Package ai.onnx.proto
Class OnnxMl.TrainingInfoProto.Builder
java.lang.Object
com.google.protobuf.AbstractMessageLite.Builder
com.google.protobuf.AbstractMessage.Builder<BuilderType>
com.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
ai.onnx.proto.OnnxMl.TrainingInfoProto.Builder
- All Implemented Interfaces:
OnnxMl.TrainingInfoProtoOrBuilder
,com.google.protobuf.Message.Builder
,com.google.protobuf.MessageLite.Builder
,com.google.protobuf.MessageLiteOrBuilder
,com.google.protobuf.MessageOrBuilder
,Cloneable
- Enclosing class:
- OnnxMl.TrainingInfoProto
public static final class OnnxMl.TrainingInfoProto.Builder
extends com.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
implements OnnxMl.TrainingInfoProtoOrBuilder
Training information TrainingInfoProto stores information for training a model. In particular, this defines two functionalities: an initialization-step and a training-algorithm-step. Initialization resets the model back to its original state as if no training has been performed. Training algorithm improves the model based on input data. The semantics of the initialization-step is that the initializers in ModelProto.graph and in TrainingInfoProto.algorithm are first initialized as specified by the initializers in the graph, and then updated by the "initialization_binding" in every instance in ModelProto.training_info. The field "algorithm" defines a computation graph which represents a training algorithm's step. After the execution of a TrainingInfoProto.algorithm, the initializers specified by "update_binding" may be immediately updated. If the targeted training algorithm contains consecutive update steps (such as block coordinate descent methods), the user needs to create a TrainingInfoProto for each step.Protobuf type
onnx.TrainingInfoProto
-
Method Summary
Modifier and TypeMethodDescriptionaddAllInitializationBinding
(Iterable<? extends OnnxMl.StringStringEntryProto> values) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.addAllUpdateBinding
(Iterable<? extends OnnxMl.StringStringEntryProto> values) Gradient-based training is usually an iterative procedure.addInitializationBinding
(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.addInitializationBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.addInitializationBinding
(OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.addInitializationBindingBuilder
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.addRepeatedField
(com.google.protobuf.Descriptors.FieldDescriptor field, Object value) addUpdateBinding
(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure.addUpdateBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.Gradient-based training is usually an iterative procedure.addUpdateBinding
(OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.Gradient-based training is usually an iterative procedure.addUpdateBindingBuilder
(int index) Gradient-based training is usually an iterative procedure.build()
clear()
This field represents a training algorithm step.clearField
(com.google.protobuf.Descriptors.FieldDescriptor field) This field describes a graph to compute the initial tensors upon starting the training process.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.clearOneof
(com.google.protobuf.Descriptors.OneofDescriptor oneof) Gradient-based training is usually an iterative procedure.clone()
This field represents a training algorithm step.This field represents a training algorithm step.This field represents a training algorithm step.static final com.google.protobuf.Descriptors.Descriptor
com.google.protobuf.Descriptors.Descriptor
This field describes a graph to compute the initial tensors upon starting the training process.getInitializationBinding
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.getInitializationBindingBuilder
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.int
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.getInitializationBindingOrBuilder
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.List<? extends OnnxMl.StringStringEntryProtoOrBuilder>
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.This field describes a graph to compute the initial tensors upon starting the training process.This field describes a graph to compute the initial tensors upon starting the training process.getUpdateBinding
(int index) Gradient-based training is usually an iterative procedure.getUpdateBindingBuilder
(int index) Gradient-based training is usually an iterative procedure.Gradient-based training is usually an iterative procedure.int
Gradient-based training is usually an iterative procedure.Gradient-based training is usually an iterative procedure.getUpdateBindingOrBuilder
(int index) Gradient-based training is usually an iterative procedure.List<? extends OnnxMl.StringStringEntryProtoOrBuilder>
Gradient-based training is usually an iterative procedure.boolean
This field represents a training algorithm step.boolean
This field describes a graph to compute the initial tensors upon starting the training process.protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
final boolean
mergeAlgorithm
(OnnxMl.GraphProto value) This field represents a training algorithm step.mergeFrom
(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) mergeFrom
(com.google.protobuf.Message other) This field describes a graph to compute the initial tensors upon starting the training process.mergeUnknownFields
(com.google.protobuf.UnknownFieldSet unknownFields) removeInitializationBinding
(int index) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.removeUpdateBinding
(int index) Gradient-based training is usually an iterative procedure.setAlgorithm
(OnnxMl.GraphProto value) This field represents a training algorithm step.setAlgorithm
