple kinds of tokens, depending on the application to which they're being put.
- TokenizationException - Exception in org.tribuo.util.tokens
-
Wraps exceptions thrown by tokenizers.
- TokenizationException(String) - Constructor for exception org.tribuo.util.tokens.TokenizationException
-
Creates a TokenizationException with the specified message.
- TokenizationException(String, Throwable) - Constructor for exception org.tribuo.util.tokens.TokenizationException
-
Creates a TokenizationException wrapping the supplied throwable with the specified message.
- TokenizationException(Throwable) - Constructor for exception org.tribuo.util.tokens.TokenizationException
-
Creates a TokenizationException wrapping the supplied throwable.
- tokenize(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Uses this tokenizer to tokenize a string and return the list of tokens that were generated.
- Tokenizer - Interface in org.tribuo.util.tokens
-
An interface for things that tokenize text: breaking it into words according to some set of rules.
- TokenizerOptions - Interface in org.tribuo.util.tokens.options
-
CLI Options for creating a tokenizer.
- TokenPipeline - Class in org.tribuo.data.text.impl
-
A pipeline for generating ngram features.
- TokenPipeline(Tokenizer, int, boolean) - Constructor for class org.tribuo.data.text.impl.TokenPipeline
-
Creates a new token pipeline.
- TokenPipeline(Tokenizer, int, boolean, int) - Constructor for class org.tribuo.data.text.impl.TokenPipeline
-
Creates a new token pipeline.
- tokenType - Variable in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
The token type.
- tolerance - Static variable in interface org.tribuo.math.optimisers.util.ShrinkingTensor
-
The tolerance below which the scale factor is applied to the stored values and reset to 1.0.
- TOLERANCE - Static variable in class org.tribuo.regression.Regressor
-
The tolerance value for determining if two regressed values are equal.
- toMaxLabels(List<Prediction<T>>) - Static method in class org.tribuo.sequence.SequenceModel
-
Extracts a list of the predicted outputs from the list of prediction objects.
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Shows the top features of the loaded model.
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.ModelExplorer
-
Displays the top n features.
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Shows the top n features in this model.
- TOPIC_MODELLING - Enum constant in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Topic modelling, no Tribuo mapping.
- toPrimitiveDouble(List<Double>) - Static method in class org.tribuo.util.Util
-
Converts a boxed list of doubles into an array of primitive doubles.
- toPrimitiveDoubleFromInteger(List<Integer>) - Static method in class org.tribuo.util.Util
-
Converts a boxed list of integers into an array of primitive doubles.
- toPrimitiveFloat(List<Float>) - Static method in class org.tribuo.util.Util
-
Converts a boxed list of floats into an array of primitive floats.
- toPrimitiveInt(List<Integer>) - Static method in class org.tribuo.util.Util
-
Converts a boxed list of integers into an array of primitive ints.
- toPrimitiveLong(List<Long>) - Static method in class org.tribuo.util.Util
-
Converts a boxed list of longs into an array of primitive longs.
- toReadableString() - Method in class org.tribuo.anomaly.AnomalyInfo
- toReadableString() - Method in class org.tribuo.classification.ImmutableLabelInfo
- toReadableString() - Method in class org.tribuo.classification.MutableLabelInfo
- toReadableString() - Method in class org.tribuo.clustering.ClusteringInfo
- toReadableString() - Method in class org.tribuo.FeatureMap
-
Same as the toString, but ordered by name, and with newlines.
- toReadableString() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- toReadableString() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- toReadableString() - Method in interface org.tribuo.OutputInfo
-
Generates a String form of this OutputInfo.
- toReadableString() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- toReadableString() - Method in class org.tribuo.regression.MutableRegressionInfo
- toString() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- toString() - Method in class org.tribuo.anomaly.AnomalyInfo
- toString() - Method in class org.tribuo.anomaly.Event
- toString() - Method in class org.tribuo.CategoricalIDInfo
- toString() - Method in class org.tribuo.CategoricalInfo
- toString() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- toString() - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- toString() - Method in class org.tribuo.classification.dtree.impurity.Entropy
- toString() - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- toString() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- toString() - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- toString() - Method in class org.tribuo.classification.ensemble.VotingCombiner
- toString() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- toString() - Method in class org.tribuo.classification.evaluation.LabelMetric
- toString() - Method in class org.tribuo.classification.example.CheckerboardDataSource
- toString() - Method in class org.tribuo.classification.example.ConcentricCirclesDataSource
- toString() - Method in class org.tribuo.classification.example.GaussianLabelDataSource
- toString() - Method in class org.tribuo.classification.example.InterlockingCrescentsDataSource
- toString() - Method in class org.tribuo.classification.example.NoisyInterlockingCrescentsDataSource
- toString() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- toString() - Method in class org.tribuo.classification.ImmutableLabelInfo
- toString() - Method in class org.tribuo.classification.Label
- toString() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- toString() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- toString() - Method in class org.tribuo.classification.MutableLabelInfo
- toString() - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
- toString() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- toString() - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- toString() - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- toString() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- toString() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- toString() - Method in class org.tribuo.classification.sgd.fm.FMClassificationTrainer
- toString() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- toString() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- toString() - Method in class org.tribuo.classification.sgd.objectives.Hinge
- toString() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- toString() - Method in class org.tribuo.clustering.ClusterID
- toString() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- toString() - Method in class org.tribuo.clustering.ClusteringInfo
- toString() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- toString() - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- toString() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- toString() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- toString() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- toString() - Method in class org.tribuo.common.libsvm.SVMParameters
- toString() - Method in class org.tribuo.common.nearest.KNNTrainer
- toString() - Method in class org.tribuo.common.tree.ExtraTreesTrainer
- toString() - Method in class org.tribuo.common.tree.LeafNode
- toString() - Method in class org.tribuo.common.tree.RandomForestTrainer
- toString() - Method in class org.tribuo.common.tree.SplitNode
- toString() - Method in class org.tribuo.common.tree.TreeModel
- toString() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance
- toString() - Method in class org.tribuo.common.xgboost.XGBoostFeatureImportance.XGBoostFeatureImportanceInstance
- toString() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- toString() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
- toString() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- toString() - Method in class org.tribuo.data.columnar.extractors.OffsetDateTimeExtractor
- toString() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- toString() - Method in class org.tribuo.data.columnar.processors.field.DateFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.EmptyResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.Quartile
- toString() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.RowProcessor
- toString() - Method in class org.tribuo.data.csv.CSVDataSource
- toString() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
-
Deprecated.
- toString() - Method in class org.tribuo.data.sql.SQLDataSource
- toString() - Method in class org.tribuo.data.sql.SQLDBConfig
- toString() - Method in class org.tribuo.data.text.DirectoryFileSource
- toString() - Method in class org.tribuo.data.text.impl.BasicPipeline
- toString() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- toString() - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- toString() - Method in class org.tribuo.data.text.impl.TokenPipeline
- toString() - Method in class org.tribuo.data.text.TextDataSource
- toString() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
This toString doesn't put the indices in the string, as it's likely to be huge.
