Class OnnxMl.TrainingInfoProto
java.lang.Object
com.google.protobuf.AbstractMessageLite
com.google.protobuf.AbstractMessage
com.google.protobuf.GeneratedMessageV3
ai.onnx.proto.OnnxMl.TrainingInfoProto
- All Implemented Interfaces:
OnnxMl.TrainingInfoProtoOrBuilder,com.google.protobuf.Message,com.google.protobuf.MessageLite,com.google.protobuf.MessageLiteOrBuilder,com.google.protobuf.MessageOrBuilder,Serializable
- Enclosing class:
OnnxMl
public static final class OnnxMl.TrainingInfoProto
extends com.google.protobuf.GeneratedMessageV3
implements OnnxMl.TrainingInfoProtoOrBuilder
Training information TrainingInfoProto stores information for training a model. In particular, this defines two functionalities: an initialization-step and a training-algorithm-step. Initialization resets the model back to its original state as if no training has been performed. Training algorithm improves the model based on input data. The semantics of the initialization-step is that the initializers in ModelProto.graph and in TrainingInfoProto.algorithm are first initialized as specified by the initializers in the graph, and then updated by the "initialization_binding" in every instance in ModelProto.training_info. The field "algorithm" defines a computation graph which represents a training algorithm's step. After the execution of a TrainingInfoProto.algorithm, the initializers specified by "update_binding" may be immediately updated. If the targeted training algorithm contains consecutive update steps (such as block coordinate descent methods), the user needs to create a TrainingInfoProto for each step.Protobuf type
onnx.TrainingInfoProto- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic final classTraining information TrainingInfoProto stores information for training a model.Nested classes/interfaces inherited from class com.google.protobuf.GeneratedMessageV3
com.google.protobuf.GeneratedMessageV3.BuilderParent, com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageType extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage, BuilderType extends com.google.protobuf.GeneratedMessageV3.ExtendableBuilder<MessageType, BuilderType>>, com.google.protobuf.GeneratedMessageV3.ExtendableMessage<MessageType extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage>, com.google.protobuf.GeneratedMessageV3.ExtendableMessageOrBuilder<MessageType extends com.google.protobuf.GeneratedMessageV3.ExtendableMessage>, com.google.protobuf.GeneratedMessageV3.FieldAccessorTable, com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameterNested classes/interfaces inherited from class com.google.protobuf.AbstractMessageLite
com.google.protobuf.AbstractMessageLite.InternalOneOfEnum -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final intstatic final intstatic final intstatic final com.google.protobuf.Parser<OnnxMl.TrainingInfoProto> Deprecated.static final intFields inherited from class com.google.protobuf.GeneratedMessageV3
alwaysUseFieldBuilders, unknownFieldsFields inherited from class com.google.protobuf.AbstractMessage
memoizedSizeFields inherited from class com.google.protobuf.AbstractMessageLite
memoizedHashCode -
Method Summary
Modifier and TypeMethodDescriptionbooleanThis field represents a training algorithm step.This field represents a training algorithm step.static OnnxMl.TrainingInfoProtostatic final com.google.protobuf.Descriptors.DescriptorThis field describes a graph to compute the initial tensors upon starting the training process.getInitializationBinding(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.intThis field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.getInitializationBindingOrBuilder(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.List<? extends OnnxMl.StringStringEntryProtoOrBuilder> This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field describes a graph to compute the initial tensors upon starting the training process.com.google.protobuf.Parser<OnnxMl.TrainingInfoProto> intfinal com.google.protobuf.UnknownFieldSetgetUpdateBinding(int index) Gradient-based training is usually an iterative procedure.intGradient-based training is usually an iterative procedure.Gradient-based training is usually an iterative procedure.getUpdateBindingOrBuilder(int index) Gradient-based training is usually an iterative procedure.List<? extends OnnxMl.StringStringEntryProtoOrBuilder> Gradient-based training is usually an iterative procedure.booleanThis field represents a training algorithm step.inthashCode()booleanThis field describes a graph to compute the initial tensors upon starting the training process.