(OnnxMl.GraphProto.Builder builderForValue) This field represents a training algorithm step.This field describes a graph to compute the initial tensors upon starting the training process.setInitialization
(OnnxMl.GraphProto.Builder builderForValue) This field describes a graph to compute the initial tensors upon starting the training process.setInitializationBinding
(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.setInitializationBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto.setRepeatedField
(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value) setUnknownFields
(com.google.protobuf.UnknownFieldSet unknownFields) setUpdateBinding
(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure.setUpdateBinding
(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure.Methods inherited from class com.google.protobuf.GeneratedMessageV3.Builder
getAllFields, getField, getFieldBuilder, getOneofFieldDescriptor, getParentForChildren, getRepeatedField, getRepeatedFieldBuilder, getRepeatedFieldCount, getUnknownFields, getUnknownFieldSetBuilder, hasField, hasOneof, internalGetMapField, internalGetMutableMapField, isClean, markClean, mergeUnknownLengthDelimitedField, mergeUnknownVarintField, newBuilderForField, onBuilt, onChanged, parseUnknownField, setUnknownFieldSetBuilder, setUnknownFieldsProto3
Methods inherited from class com.google.protobuf.AbstractMessage.Builder
findInitializationErrors, getInitializationErrorString, internalMergeFrom, mergeDelimitedFrom, mergeDelimitedFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, mergeFrom, newUninitializedMessageException, toString
Methods inherited from class com.google.protobuf.AbstractMessageLite.Builder
addAll, addAll, mergeFrom, newUninitializedMessageException
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface com.google.protobuf.MessageLite.Builder
mergeFrom
Methods inherited from interface com.google.protobuf.MessageOrBuilder
findInitializationErrors, getAllFields, getField, getInitializationErrorString, getOneofFieldDescriptor, getRepeatedField, getRepeatedFieldCount, getUnknownFields, hasField, hasOneof
-
Method Details
-
getDescriptor
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() -
internalGetFieldAccessorTable
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()- Specified by:
internalGetFieldAccessorTable
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
clear
- Specified by:
clear
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clear
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clear
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
getDescriptorForType
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType()- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.Message.Builder
- Specified by:
getDescriptorForType
in interfacecom.google.protobuf.MessageOrBuilder
- Overrides:
getDescriptorForType
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
getDefaultInstanceForType
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Specified by:
getDefaultInstanceForType
in interfacecom.google.protobuf.MessageOrBuilder
-
build
- Specified by:
build
in interfacecom.google.protobuf.Message.Builder
- Specified by:
build
in interfacecom.google.protobuf.MessageLite.Builder
-
buildPartial
- Specified by:
buildPartial
in interfacecom.google.protobuf.Message.Builder
- Specified by:
buildPartial
in interfacecom.google.protobuf.MessageLite.Builder
-
clone
- Specified by:
clone
in interfacecom.google.protobuf.Message.Builder
- Specified by:
clone
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
clone
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
setField
public OnnxMl.TrainingInfoProto.Builder setField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value) - Specified by:
setField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setField
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
clearField
public OnnxMl.TrainingInfoProto.Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) - Specified by:
clearField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearField
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
clearOneof
public OnnxMl.TrainingInfoProto.Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) - Specified by:
clearOneof
in interfacecom.google.protobuf.Message.Builder
- Overrides:
clearOneof
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
setRepeatedField
public OnnxMl.TrainingInfoProto.Builder setRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, int index, Object value) - Specified by:
setRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
addRepeatedField
public OnnxMl.TrainingInfoProto.Builder addRepeatedField(com.google.protobuf.Descriptors.FieldDescriptor field, Object value) - Specified by:
addRepeatedField
in interfacecom.google.protobuf.Message.Builder
- Overrides:
addRepeatedField
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
mergeFrom
- Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<OnnxMl.TrainingInfoProto.Builder>
-
mergeFrom
-
isInitialized
public final boolean isInitialized()- Specified by:
isInitialized
in interfacecom.google.protobuf.MessageLiteOrBuilder
- Overrides:
isInitialized
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
mergeFrom
public OnnxMl.TrainingInfoProto.Builder mergeFrom(com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws IOException - Specified by:
mergeFrom
in interfacecom.google.protobuf.Message.Builder
- Specified by:
mergeFrom
in interfacecom.google.protobuf.MessageLite.Builder
- Overrides:
mergeFrom
in classcom.google.protobuf.AbstractMessage.Builder<OnnxMl.TrainingInfoProto.Builder>
- Throws:
IOException
-
hasInitialization
public boolean hasInitialization()This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
- Specified by:
hasInitialization
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
- Returns:
- Whether the initialization field is set.