- toString() - Method in class org.tribuo.dataset.DatasetView
- toString() - Method in class org.tribuo.Dataset
- toString() - Method in class org.tribuo.datasource.AggregateConfigurableDataSource
- toString() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- toString() - Method in class org.tribuo.datasource.AggregateDataSource
- toString() - Method in class org.tribuo.datasource.IDXDataSource
- toString() - Method in class org.tribuo.datasource.LibSVMDataSource
- toString() - Method in class org.tribuo.datasource.ListDataSource
- toString() - Method in class org.tribuo.ensemble.BaggingTrainer
- toString() - Method in class org.tribuo.evaluation.DescriptiveStats
- toString() - Method in class org.tribuo.evaluation.metrics.MetricID
- toString() - Method in class org.tribuo.evaluation.metrics.MetricTarget
- toString() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- toString() - Method in class org.tribuo.Feature
- toString() - Method in class org.tribuo.FeatureMap
- toString() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- toString() - Method in class org.tribuo.hash.HashCodeHasher
- toString() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- toString() - Method in class org.tribuo.hash.MessageDigestHasher
- toString() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- toString() - Method in class org.tribuo.hash.ModHashCodeHasher
- toString() - Method in class org.tribuo.ImmutableDataset
- toString() - Method in class org.tribuo.impl.ArrayExample
- toString() - Method in class org.tribuo.impl.BinaryFeaturesExample
- toString() - Method in class org.tribuo.impl.ListExample
- toString() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- toString() - Method in class org.tribuo.interop.oci.OCILabelConverter
- toString() - Method in class org.tribuo.interop.oci.OCIMultiLabelConverter
- toString() - Method in class org.tribuo.interop.oci.OCIRegressorConverter
- toString() - Method in class org.tribuo.interop.onnx.DenseTransformer
- toString() - Method in class org.tribuo.interop.onnx.ImageTransformer
- toString() - Method in class org.tribuo.interop.onnx.LabelOneVOneTransformer
- toString() - Method in class org.tribuo.interop.onnx.LabelTransformer
- toString() - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- toString() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.DenseFeatureConverter
- toString() - Method in class org.tribuo.interop.tensorflow.ImageConverter
- toString() - Method in class org.tribuo.interop.tensorflow.LabelConverter
- toString() - Method in class org.tribuo.interop.tensorflow.MultiLabelConverter
- toString() - Method in class org.tribuo.interop.tensorflow.RegressorConverter
- toString() - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- toString() - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- toString() - Method in class org.tribuo.interop.tensorflow.TensorMap
- toString() - Method in class org.tribuo.json.JsonDataSource
- toString() - Method in class org.tribuo.math.kernel.Linear
- toString() - Method in class org.tribuo.math.kernel.Polynomial
- toString() - Method in class org.tribuo.math.kernel.RBF
- toString() - Method in class org.tribuo.math.kernel.Sigmoid
- toString() - Method in class org.tribuo.math.la.DenseMatrix
- toString() - Method in class org.tribuo.math.la.DenseSparseMatrix
- toString() - Method in class org.tribuo.math.la.DenseVector
- toString() - Method in class org.tribuo.math.la.MatrixTuple
- toString() - Method in class org.tribuo.math.la.SparseVector
- toString() - Method in class org.tribuo.math.la.VectorTuple
- toString() - Method in class org.tribuo.math.optimisers.AdaDelta
- toString() - Method in class org.tribuo.math.optimisers.AdaGrad
- toString() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- toString() - Method in class org.tribuo.math.optimisers.Adam
- toString() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- toString() - Method in class org.tribuo.math.optimisers.Pegasos
- toString() - Method in class org.tribuo.math.optimisers.RMSProp
- toString() - Method in class org.tribuo.math.optimisers.SGD
- toString() - Method in class org.tribuo.Model
- toString() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- toString() - Method in class org.tribuo.multilabel.ensemble.MultiLabelVotingCombiner
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
-
This method produces a nicely formatted String output, with appropriate tabs and newlines, suitable for display on a terminal.
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- toString() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- toString() - Method in class org.tribuo.multilabel.MultiLabel
- toString() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- toString() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- toString() - Method in class org.tribuo.multilabel.sgd.fm.FMMultiLabelTrainer
- toString() - Method in class org.tribuo.multilabel.sgd.linear.LinearSGDTrainer
- toString() - Method in class org.tribuo.multilabel.sgd.objectives.BinaryCrossEntropy
- toString() - Method in class org.tribuo.multilabel.sgd.objectives.Hinge
- toString() - Method in class org.tribuo.MutableDataset
- toString() - Method in class org.tribuo.Prediction
- toString() - Method in class org.tribuo.provenance.DatasetProvenance
- toString() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- toString() - Method in class org.tribuo.provenance.EvaluationProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyDatasetProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- toString() - Method in class org.tribuo.provenance.impl.TimestampedTrainerProvenance
- toString() - Method in class org.tribuo.provenance.ModelProvenance
- toString() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- toString() - Method in class org.tribuo.RealIDInfo
- toString() - Method in class org.tribuo.RealInfo
- toString() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- toString() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- toString() - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- toString() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- toString() - Method in class org.tribuo.regression.MutableRegressionInfo
- toString() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- toString() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- toString() - Method in class org.tribuo.regression.Regressor
- toString() - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- toString() - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- toString() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- toString() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
- toString() - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- toString() - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- toString() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- toString() - Method in class org.tribuo.regression.sgd.fm.FMRegressionTrainer
- toString() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- toString() - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- toString() - Method in class org.tribuo.regression.sgd.objectives.Huber
- toString() - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- toString() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- toString() - Method in class org.tribuo.regression.slm.LARSLassoTrainer
- toString() - Method in class org.tribuo.regression.slm.LARSTrainer
- toString() - Method in class org.tribuo.regression.slm.SLMTrainer
- toString() - Method in record class org.tribuo.reproducibility.ReproUtil.FeatureDiff
-
Returns a string representation of this record class.
- toString() - Method in record class org.tribuo.reproducibility.ReproUtil.ModelReproduction
-
Returns a string representation of this record class.
- toString() - Method in record class org.tribuo.reproducibility.ReproUtil.OutputDiff
-
Returns a string representation of this record class.
- toString() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- toString() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- toString() - Method in class org.tribuo.sequence.IndependentSequenceTrainer
- toString() - Method in class org.tribuo.sequence.MutableSequenceDataset
- toString() - Method in class org.tribuo.sequence.SequenceDataset
- toString() - Method in class org.tribuo.sequence.SequenceModel
- toString() - Method in class org.tribuo.SkeletalVariableInfo
- toString() - Method in class org.tribuo.transform.TransformationMap
- toString() - Method in class org.tribuo.transform.transformations.BinningTransformation
- toString() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- toString() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- toString() - Method in class org.tribuo.transform.transformations.SimpleTransform
- toString() - Method in class org.tribuo.transform.TransformerMap
- toString() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- toString() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- toString() - Method in class org.tribuo.util.infotheory.impl.Row
- toString() - Method in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
- toString() - Method in class org.tribuo.util.IntDoublePair
- toString() - Method in class org.tribuo.util.MeanVarianceAccumulator
- toString() - Method in class org.tribuo.util.onnx.ONNXAttribute
- toString() - Method in class org.tribuo.util.tokens.Token
- toString() - Method in class org.tribuo.util.tokens.universal.Range
- totalCount - Variable in class org.tribuo.multilabel.MultiLabelInfo
- totalObservations - Variable in class org.tribuo.CategoricalInfo
-
The total number of observations (including zeros).
- totalSize() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
The total amount of data in train and test combined.
- tp() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro average of the number of true positives across all the labels, i.e., the total number of true positives.
- tp() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of true positives.
- tp() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the micro averaged true positive count.
- tp() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tp(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- tp(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the true positive count for that label.
- tp(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of true positives, possibly averaged depending on the metric target.
- tp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- tp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tp(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of true positives, i.e., the number of times the label was correctly predicted.
- tp(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of true positives for the supplied label.
- TP - Enum constant in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of true positives.
- TP - Enum constant in enum class org.tribuo.classification.evaluation.LabelMetrics
-
The number of true positives.
- TP - Enum constant in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of true positives.
- tpr - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
-
The true positive rate at the corresponding threshold.
- train - Variable in class org.tribuo.evaluation.KFoldSplitter.TrainTestFold
-
The training fold.
- train(Dataset<Event>, Map<String, Provenance>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- train(Dataset<Label>) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
-
If the trainer implements
WeightedExamples
then do boosting by weighting, otherwise do boosting by sampling. - train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- train(Dataset<Label>, Map<String, Provenance>, int) - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- train(Dataset<Label>, Map<String, Provenance>, int) - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- train(Dataset<Label>, Map<String, Provenance>, int) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- train(Dataset<Label>, Map<String, Provenance>, int) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- train(Dataset<Label>, Map<String, Provenance>, int) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- train(Dataset<ClusterID>) - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- train(Dataset<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- train(Dataset<ClusterID>, Map<String, Provenance>) - Method in class org.tribuo.clustering.hdbscan.HdbscanTrainer
- train(Dataset<ClusterID>, Map<String, Provenance>) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- train(Dataset<ClusterID>, Map<String, Provenance>, int) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- train(Dataset<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- train(Dataset<MultiLabel>) - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>) - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>) - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>, int) - Method in class org.tribuo.multilabel.baseline.ClassifierChainTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>, int) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>, int) - Method in class org.tribuo.multilabel.ensemble.CCEnsembleTrainer
- train(Dataset<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- train(Dataset<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.slm.SLMTrainer
-
Trains a sparse linear model.
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.slm.SLMTrainer
-
Trains a sparse linear model.
- train(Dataset<Regressor>, Map<String, Provenance>, int) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- train(Dataset<T>) - Method in class org.tribuo.ensemble.BaggingTrainer
- train(Dataset<T>) - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- train(Dataset<T>) - Method in interface org.tribuo.SparseTrainer
-
Trains a sparse predictive model using the examples in the given data set.
- train(Dataset<T>) - Method in interface org.tribuo.Trainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.nearest.KNNTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.ensemble.BaggingTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.hash.HashingTrainer
-
This clones the
Dataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer. - train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.SparseTrainer
-
Trains a sparse predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.Trainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.transform.TransformTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.common.nearest.KNNTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.common.sgd.AbstractSGDTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.ensemble.BaggingTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.hash.HashingTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.interop.tensorflow.TensorFlowTrainer
- train(Dataset<T>, Map<String, Provenance>, int) - Method in interface org.tribuo.SparseTrainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>, int) - Method in interface org.tribuo.Trainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>, int) - Method in class org.tribuo.transform.TransformTrainer
- train(SequenceDataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
-
The viterbi train method is unique because it delegates to a regular
Model
train method, but before it does, it adds features derived from preceding labels. - train(SequenceDataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- train(SequenceDataset<T>) - Method in interface org.tribuo.sequence.SequenceTrainer
-
Trains a sequence prediction model using the examples in the given data set.