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTablefinal booleannewBuilder(OnnxMl.TrainingInfoProto prototype) protected OnnxMl.TrainingInfoProto.BuildernewBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) protected ObjectnewInstance(com.google.protobuf.GeneratedMessageV3.UnusedPrivateParameter unused) static OnnxMl.TrainingInfoProtoparseDelimitedFrom(InputStream input) static OnnxMl.TrainingInfoProtoparseDelimitedFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static OnnxMl.TrainingInfoProtoparseFrom(byte[] data) static OnnxMl.TrainingInfoProtoparseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static OnnxMl.TrainingInfoProtoparseFrom(com.google.protobuf.ByteString data) static OnnxMl.TrainingInfoProtoparseFrom(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static OnnxMl.TrainingInfoProtoparseFrom(com.google.protobuf.CodedInputStream input) static OnnxMl.TrainingInfoProtoparseFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static OnnxMl.TrainingInfoProtoparseFrom(InputStream input) static OnnxMl.TrainingInfoProtoparseFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static OnnxMl.TrainingInfoProtoparseFrom(ByteBuffer data) static OnnxMl.TrainingInfoProtoparseFrom(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) static com.google.protobuf.Parser<OnnxMl.TrainingInfoProto> parser()voidwriteTo(com.google.protobuf.CodedOutputStream output) Methods inherited from class com.google.protobuf.GeneratedMessageV3
canUseUnsafe, computeStringSize, computeStringSizeNoTag, emptyBooleanList, emptyDoubleList, emptyFloatList, emptyIntList, emptyLongList, getAllFields, getDescriptorForType, getField, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, hasField, hasOneof, internalGetMapField, isStringEmpty, makeExtensionsImmutable, mergeFromAndMakeImmutableInternal, mutableCopy, mutableCopy, mutableCopy, mutableCopy, mutableCopy, newBooleanList, newBuilderForType, newDoubleList, newFloatList, newIntList, newLongList, parseDelimitedWithIOException, parseDelimitedWithIOException, parseUnknownField, parseUnknownFieldProto3, parseWithIOException, parseWithIOException, parseWithIOException, parseWithIOException, serializeBooleanMapTo, serializeIntegerMapTo, serializeLongMapTo, serializeStringMapTo, writeReplace, writeString, writeStringNoTagMethods inherited from class com.google.protobuf.AbstractMessage
findInitializationErrors, getInitializationErrorString, hashBoolean, hashEnum, hashEnumList, hashFields, hashLong, toStringMethods inherited from class com.google.protobuf.AbstractMessageLite
addAll, addAll, checkByteStringIsUtf8, toByteArray, toByteString, writeDelimitedTo, writeToMethods inherited from class java.lang.Object
clone, finalize, getClass, notify, notifyAll, wait, wait, waitMethods inherited from interface com.google.protobuf.MessageLite
toByteArray, toByteString, writeDelimitedTo, writeToMethods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getDescriptorForType, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, hasField, hasOneof
-
Field Details
-
INITIALIZATION_FIELD_NUMBER
public static final int INITIALIZATION_FIELD_NUMBER- See Also:
-
ALGORITHM_FIELD_NUMBER
public static final int ALGORITHM_FIELD_NUMBER- See Also:
-
INITIALIZATION_BINDING_FIELD_NUMBER
public static final int INITIALIZATION_BINDING_FIELD_NUMBER- See Also:
-
UPDATE_BINDING_FIELD_NUMBER
public static final int UPDATE_BINDING_FIELD_NUMBER- See Also:
-
PARSER
Deprecated.
-
-
Method Details
-
newInstance
- Overrides:
newInstancein classcom.google.protobuf.GeneratedMessageV3
-
getUnknownFields
public final com.google.protobuf.UnknownFieldSet getUnknownFields()- Specified by:
getUnknownFieldsin interfacecom.google.protobuf.MessageOrBuilder- Overrides:
getUnknownFieldsin classcom.google.protobuf.GeneratedMessageV3
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() -
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()- Specified by:
internalGetFieldAccessorTablein classcom.google.protobuf.GeneratedMessageV3
-
hasInitialization
public boolean hasInitialization()This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;- Specified by:
hasInitializationin interfaceOnnxMl.TrainingInfoProtoOrBuilder- Returns:
- Whether the initialization field is set.
-
getInitialization
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;- Specified by:
getInitializationin interfaceOnnxMl.TrainingInfoProtoOrBuilder- Returns:
- The initialization.
-
getInitializationOrBuilder
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;- Specified by:
getInitializationOrBuilderin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
hasAlgorithm
public boolean hasAlgorithm()This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.optional .onnx.GraphProto algorithm = 2;- Specified by:
hasAlgorithmin interfaceOnnxMl.TrainingInfoProtoOrBuilder- Returns:
- Whether the algorithm field is set.