- train(SequenceDataset<T>, Map<String, Provenance>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- train(SequenceDataset<T>, Map<String, Provenance>) - Method in class org.tribuo.sequence.HashingSequenceTrainer
-
This clones the
SequenceDataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer. - train(SequenceDataset<T>, Map<String, Provenance>) - Method in class org.tribuo.sequence.IndependentSequenceTrainer
- train(SequenceDataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.sequence.SequenceTrainer
-
Trains a sequence prediction model using the examples in the given data set.
- TRAIN_INVOCATION_COUNT - Static variable in interface org.tribuo.provenance.TrainerProvenance
-
The name of the provenance field recording the train invocation count.
- trainDataset - Variable in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
-
Path to a serialised SequenceDataset used for training.
- trainDataset - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
-
Path to a serialised SequenceDataset used for training.
- trainDimension(double[], SparseVector[], float[], SplittableRandom) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Trains a single dimension of the possibly multiple dimensions.
- trainDimension(double[], SparseVector[], float[], SplittableRandom) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Trains a single dimension of the possibly multiple dimensions.
- trainer - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load a trainer from the config file.
- trainer - Variable in class org.tribuo.classification.sequence.SeqTrainTest.SeqTrainTestOptions
-
Name of the trainer in the configuration file.
- trainer - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load a trainer from the config file.
- trainer - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load a trainer from the config file.
- Trainer<T extends Output<T>> - Interface in org.tribuo
-
An interface for things that can train predictive models.
- TRAINER - Enum constant in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select the trainer provenance.
- TRAINER - Static variable in class org.tribuo.provenance.ModelProvenance
- trainerOptions - Variable in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
-
All the classification trainer options.
- trainerOptions - Variable in class org.tribuo.classification.sgd.fm.TrainTest.TrainTestOptions
- trainerOptions - Variable in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
-
The Kernel SVM SGD options.
- trainerOptions - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
-
The linear SGD trainer options.
- trainerProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- TrainerProvenance - Interface in org.tribuo.provenance
-
A tag interface for trainer provenances.
- TrainerProvenanceImpl - Class in org.tribuo.provenance.impl
-
An implementation of
TrainerProvenance
that delegates everything toSkeletalTrainerProvenance
. - TrainerProvenanceImpl(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by extracting the necessary fields from the supplied map.
- TrainerProvenanceImpl(SequenceTrainer<T>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by reading all the configurable parameters along with the train call count.
- TrainerProvenanceImpl(Trainer<T>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by reading all the configurable parameters along with the train call count.
- trainerType - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- trainExplainer(Example<Regressor>, List<Example<Regressor>>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Trains the explanation model using the supplied sampled data and the input example.
- TRAINING_INFO_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ModelProto
- TRAINING_TIME - Static variable in class org.tribuo.provenance.ModelProvenance
- trainingPath - Variable in class org.tribuo.data.DataOptions
-
Path to the training file.
- trainingPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
-
Path to the libsvm format training file.
- trainInvocationCounter - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- trainInvocationCounter - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- trainInvocationCounter - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- trainInvocationCounter - Variable in class org.tribuo.ensemble.BaggingTrainer
- trainInvocationCounter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- trainInvocationCounter - Variable in class org.tribuo.regression.slm.SLMTrainer
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Train all the liblinear instances necessary for this dataset.
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][], SplittableRandom) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][], SplittableRandom) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][], SplittableRandom) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Train all the LibSVM instances necessary for this dataset.
- trainModels(svm_parameter, int, svm_node[][], double[][], SplittableRandom) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- trainOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorFlowSequenceTrainer
- trainPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
-
Output training data file.
- trainSingleModel(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, int, Map<String, Provenance>, int) - Method in class org.tribuo.ensemble.BaggingTrainer
-
Trains a single model.
- trainSource - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load the training DataSource from the config file.
- TrainTest - Class in org.tribuo.classification.dtree
-
Build and run a decision tree classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.experiments
-
Build and run a classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.liblinear
-
Build and run a liblinear-java classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.libsvm
-
Build and run a LibSVM classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.mnb
-
Build and run a multinomial naive bayes classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.sgd.fm
-
Build and run a classifier for a standard dataset using FMClassificationTrainer.
- TrainTest - Class in org.tribuo.classification.sgd.kernel
-
Build and run a kernel SVM classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.sgd
-
Build and run a classifier for a standard dataset using LinearSGDTrainer.
- TrainTest - Class in org.tribuo.classification.xgboost
-
Build and run an XGBoost classifier for a standard dataset.
- TrainTest - Class in org.tribuo.clustering.hdbscan
-
Build and run a HDBSCAN* clustering model for a standard dataset.
- TrainTest - Class in org.tribuo.clustering.kmeans
-
Build and run a k-means clustering model for a standard dataset.
- TrainTest - Class in org.tribuo.interop.tensorflow
-
Build and run a Tensorflow multi-class classifier for a standard dataset.
- TrainTest - Class in org.tribuo.regression.liblinear
-
Build and run a LibLinear regressor for a standard dataset.
- TrainTest - Class in org.tribuo.regression.libsvm
-
Build and run a LibSVM regressor for a standard dataset.
- TrainTest - Class in org.tribuo.regression.rtree
-
Build and run a regression tree for a standard dataset.
- TrainTest - Class in org.tribuo.regression.sgd.fm
-
Build and run a regression factorization machine for a standard dataset.
- TrainTest - Class in org.tribuo.regression.sgd
-
Build and run a linear regression for a standard dataset.
- TrainTest - Class in org.tribuo.regression.slm
-
Build and run a sparse linear regression model for a standard dataset.
- TrainTest - Class in org.tribuo.regression.xgboost
-
Build and run an XGBoost regressor for a standard dataset.
- TrainTest() - Constructor for class org.tribuo.classification.dtree.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.experiments.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.liblinear.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.libsvm.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.mnb.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.sgd.fm.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.sgd.kernel.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.sgd.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.xgboost.TrainTest
- TrainTest() - Constructor for class org.tribuo.clustering.hdbscan.TrainTest
- TrainTest() - Constructor for class org.tribuo.clustering.kmeans.TrainTest
- TrainTest() - Constructor for class org.tribuo.interop.tensorflow.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.liblinear.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.libsvm.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.rtree.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.sgd.fm.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.sgd.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.slm.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.xgboost.TrainTest
- TrainTest.AllClassificationOptions - Class in org.tribuo.classification.experiments
-
Command line options.
- TrainTest.FMRegressionOptions - Class in org.tribuo.regression.sgd.fm
-
Command line options.
- TrainTest.HdbscanCLIOptions - Class in org.tribuo.clustering.hdbscan
-
Options for the HDBSCAN* CLI.
- TrainTest.ImpurityType - Enum Class in org.tribuo.regression.rtree
-
Impurity function.
- TrainTest.InputType - Enum Class in org.tribuo.interop.tensorflow
-
Type of feature extractor.
- TrainTest.KMeansOptions - Class in org.tribuo.clustering.kmeans
-
Options for the K-Means CLI.
- TrainTest.LibLinearOptions - Class in org.tribuo.regression.liblinear
-
Command line options.
- TrainTest.LibSVMOptions - Class in org.tribuo.regression.libsvm
-
Command line options.
- TrainTest.LossEnum - Enum Class in org.tribuo.regression.sgd.fm
-
Loss function.
- TrainTest.LossEnum - Enum Class in org.tribuo.regression.sgd
-
Loss function.
- TrainTest.RegressionTreeOptions - Class in org.tribuo.regression.rtree
-
Command line options.
- TrainTest.SGDOptions - Class in org.tribuo.regression.sgd
-
Command line options.
- TrainTest.SLMOptions - Class in org.tribuo.regression.slm
-
Command line options.
- TrainTest.SLMType - Enum Class in org.tribuo.regression.slm
-
Type of sparse linear model.
- TrainTest.TensorflowOptions - Class in org.tribuo.interop.tensorflow
-
Options for training a model in TensorFlow.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.dtree
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.liblinear
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.libsvm
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.mnb
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.sgd.fm
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.sgd.kernel
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.sgd
-
Command line options.
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.xgboost
-
Command line options.
- TrainTest.TreeType - Enum Class in org.tribuo.regression.rtree
-
Type of tree trainer.
- TrainTest.XGBoostOptions - Class in org.tribuo.regression.xgboost
-
Command line options.
- TrainTestHelper - Class in org.tribuo.classification
-
This class provides static methods used by the demo classes in each classification backend.
- TrainTestOptions() - Constructor for class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.sgd.fm.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- TrainTestSplitOptions() - Constructor for class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- TrainTestSplitter<T extends Output<T>> - Class in org.tribuo.evaluation
-
Splits data into training and testing sets.
- TrainTestSplitter(DataSource<T>) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that splits a dataset 70/30 train and test using a default seed.
- TrainTestSplitter(DataSource<T>, double, long) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that will split the given data set into a training and testing set.
- TrainTestSplitter(DataSource<T>, long) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that splits a dataset 70/30 train and test.
- TrainTestSplitter.SplitDataSourceProvenance - Class in org.tribuo.evaluation
-
Provenance for a split data source.
- transform(double) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Apply the operation to the input.
- transform(double) - Method in interface org.tribuo.transform.Transformer
-
Applies the transformation to the supplied input value.
- transform(OrtEnvironment, List<SparseVector>) - Method in class org.tribuo.interop.onnx.DenseTransformer
- transform(OrtEnvironment, List<SparseVector>) - Method in interface org.tribuo.interop.onnx.ExampleTransformer
-
Converts a list of
SparseVector
s representing a batch of features into aOnnxTensor
. - transform(OrtEnvironment, List<SparseVector>) - Method in class org.tribuo.interop.onnx.ImageTransformer
- transform(OrtEnvironment, SparseVector) - Method in class org.tribuo.interop.onnx.DenseTransformer
- transform(OrtEnvironment, SparseVector) - Method in interface org.tribuo.interop.onnx.ExampleTransformer
-
Converts a
SparseVector
representing the features into aOnnxTensor
. - transform(OrtEnvironment, SparseVector) - Method in class org.tribuo.interop.onnx.ImageTransformer
- transform(TransformerMap) - Method in class org.tribuo.Example
-
Transforms this example by applying the transformations from the supplied
TransformerMap
. - transform(TransformerMap) - Method in class org.tribuo.impl.ArrayExample
- transform(TransformerMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- transform(TransformerMap) - Method in class org.tribuo.impl.ListExample
- transform(TransformerMap) - Method in class org.tribuo.MutableDataset
-
Applies all the transformations from the
TransformerMap
to this dataset. - Transformation - Interface in org.tribuo.transform
-
An interface representing a class of transformations which can be applied to a feature.
- TransformationList(List<Transformation>) - Constructor for class org.tribuo.transform.TransformationMap.TransformationList
-
Constructs a transformation list.
- transformationMap - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load a transformation map from the config file.
- transformationMap - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
Load a transformation map from the config file.
- TransformationMap - Class in org.tribuo.transform
-
A carrier type for a set of transformations to be applied to a
Dataset
. - TransformationMap(List<Transformation>) - Constructor for class org.tribuo.transform.TransformationMap
-
Creates a TransformationMap with only global transformations.
- TransformationMap(List<Transformation>, Map<String, List<Transformation>>) - Constructor for class org.tribuo.transform.TransformationMap
-
Creates a transformation map from the supplied global transformation list, and per feature transformations.
- TransformationMap(Map<String, List<Transformation>>) - Constructor for class org.tribuo.transform.TransformationMap
-
Creates a TransformationMap with only per feature transformations.
- TransformationMap.TransformationList - Class in org.tribuo.transform
-
A carrier type as OLCUT does not support nested generics.
- TransformationProvenance - Interface in org.tribuo.transform
-
A tag interface for provenances in the transformation system.
- transformDataset(Dataset<T>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied dataset and applies the transformers to each example in it.
- transformDataset(Dataset<T>, boolean) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied dataset and applies the transformers to each example in it.
- TransformedModel<T extends Output<T>> - Class in org.tribuo.transform
-
Wraps a
Model
with it'sTransformerMap
so allExample
s are transformed appropriately before the model makes predictions. - Transformer - Interface in org.tribuo.transform
-
A fitted
Transformation
which can apply a transform to the input value. - TransformerMap - Class in org.tribuo.transform
- TransformerMap(Map<String, List<Transformer>>, DatasetProvenance, ConfiguredObjectProvenance) - Constructor for class org.tribuo.transform.TransformerMap
-
Constructs a transformer map which encapsulates a set of transformers that can be applied to features.
- TransformerMap.TransformerMapProvenance - Class in org.tribuo.transform
-
Provenance for
TransformerMap
. - TransformerMapProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.TransformerMap.TransformerMapProvenance
-
Deserialization constructor.
- transformExample(Example<T>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied example and applies the transformers to it.
- transformExample(Example<T>, List<String>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied example and applies the transformers to it.
- transformOutput(Prediction<Label>) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Transforms a
Prediction
for a multiclass problem into aRegressor
output which represents the probability for each class. - transformProvenances - Variable in class org.tribuo.MutableDataset
-
The provenances of the transformations applied to this dataset.
- TransformStatistics - Interface in org.tribuo.transform
-
An interface for the statistics that need to be collected for a specific
Transformation
on a single feature. - transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
containing multiple outputs into a list ofOutput
s. - transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<Label>, int[], List<Example<Label>>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<MultiLabel>, int[], List<Example<MultiLabel>>) - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<Regressor>, int[], List<Example<Regressor>>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<T>, int[], List<Example<T>>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
containing multiple outputs into a list ofPrediction
s. - transformToOutput(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToOutput(List<OnnxValue>, ImmutableOutputInfo<MultiLabel>) - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- transformToOutput(List<OnnxValue>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToOutput(List<OnnxValue>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
into the specified output type. - transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<Label>, int, Example<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<MultiLabel>, int, Example<MultiLabel>) - Method in class org.tribuo.interop.onnx.MultiLabelTransformer
- transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<Regressor>, int, Example<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<T>, int, Example<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
into aPrediction
. - TransformTrainer<T extends Output<T>> - Class in org.tribuo.transform
-
A
Trainer
which encapsulates another trainer plus aTransformationMap
object to apply to eachDataset
before training eachModel
. - TransformTrainer(Trainer<T>, TransformationMap) - Constructor for class org.tribuo.transform.TransformTrainer
-
Creates a trainer which transforms the data before training, and stores the transformers along with the trained model in a
TransformedModel
. - TransformTrainer(Trainer<T>, TransformationMap, boolean) - Constructor for class org.tribuo.transform.TransformTrainer
-
Creates a trainer which transforms the data before training, and stores the transformers along with the trained model in a
TransformedModel
. - TransformTrainer(Trainer<T>, TransformationMap, boolean, boolean) - Constructor for class org.tribuo.transform.TransformTrainer
-
Creates a trainer which transforms the data before training, and stores the transformers along with the trained model in a
TransformedModel
. - transitionValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainCliqueValues
-
The label-label transition matrix.
- transpose() - Method in class org.tribuo.math.la.DenseMatrix
-
Returns a transposed copy of this matrix.
- transpose(Dataset<T>) - Static method in class org.tribuo.math.la.SparseVector
-
Converts a dataset of row-major examples into an array of column-major sparse vectors.
- transpose(Dataset<T>, ImmutableFeatureMap) - Static method in class org.tribuo.math.la.SparseVector
-
Converts a dataset of row-major examples into an array of column-major sparse vectors.
- transpose(SparseVector[]) - Static method in class org.tribuo.math.la.SparseVector
-
Transposes an array of sparse vectors from row-major to column-major or vice versa.
- TreeFeature - Class in org.tribuo.regression.rtree.impl
-
An inverted feature, which stores a reference to all the values of this feature.
- TreeFeature(int) - Constructor for class org.tribuo.regression.rtree.impl.TreeFeature
-
Constructs an inverted feature with the specified feature id.
- TreeModel<T extends Output<T>> - Class in org.tribuo.common.tree
- TreeModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, List<String>>) - Constructor for class org.tribuo.common.tree.TreeModel
-
Constructs a trained decision tree model.
- treeType - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Tree type.
- Tribuo - Class in org.tribuo
-
This class stores the current Tribuo version, along with other compile time information.
- Tribuo() - Constructor for class org.tribuo.Tribuo
- TRIBUO_NATIVE - Enum constant in enum class org.tribuo.interop.tensorflow.TensorFlowTrainer.TFModelFormat
-
Saves the model inside the Tribuo object, emits a
TensorFlowNativeModel
. - TRIBUO_VERSION_STRING - Static variable in class org.tribuo.provenance.ModelProvenance
- TRIBUO_VERSION_STRING - Static variable in interface org.tribuo.provenance.TrainerProvenance
-
The name of the provenance field recording the Tribuo version used in training.
- TripleDistribution<T1,
T2, T3> - Class in org.tribuo.util.infotheory.impl -
Generates the counts for a triplet of vectors.