-
getAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.optional .onnx.GraphProto algorithm = 2;- Specified by:
getAlgorithmin interfaceOnnxMl.TrainingInfoProtoOrBuilder- Returns:
- The algorithm.
-
getAlgorithmOrBuilder
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.optional .onnx.GraphProto algorithm = 2;- Specified by:
getAlgorithmOrBuilderin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingList
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;- Specified by:
getInitializationBindingListin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingOrBuilderList
public List<? extends OnnxMl.StringStringEntryProtoOrBuilder> getInitializationBindingOrBuilderList()This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;- Specified by:
getInitializationBindingOrBuilderListin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingCount
public int getInitializationBindingCount()This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;- Specified by:
getInitializationBindingCountin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBinding
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;- Specified by:
getInitializationBindingin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingOrBuilder
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;- Specified by:
getInitializationBindingOrBuilderin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingList
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".repeated .onnx.StringStringEntryProto update_binding = 4;- Specified by:
getUpdateBindingListin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingOrBuilderList
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".repeated .onnx.StringStringEntryProto update_binding = 4;- Specified by:
getUpdateBindingOrBuilderListin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingCount
public int getUpdateBindingCount()Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".repeated .onnx.StringStringEntryProto update_binding = 4;- Specified by:
getUpdateBindingCountin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBinding
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".repeated .onnx.StringStringEntryProto update_binding = 4;- Specified by:
getUpdateBindingin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingOrBuilder
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".repeated .onnx.StringStringEntryProto update_binding = 4;- Specified by:
getUpdateBindingOrBuilderin interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
isInitialized
public final boolean isInitialized()- Specified by:
isInitializedin interfacecom.google.protobuf.MessageLiteOrBuilder- Overrides:
isInitializedin classcom.google.protobuf.GeneratedMessageV3
-
writeTo
- Specified by:
writeToin interfacecom.google.protobuf.MessageLite- Overrides:
writeToin classcom.google.protobuf.GeneratedMessageV3- Throws:
IOException
-
getSerializedSize
public int getSerializedSize()- Specified by:
getSerializedSizein interfacecom.google.protobuf.MessageLite- Overrides:
getSerializedSizein classcom.google.protobuf.GeneratedMessageV3
-
equals
- Specified by:
equalsin interfacecom.google.protobuf.Message- Overrides:
equalsin classcom.google.protobuf.AbstractMessage
-
hashCode
public int hashCode()- Specified by:
hashCodein interfacecom.google.protobuf.Message- Overrides:
hashCodein classcom.google.protobuf.AbstractMessage
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException - Throws:
com.google.protobuf.InvalidProtocolBufferException
-
parseFrom
- Throws:
IOException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException - Throws:
IOException
-
parseDelimitedFrom
- Throws:
IOException
-
parseDelimitedFrom
public static OnnxMl.TrainingInfoProto parseDelimitedFrom(InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException - Throws:
IOException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(com.google.protobuf.CodedInputStream input) throws IOException - Throws:
IOException
-
parseFrom
public static OnnxMl.TrainingInfoProto parseFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException - Throws:
IOException
-
newBuilderForType
- Specified by:
newBuilderForTypein interfacecom.google.protobuf.Message- Specified by:
newBuilderForTypein interfacecom.google.protobuf.MessageLite
-
newBuilder
-
newBuilder
-
toBuilder
- Specified by:
toBuilderin interfacecom.google.protobuf.Message- Specified by:
toBuilderin interfacecom.google.protobuf.MessageLite
-
newBuilderForType
protected OnnxMl.TrainingInfoProto.Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) - Specified by:
newBuilderForTypein classcom.google.protobuf.GeneratedMessageV3
-
getDefaultInstance
-
parser
-
getParserForType
- Specified by:
getParserForTypein interfacecom.google.protobuf.Message- Specified by:
getParserForTypein interfacecom.google.protobuf.MessageLite- Overrides:
getParserForTypein classcom.google.protobuf.GeneratedMessageV3
-
getDefaultInstanceForType
- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageLiteOrBuilder- Specified by:
getDefaultInstanceForTypein interfacecom.google.protobuf.MessageOrBuilder
-