- TripleDistribution(long, Map<CachedTriple<T1, T2, T3>, MutableLong>, Map<CachedPair<T1, T2>, MutableLong>, Map<CachedPair<T1, T3>, MutableLong>, Map<CachedPair<T2, T3>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>, Map<T3, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.TripleDistribution
-
Constructs a triple distribution from the supplied distributions.
- tryAdvance(Consumer<? super ColumnarIterator.Row>) - Method in class org.tribuo.data.columnar.ColumnarIterator
- TWEEDIE - Enum constant in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Tweedie loss function.
- twoNorm() - Method in class org.tribuo.math.la.DenseMatrix
- twoNorm() - Method in class org.tribuo.math.la.DenseSparseMatrix
- twoNorm() - Method in class org.tribuo.math.la.DenseVector
- twoNorm() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the euclidean norm for this vector.
- twoNorm() - Method in class org.tribuo.math.la.SparseVector
- twoNorm() - Method in interface org.tribuo.math.la.Tensor
-
Calculates the euclidean norm for this vector.
- twoNorm() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- twoNorm() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- type - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
-
Ensemble method, options are {ADABOOST, BAGGING, RF}.
- type - Variable in class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
-
The type of the input distribution.
- type - Variable in class org.tribuo.util.tokens.Token
-
The token type.
- type - Variable in class org.tribuo.util.tokens.universal.Range
-
The current token type.
- TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.AttributeProto
- TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.ValueInfoProto
U
- UBYTE - Enum constant in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
An unsigned byte.
- UINT16 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
uint16_t
- UINT16_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
uint16_t
- UINT32 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UINT32 = 12;
- UINT32_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UINT32 = 12;
- UINT64 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UINT64 = 13;
- UINT64_DATA_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TensorProto
- UINT64_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UINT64 = 13;
- UINT8 - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
uint8_t
- UINT8_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
uint8_t
- UNASSIGNED - Static variable in class org.tribuo.clustering.ClusterID
-
The sentinel unassigned cluster ID.
- UNASSIGNED_CLUSTER_ID - Static variable in class org.tribuo.clustering.ClusteringFactory
-
The sentinel unassigned cluster id, used when there is no ground truth clustering.
- UNDEFINED - Enum constant in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
UNDEFINED = 0;
- UNDEFINED - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UNDEFINED = 0;
- UNDEFINED_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
UNDEFINED = 0;
- UNDEFINED_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
UNDEFINED = 0;
- UNIFORM - Enum constant in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Samples uniformly from the label domain.
- uniformSample(SplittableRandom) - Method in class org.tribuo.CategoricalInfo
- uniformSample(SplittableRandom) - Method in class org.tribuo.RealInfo
- uniformSample(SplittableRandom) - Method in interface org.tribuo.VariableInfo
-
Sample a value uniformly from the range of this variable.
- unionSize(MultiLabel, MultiLabel) - Static method in class org.tribuo.multilabel.MultiLabel
-
The number of unique labels across both MultiLabels.
- UniqueAggregator - Class in org.tribuo.data.text.impl
-
Aggregates feature tokens, generating unique features.
- UniqueAggregator() - Constructor for class org.tribuo.data.text.impl.UniqueAggregator
-
Constructs an aggregator that replaces all features with the same name with a single feature with the last observed value of that feature.
- UniqueAggregator(double) - Constructor for class org.tribuo.data.text.impl.UniqueAggregator
-
Constructs an aggregator that replaces all features with the same name with a single feature with the specified value.
- UniqueProcessor - Class in org.tribuo.data.columnar.processors.feature
-
Processes a feature list, aggregating all the feature values with the same name.
- UniqueProcessor(UniqueProcessor.UniqueType) - Constructor for class org.tribuo.data.columnar.processors.feature.UniqueProcessor
-
Creates a UniqueProcessor using the specified reduction operation.
- UniqueProcessor.UniqueType - Enum Class in org.tribuo.data.columnar.processors.feature
-
The type of reduction operation to perform.
- UNIVERSAL - Enum constant in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Creates a
UniversalTokenizer
. - UniversalTokenizer - Class in org.tribuo.util.tokens.universal
-
This class was originally written for the purpose of document indexing in an information retrieval context (principally used in Sun Labs' Minion search engine).
- UniversalTokenizer() - Constructor for class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Constructs a universal tokenizer which doesn't send punctuation.
- UniversalTokenizer(boolean) - Constructor for class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Constructs a universal tokenizer.
- UNKNOWN - Enum constant in enum class org.tribuo.anomaly.Event.EventType
-
An unknown (i.e., unlabelled) event, with id -1.
- UNKNOWN - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
Some tokenizers may work in concert with vocabulary data.
- UNKNOWN - Static variable in class org.tribuo.classification.Label
-
The name of the unknown label (i.e., an unlabelled output).
- UNKNOWN_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The unknown event.
- UNKNOWN_LABEL - Static variable in class org.tribuo.classification.LabelFactory
-
The singleton unknown label, used for unlablled examples.
- UNKNOWN_MULTILABEL - Static variable in class org.tribuo.multilabel.MultiLabelFactory
-
The sentinel unknown multi-label output used to signal there is no ground truth value.
- UNKNOWN_MULTIPLE_REGRESSOR - Static variable in class org.tribuo.regression.RegressionFactory
-
Deprecated.Deprecated when regression was made multidimensional by default. Use
RegressionFactory.UNKNOWN_REGRESSOR
instead. - UNKNOWN_REGRESSOR - Static variable in class org.tribuo.regression.RegressionFactory
-
The sentinel unknown regressor, used when there is no ground truth regressor value.
- UNKNOWN_TOKEN - Static variable in class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor
-
Default unknown token name.
- UNKNOWN_VERSION - Static variable in class org.tribuo.provenance.ModelProvenance
- unknownCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of unknown events observed (i.e., those without labels).
- unknownCount - Variable in class org.tribuo.classification.LabelInfo
-
The number of unknown labels this LabelInfo has seen.
- unknownCount - Variable in class org.tribuo.clustering.ClusteringInfo
- unknownCount - Variable in class org.tribuo.multilabel.MultiLabelInfo
- unknownCount - Variable in class org.tribuo.regression.RegressionInfo
- unpack(int[]) - Method in class org.tribuo.classification.sgd.crf.Chunk
-
Copies the labels into the constraints array starting at
Chunk.begin
. - UNSQUEEZE - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Adds extra dimensions to a tensor in the specified places, the axes are the second input.
- update(Tensor[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- update(Tensor[]) - Method in class org.tribuo.common.sgd.FMParameters
- update(Tensor[]) - Method in class org.tribuo.math.LinearParameters
- update(Tensor[]) - Method in interface org.tribuo.math.Parameters
-
Apply gradients to the parameters.
- UPDATE_BINDING_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- UPPERCASE - Enum constant in enum class org.tribuo.data.text.impl.CasingPreprocessor.CasingOperation
-
Uppercase the input text.
- useBias() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Returns true if the SparseVector should be constructed with a bias feature.
- useBias() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Returns true if the SparseVector should be constructed with a bias feature.
- useMomentum - Variable in class org.tribuo.math.optimisers.SGD
- useRandomSplitPoints - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Whether to choose split points for features at random.
- useRandomSplitPoints - Variable in class org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
-
Whether to choose split points for features at random.
- username - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
-
Username for the SQL database
- utf8Charset - Static variable in class org.tribuo.hash.MessageDigestHasher
-
Alias for
StandardCharsets.UTF_8
. - Util - Class in org.tribuo.classification.sgd
-
SGD utilities.
- Util - Class in org.tribuo.regression.sgd
-
Utilities.
- Util - Class in org.tribuo.util
-
Ye olde util class.
- Util() - Constructor for class org.tribuo.classification.sgd.Util
- Util() - Constructor for class org.tribuo.regression.sgd.Util
- Util.ExampleArray - Class in org.tribuo.classification.sgd
-
A nominal tuple.
- Util.SequenceExampleArray - Class in org.tribuo.classification.sgd
-
A nominal tuple.
V
- val1 - Variable in class org.tribuo.util.MurmurHash3.LongPair
-
First value.
- val2 - Variable in class org.tribuo.util.MurmurHash3.LongPair
-
Second value.
- validate(Class<? extends Output<?>>) - Method in class org.tribuo.Dataset
-
Validates that this Dataset does in fact contain the supplied output type.
- validate(Class<? extends Output<?>>) - Method in class org.tribuo.Model
-
Validates that this Model does in fact support the supplied output type.
- validate(Class<? extends Output<?>>) - Method in class org.tribuo.sequence.SequenceModel
-
Validates that this Model does in fact support the supplied output type.
- validateCondaName(String) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Validates that the name is a valid conda environment.
- validateCondaPath(String) - Static method in class org.tribuo.interop.oci.OCIUtil
-
Validates that the path is a valid OCI object storage path.
- validateExample() - Method in class org.tribuo.Example
-
Checks the example to see if all the feature names are unique, the feature values are not NaN, and there is at least one feature.
- validateExample() - Method in class org.tribuo.impl.ArrayExample
- validateExample() - Method in class org.tribuo.impl.BinaryFeaturesExample
- validateExample() - Method in class org.tribuo.impl.ListExample
- validateExample() - Method in class org.tribuo.sequence.SequenceExample
-
Checks that each
Example
in this sequence is valid. - validateMapping() - Method in class org.tribuo.regression.ImmutableRegressionInfo
-
Returns true if the id numbers correspond to a lexicographic ordering of the dimension names starting from zero, false otherwise.
- validateMapping(Map<T, Integer>) - Static method in interface org.tribuo.OutputFactory
-
Validates that the mapping can be used as an output info, i.e.
- validateParamNames(Set<String>) - Method in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Checks that the parameter names in the supplied set are an exact match for the parameter names that this gradient optimiser expects.
- validateSalt(String) - Static method in class org.tribuo.hash.Hasher
-
Salt validation is currently a test to see if the string is longer than
Hasher.MIN_LENGTH
. - validateTransformations(FeatureMap) - Method in class org.tribuo.transform.TransformationMap
-
Checks that a given transformation set doesn't have conflicts when applied to the supplied featureMap.
- validationPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
-
Output validation data file.
- value - Variable in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
The log value used by the XGBoost native library.
- value - Variable in enum class org.tribuo.data.DataOptions.Delimiter
-
The delimiter character.
- value - Variable in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
The encoded byte value.
- value - Variable in class org.tribuo.Feature
-
The feature value.
- value - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
-
The feature value.
- value - Variable in class org.tribuo.math.la.MatrixTuple
-
The value.
- value - Variable in class org.tribuo.math.la.VectorTuple
-
The current value.
- value - Variable in class org.tribuo.regression.rtree.impl.InvertedFeature
-
The feature value of this object.
- value - Variable in class org.tribuo.util.IntDoublePair
-
The value.
- VALUE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- VALUE_INFO_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.GraphProto
- VALUE_NOT_SET - Enum constant in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
- VALUE_NOT_SET - Enum constant in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
- VALUE_TYPE_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.TypeProto.Map
- valueAndGradient(int, SGDVector) - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Deprecated.In 4.1, to migrate to the new name
LabelObjective.lossAndGradient(java.lang.Integer, org.tribuo.math.la.SGDVector)
. - valueAndGradient(int, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.Hinge
-
Deprecated.
- valueAndGradient(int, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
-
Deprecated.
- valueAndGradient(SGDVector[], int[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generates predictions based on the input features and labels, then scores those predictions to produce a loss for the example and a gradient update.
- valueCounts - Variable in class org.tribuo.CategoricalInfo
-
The occurrence counts of each value.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
Deprecated.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
Deprecated.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Deprecated.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
-
Deprecated.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
-
Deprecated.
- valueOf(int) - Static method in enum class ai.onnx.proto.OnnxMl.Version
-
Deprecated.
- valueOf(Descriptors.EnumValueDescriptor) - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
Returns the enum constant of this class with the specified name.
- valueOf(Descriptors.EnumValueDescriptor) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
Returns the enum constant of this class with the specified name.
- valueOf(Descriptors.EnumValueDescriptor) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Returns the enum constant of this class with the specified name.
- valueOf(Descriptors.EnumValueDescriptor) - Static method in enum class ai.onnx.proto.OnnxMl.Version
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class ai.onnx.proto.OnnxMl.Version
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.anomaly.Event.EventType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.anomaly.liblinear.LinearAnomalyType.LinearType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sgd.fm.FMClassificationOptions.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.clustering.hdbscan.HdbscanTrainer.Distance
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Initialisation
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.libsvm.KernelType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.nearest.KNNModel.Backend
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.nearest.KNNTrainer.Distance
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.DataOptions.Delimiter
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.DataOptions.InputFormat
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.data.text.impl.CasingPreprocessor.CasingOperation
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.datasource.AggregateDataSource.IterationOrder
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions.Mode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.OutputPooling
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.tensorflow.TensorFlowTrainer.TFModelFormat
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.interop.tensorflow.TrainTest.InputType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.math.optimisers.SGD.Momentum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.multilabel.sgd.linear.LinearSGDOptions.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.rtree.TrainTest.TreeType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.sgd.fm.TrainTest.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.sgd.TrainTest.LossEnum
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.onnx.ONNXOperators
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Returns the enum constant of this class with the specified name.
- valueOf(String) - Static method in enum class org.tribuo.util.tokens.Token.TokenType
-
Returns the enum constant of this class with the specified name.
- values - Variable in class org.tribuo.CategoricalInfo
-
The values array.
- values - Variable in class org.tribuo.math.la.DenseMatrix
- values - Variable in class org.tribuo.math.la.SparseVector
- values() - Static method in enum class ai.onnx.proto.OnnxMl.AttributeProto.AttributeType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataLocation
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class ai.onnx.proto.OnnxMl.TensorProto.DataType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension.ValueCase
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class ai.onnx.proto.OnnxMl.TypeProto.ValueCase
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class ai.onnx.proto.OnnxMl.Version
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.anomaly.evaluation.AnomalyMetrics
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.anomaly.Event.EventType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.anomaly.liblinear.LinearAnomalyType.LinearType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.evaluation.LabelMetrics
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sgd.fm.FMClassificationOptions.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.clustering.evaluation.ClusteringMetrics
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.clustering.hdbscan.HdbscanTrainer.Distance
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.clustering.kmeans.KMeansTrainer.Initialisation
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.libsvm.KernelType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.nearest.KNNModel.Backend
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.nearest.KNNTrainer.Distance
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.common.xgboost.XGBoostTrainer.TreeMethod
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.DataOptions.Delimiter
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.DataOptions.InputFormat
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.data.text.impl.CasingPreprocessor.CasingOperation
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.datasource.AggregateDataSource.IterationOrder
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.datasource.IDXDataSource.IDXType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Returns a copy of the values.
- values() - Static method in enum class org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.hash.HashingOptions.ModelHashingType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.oci.OCIModelCLI.OCIModelOptions.Mode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.oci.OCIUtil.OCIModelType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.onnx.extractors.BERTFeatureExtractor.OutputPooling
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.tensorflow.GradientOptimiser
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.tensorflow.TensorFlowTrainer.TFModelFormat
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.interop.tensorflow.TrainTest.InputType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.json.StripProvenance.ProvenanceTypes
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.math.optimisers.SGD.Momentum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.multilabel.sgd.fm.FMMultiLabelOptions.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.multilabel.sgd.linear.LinearSGDOptions.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.evaluation.RegressionMetrics
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.rtree.TrainTest.TreeType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.sgd.fm.TrainTest.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.sgd.TrainTest.LossEnum
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.slm.TrainTest.SLMType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.transform.transformations.SimpleTransform.Operation
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.onnx.ONNXOperators
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitResult
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.tokens.impl.SplitFunctionTokenizer.SplitType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- values() - Static method in enum class org.tribuo.util.tokens.Token.TokenType
-
Returns an array containing the constants of this enum class, in the order they are declared.
- VALUES_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.SparseTensorProto
- VARIABLE_V2 - Static variable in class org.tribuo.interop.tensorflow.TensorFlowUtil
-
The name of the variable op.
- VariableIDInfo - Interface in org.tribuo
-
Adds an id number to a
VariableInfo
. - VariableInfo - Interface in org.tribuo
-
A VariableInfo subclass contains information about a feature and its observed values.
- VARIADIC_INPUT - Static variable in class org.tribuo.util.onnx.ONNXAttribute
-
Value used to denote a varaidic input in an ONNX operator
- variance - Variable in class org.tribuo.common.sgd.AbstractFMTrainer
- variance - Variable in class org.tribuo.regression.sgd.fm.TrainTest.FMRegressionOptions
-
Variance of the initialization gaussian.
- variance() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the variance of this vector.
- variance(double) - Method in class org.tribuo.math.la.DenseVector
- variance(double) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the variance of this vector based on the supplied mean.
- variance(double) - Method in class org.tribuo.math.la.SparseVector
- VectorIterator - Interface in org.tribuo.math.la
- vectorNorm(double[]) - Static method in class org.tribuo.util.Util
-
Computes the vector two-norm.
- VectorNormalizer - Interface in org.tribuo.math.util
-
A functional interface that generates a normalized version of a double array.
- VectorTuple - Class in org.tribuo.math.la
-
A mutable tuple used to avoid allocation when iterating a vector.
- VectorTuple() - Constructor for class org.tribuo.math.la.VectorTuple
-
Creates an empty vector tuple.
- VectorTuple(int, int) - Constructor for class org.tribuo.math.la.VectorTuple
-
Creates a vector tuple with the specified values.
- VERSION - Static variable in class org.tribuo.Tribuo
-
The full Tribuo version string.
- VERSION_FIELD_NUMBER - Static variable in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- versionString - Variable in class org.tribuo.provenance.ModelProvenance
- viterbi(ChainHelper.ChainCliqueValues) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs Viterbi on a linear chain CRF.
- ViterbiModel - Class in org.tribuo.classification.sequence.viterbi
-
An implementation of a viterbi model.
- ViterbiModel.ScoreAggregation - Enum Class in org.tribuo.classification.sequence.viterbi
-
Types of label score aggregation.
- ViterbiTrainer - Class in org.tribuo.classification.sequence.viterbi
-
Builds a Viterbi model using the supplied
Trainer
. - ViterbiTrainer(Trainer<Label>, LabelFeatureExtractor, int, ViterbiModel.ScoreAggregation) - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
-
Constructs a ViterbiTrainer wrapping the specified trainer.
- ViterbiTrainer(Trainer<Label>, LabelFeatureExtractor, ViterbiModel.ScoreAggregation) - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
-
Constructs a ViterbiTrainer wrapping the specified trainer, with an unbounded stack size.
- ViterbiTrainerOptions - Class in org.tribuo.classification.sequence.viterbi
-
Options for building a viterbi trainer.
- ViterbiTrainerOptions() - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions
- ViterbiTrainerOptions.ViterbiLabelFeatures - Enum Class in org.tribuo.classification.sequence.viterbi
-
Type of label features to include.
- VOTING - Enum constant in enum class org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Use a
VotingCombiner
. - VotingCombiner - Class in org.tribuo.classification.ensemble
-
A combiner which performs a weighted or unweighted vote across the predicted labels.
- VotingCombiner() - Constructor for class org.tribuo.classification.ensemble.VotingCombiner
-
Constructs a voting combiner.
W
- WARNING - Enum constant in enum class org.tribuo.common.xgboost.XGBoostTrainer.LoggingVerbosity
-
Only warnings are logged.
- WARNING_THRESHOLD - Static variable in class org.tribuo.interop.onnx.DenseTransformer
-
Number of times the feature size warning should be printed.
- WARNING_THRESHOLD - Static variable in class org.tribuo.interop.tensorflow.DenseFeatureConverter
-
Number of times the feature size warning should be printed.
- WEEK_OF_MONTH - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The week of the month, as defined by ISO 8601 semantics for week of the year.
- WEEK_OF_YEAR - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The week of the year in ISO 8601.
- weight - Variable in class org.tribuo.Example
-
The weight associated with this example.
- weight - Variable in class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
-
The sum of the weights.
- weight - Variable in class org.tribuo.util.infotheory.impl.WeightCountTuple
-
The current weight.
- WeightCountTuple - Class in org.tribuo.util.infotheory.impl
-
A mutable tuple of a double and a long.
- WeightCountTuple() - Constructor for class org.tribuo.util.infotheory.impl.WeightCountTuple
-
Creates a zeroed WeightCountTuple.
- WeightCountTuple(double, long) - Constructor for class org.tribuo.util.infotheory.impl.WeightCountTuple
-
Creates a WeightCountTuple with the specifed values.
- weightedConditionalEntropy(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete Shannon/Guiasu Weighted Conditional Entropy of two arrays, using histogram probability estimators.
- WeightedEnsembleModel<T extends Output<T>> - Class in org.tribuo.ensemble
-
An ensemble model that uses weights to combine the ensemble member predictions.
- WeightedEnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>, EnsembleCombiner<T>) - Constructor for class org.tribuo.ensemble.WeightedEnsembleModel
-
Unless you are implementing a
Trainer
you should not use this constructor directly. - WeightedEnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>, EnsembleCombiner<T>, float[]) - Constructor for class org.tribuo.ensemble.WeightedEnsembleModel
-
Unless you are implementing a
Trainer
you should not use this constructor directly. - weightedEntropy(ArrayList<T>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete Shannon/Guiasu Weighted Entropy, using histogram probability estimators.
- WeightedExamples - Interface in org.tribuo
-
Tag interface denoting that a
Trainer
can use example weights. - WeightedInformationTheory - Class in org.tribuo.util.infotheory
-
A class of (discrete) weighted information theoretic functions.
- WeightedInformationTheory.VariableSelector - Enum Class in org.tribuo.util.infotheory
-
Chooses which variable is the one with associated weights.
- WeightedLabels - Interface in org.tribuo.classification
-
Tag interface denoting the
Trainer
can use label weights. - weightedMean(double[], double[]) - Static method in class org.tribuo.util.Util
-
Returns the weighted mean of the input.
- weightedMean(double[], float[], int) - Static method in class org.tribuo.util.Util
-
Computes the weighted mean of the first length elements of the array.
- WeightedPairDistribution<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
Generates the counts for a pair of vectors.
- WeightedPairDistribution(long, LinkedHashMap<CachedPair<T1, T2>, WeightCountTuple>, LinkedHashMap<T1, WeightCountTuple>, LinkedHashMap<T2, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Constructs a weighted pair distribution from the supplied values.
- WeightedPairDistribution(long, Map<CachedPair<T1, T2>, WeightCountTuple>, Map<T1, WeightCountTuple>, Map<T2, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Constructs a weighted pair distribution from the supplied values.
- weightedSum(double[], float[], int) - Static method in class org.tribuo.util.Util
-
Computes the weighted sum of the first length elements of the array.
- WeightedTripleDistribution<T1,
T2, T3> - Class in org.tribuo.util.infotheory.impl -
Generates the counts for a triplet of vectors.
- WeightedTripleDistribution(long, Map<CachedTriple<T1, T2, T3>, WeightCountTuple>, Map<CachedPair<T1, T2>, WeightCountTuple>, Map<CachedPair<T1, T3>, WeightCountTuple>, Map<CachedPair<T2, T3>, WeightCountTuple>, Map<T1, WeightCountTuple>, Map<T2, WeightCountTuple>, Map<T3, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
-
Constructs a weighted triple distribution from the supplied values.
- weightExtractor - Variable in class org.tribuo.data.columnar.RowProcessor
- weights - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
-
A list of weights to use in classification.
- weights - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
-
The example weights.
- weights - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
-
The sequence example weights.
- weights - Variable in class org.tribuo.ensemble.WeightedEnsembleModel
- WHERE - Enum constant in enum class org.tribuo.util.onnx.ONNXOperators
-
Choice operator, based on the true value of the condition input, returns the element at that index from either the second or third input.
- WHITESPACE - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
Some tokenizers may produce tokens corresponding to whitespace (e.g.
- whitespaceSplitCharacterFunction - Static variable in class org.tribuo.util.tokens.impl.WhitespaceTokenizer
-
The splitting function for whitespace, using
Character.isWhitespace(char)
. - WhitespaceTokenizer - Class in org.tribuo.util.tokens.impl
-
A simple tokenizer that splits on whitespace.
- WhitespaceTokenizer() - Constructor for class org.tribuo.util.tokens.impl.WhitespaceTokenizer
-
Constructs a tokenizer that splits on whitespace.
- WIDTH_CONSTANT - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
-
Width of the noise gaussian.
- WORD - Enum constant in enum class org.tribuo.util.tokens.Token.TokenType
-
A WORD corresponds to a token that does not consist of or contain whitespace and may correspond to a regular "word" that could be looked up in a dictionary.
- wordpiece(String) - Method in class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Executes Wordpiece tokenization on the provided token.
- Wordpiece - Class in org.tribuo.util.tokens.impl.wordpiece
-
This is vanilla implementation of the Wordpiece algorithm as found here: https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/tokenization_bert.py
- Wordpiece(String) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Constructs a wordpiece by reading the vocabulary from the supplied path.
- Wordpiece(String, String, int) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Initializes an instance of Wordpiece with the given vocabulary, unknown token, and max word length.
- Wordpiece(Set<String>) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Constructs a Wordpiece using the supplied vocab.
- Wordpiece(Set<String>, String) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Constructs a Wordpiece using the supplied vocabulary and unknown token.
- Wordpiece(Set<String>, String, int) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.Wordpiece
-
Initializes an instance of Wordpiece with the given vocabulary, unknown token, and max word length.
- WordpieceBasicTokenizer - Class in org.tribuo.util.tokens.impl.wordpiece
-
This is a tokenizer that is used "upstream" of
WordpieceTokenizer
and implements much of the functionality of the 'BasicTokenizer' implementation in huggingface. - WordpieceBasicTokenizer() - Constructor for class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Constructs a default tokenizer which tokenizes Chinese characters.
- WordpieceBasicTokenizer(boolean) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.WordpieceBasicTokenizer
-
Constructs a tokenizer.
- WordpieceTokenizer - Class in org.tribuo.util.tokens.impl.wordpiece
-
This Tokenizer is meant to be a reasonable approximation of the BertTokenizer defined here.
- WordpieceTokenizer(Wordpiece, Tokenizer, boolean, boolean, Set<String>) - Constructor for class org.tribuo.util.tokens.impl.wordpiece.WordpieceTokenizer
-
Constructs a wordpiece tokenizer.
- wrapFeatures(String, List<Feature>) - Static method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Convert the
Feature
s from a text pipeline intoColumnarFeature
s with the right field name. - wrapTrainer(Trainer<Label>) - Method in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
-
Wraps the supplied trainer using the ensemble trainer described by these options.
- writeLibSVMFormat(Dataset<T>, PrintStream, boolean, Function<T, Number>) - Static method in class org.tribuo.datasource.LibSVMDataSource
-
Writes out a dataset in LibSVM format.
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.common.sgd.AbstractFMModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.common.sgd.AbstractLinearSGDModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- writeONNXGraph(ONNXRef<?>) - Method in interface org.tribuo.ONNXExportable
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- writeONNXGraph(ONNXRef<?>) - Method in class org.tribuo.regression.slm.SparseLinearModel
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.AttributeProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.GraphProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.ModelProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.NodeProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.OperatorSetIdProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.SparseTensorProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.StringStringEntryProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TensorAnnotation
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TensorProto.Segment
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TensorProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto.Dimension
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TensorShapeProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TrainingInfoProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Map
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Opaque
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Sequence
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto.SparseTensor
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto.Tensor
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.TypeProto
- writeTo(CodedOutputStream) - Method in class ai.onnx.proto.OnnxMl.ValueInfoProto
X
- X1 - Static variable in class org.tribuo.classification.example.DemoLabelDataSource
-
The first feature name.
- X2 - Static variable in class org.tribuo.classification.example.DemoLabelDataSource
-
The second feature name.
- xbgAlpha - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
L1 regularization term for weights.
- xgbBoosterType - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Weak learning algorithm.
- xgbEnsembleSize - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Number of trees in the ensemble.
- xgbEta - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Step size shrinkage parameter (range [0,1]).
- xgbGamma - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Minimum loss reduction to make a split (range [0,Infinity]).
- xgbLambda - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
L2 regularization term for weights.
- xgbLogLevel - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Make the XGBoost training procedure quiet.
- xgbMaxDepth - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Max tree depth (range (0,Integer.MAX_VALUE]).
- xgbMinWeight - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Minimum sum of instance weights needed in a leaf (range [0,Infinity]).
- xgbNumThreads - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Number of threads to use (range (1, num hw threads)).
- XGBOOST - Enum constant in enum class org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Creates a
XGBoostClassificationTrainer
. - XGBoostClassificationConverter - Class in org.tribuo.classification.xgboost
-
Converts XGBoost outputs into
Label
Prediction
s. - XGBoostClassificationConverter() - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationConverter
-
Constructs an XGBoostClassificationConverter.
- XGBoostClassificationTrainer - Class in org.tribuo.classification.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostClassificationTrainer() - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
For olcut.
- XGBoostClassificationTrainer(int) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Create an XGBoost trainer.
- XGBoostClassificationTrainer(int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Create an XGBoost trainer.
- XGBoostClassificationTrainer(int, int, boolean) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Create an XGBoost trainer.
- XGBoostClassificationTrainer(int, Map<String, Object>) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostClassificationTrainer(XGBoostTrainer.BoosterType, XGBoostTrainer.TreeMethod, int, double, double, int, double, double, double, double, double, int, XGBoostTrainer.LoggingVerbosity, long) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Create an XGBoost trainer.
- XGBoostExternalModel<T extends Output<T>> - Class in org.tribuo.common.xgboost
-
A
Model
which wraps around a XGBoost.Booster which was trained by a system other than Tribuo. - XGBoostFeatureImportance - Class in org.tribuo.common.xgboost
-
Generate and collate feature importance information from the XGBoost model.
- XGBoostFeatureImportance.XGBoostFeatureImportanceInstance - Class in org.tribuo.common.xgboost
-
An instance of feature importance values for a single feature.
- XGBoostModel<T extends Output<T>> - Class in org.tribuo.common.xgboost
-
A
Model
which wraps around a XGBoost.Booster. - xgboostOptions - Variable in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
-
The XGBoost trainer options.
- xgBoostOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
-
Options for XGBoost trainers.
- XGBoostOptions - Class in org.tribuo.classification.xgboost
-
CLI options for training an XGBoost classifier.
- XGBoostOptions - Class in org.tribuo.regression.xgboost
-
CLI options for configuring an XGBoost regression trainer.
- XGBoostOptions() - Constructor for class org.tribuo.classification.xgboost.XGBoostOptions
- XGBoostOptions() - Constructor for class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- XGBoostOptions() - Constructor for class org.tribuo.regression.xgboost.XGBoostOptions
- XGBoostOutputConverter<T extends Output<T>> - Interface in org.tribuo.common.xgboost
-
Converts the output of XGBoost into the appropriate prediction type.
- XGBoostRegressionConverter - Class in org.tribuo.regression.xgboost
-
Converts XGBoost outputs into
Regressor
Prediction
s. - XGBoostRegressionConverter() - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionConverter
-
Construct an XGBoostRegressionConverter.
- XGBoostRegressionTrainer - Class in org.tribuo.regression.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostRegressionTrainer(int) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Creates an XGBoostRegressionTrainer using the default parameters, the squared error loss and the supplied number of trees.
- XGBoostRegressionTrainer(XGBoostTrainer.BoosterType, XGBoostTrainer.TreeMethod, XGBoostRegressionTrainer.RegressionType, int, double, double, int, double, double, double, double, double, int, XGBoostTrainer.LoggingVerbosity, long) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Create an XGBoost trainer.
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Creates an XGBoostRegressionTrainer using the default parameters, the supplied loss and the supplied number of trees.
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Create an XGBoost trainer.
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, int, boolean) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Creates an XGBoostRegressionTrainer using the default parameters with the supplied loss, number of trees, number of threads, and logging level.
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, Map<String, Object>) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostRegressionTrainer.RegressionType - Enum Class in org.tribuo.regression.xgboost
-
Types of regression loss.
- XGBoostTrainer<T extends Output<T>> - Class in org.tribuo.common.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostTrainer() - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
For olcut.
- XGBoostTrainer(int) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
Constructs an XGBoost trainer using the specified number of trees.
- XGBoostTrainer(int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
Create an XGBoost trainer.
- XGBoostTrainer(int, int, boolean) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
Constructs an XGBoost trainer using the specified number of trees.
- XGBoostTrainer(int, Map<String, Object>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostTrainer(XGBoostTrainer.BoosterType, XGBoostTrainer.TreeMethod, int, double, double, int, double, double, double, double, double, int, XGBoostTrainer.LoggingVerbosity, long) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
Create an XGBoost trainer.
- XGBoostTrainer.BoosterType - Enum Class in org.tribuo.common.xgboost
-
The type of XGBoost model.
- XGBoostTrainer.DMatrixTuple<T extends Output<T>> - Class in org.tribuo.common.xgboost
-
Tuple of a DMatrix, the number of valid features in each example, and the examples themselves.
- XGBoostTrainer.LoggingVerbosity - Enum Class in org.tribuo.common.xgboost
-
The logging verbosity of the native library.
- XGBoostTrainer.TreeMethod - Enum Class in org.tribuo.common.xgboost
-
The tree building algorithm.
- XGBoostTrainer.XGBoostTrainerProvenance - Class in org.tribuo.common.xgboost
-
Deprecated.
- XGBoostTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.XGBoostTrainerProvenance
-
Deprecated.
- XGBoostTrainerProvenance(XGBoostTrainer<T>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.XGBoostTrainerProvenance
-
Deprecated.
- xgbQuiet - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Deprecated, use xgb-loglevel.
- xgbSubsample - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Subsample size for each tree (range (0,1]).
- xgbSubsampleFeatures - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Subsample features for each tree (range (0,1]).
- xgbTreeMethod - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
-
Tree building algorithm.
- XOR - Enum constant in enum class org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Data generated from an XOR function.
Y
- YEAR - Enum constant in enum class org.tribuo.data.columnar.processors.field.DateFieldProcessor.DateFeatureType
-
The year.
Z
- zeroIndexed - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
-
Is the libsvm file zero indexed.
- zipArraysCached(ArrayList<T1>, ArrayList<T2>) - Static method in class org.tribuo.util.infotheory.impl.CachedPair
-
Takes two arrays and zips them together into an array of CachedPairs.
_
- _START_VERSION - Enum constant in enum class ai.onnx.proto.OnnxMl.Version
-
proto3 requires the first enum value to be zero.
- _START_VERSION_VALUE - Static variable in enum class ai.onnx.proto.OnnxMl.Version
-
proto3 requires the first enum value to be zero.
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap)
which is more flexible.