-
getInitialization
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
- Specified by:
getInitialization
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
- Returns:
- The initialization.
-
setInitialization
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
-
setInitialization
public OnnxMl.TrainingInfoProto.Builder setInitialization(OnnxMl.GraphProto.Builder builderForValue) This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
-
mergeInitialization
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
-
clearInitialization
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
-
getInitializationBuilder
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
-
getInitializationOrBuilder
This field describes a graph to compute the initial tensors upon starting the training process. Initialization graph has no input and can have multiple outputs. Usually, trainable tensors in neural networks are randomly initialized. To achieve that, for each tensor, the user can put a random number operator such as RandomNormal or RandomUniform in TrainingInfoProto.initialization.node and assign its random output to the specific tensor using "initialization_binding". This graph can also set the initializers in "algorithm" in the same TrainingInfoProto; a use case is resetting the number of training iteration to zero. By default, this field is an empty graph and its evaluation does not produce any output. Thus, no initializer would be changed by default.
optional .onnx.GraphProto initialization = 1;
- Specified by:
getInitializationOrBuilder
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
hasAlgorithm
public boolean hasAlgorithm()This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
- Specified by:
hasAlgorithm
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
- Returns:
- Whether the algorithm field is set.
-
getAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
- Specified by:
getAlgorithm
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
- Returns:
- The algorithm.
-
setAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
-
setAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
-
mergeAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
-
clearAlgorithm
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
-
getAlgorithmBuilder
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
-
getAlgorithmOrBuilder
This field represents a training algorithm step. Given required inputs, it computes outputs to update initializers in its own or inference graph's initializer lists. In general, this field contains loss node, gradient node, optimizer node, increment of iteration count. An execution of the training algorithm step is performed by executing the graph obtained by combining the inference graph (namely "ModelProto.graph") and the "algorithm" graph. That is, the actual the actual input/initializer/output/node/value_info/sparse_initializer list of the training graph is the concatenation of "ModelProto.graph.input/initializer/output/node/value_info/sparse_initializer" and "algorithm.input/initializer/output/node/value_info/sparse_initializer" in that order. This combined graph must satisfy the normal ONNX conditions. Now, let's provide a visualization of graph combination for clarity. Let the inference graph (i.e., "ModelProto.graph") be tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d and the "algorithm" graph be tensor_d -> Add -> tensor_e The combination process results tensor_a, tensor_b -> MatMul -> tensor_c -> Sigmoid -> tensor_d -> Add -> tensor_e Notice that an input of a node in the "algorithm" graph may reference the output of a node in the inference graph (but not the other way round). Also, inference node cannot reference inputs of "algorithm". With these restrictions, inference graph can always be run independently without training information. By default, this field is an empty graph and its evaluation does not produce any output. Evaluating the default training step never update any initializers.
optional .onnx.GraphProto algorithm = 2;
- Specified by:
getAlgorithmOrBuilder
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingList
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
- Specified by:
getInitializationBindingList
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingCount
public int getInitializationBindingCount()This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
- Specified by:
getInitializationBindingCount
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBinding
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
- Specified by:
getInitializationBinding
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
setInitializationBinding
public OnnxMl.TrainingInfoProto.Builder setInitializationBinding(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
setInitializationBinding
public OnnxMl.TrainingInfoProto.Builder setInitializationBinding(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addInitializationBinding
public OnnxMl.TrainingInfoProto.Builder addInitializationBinding(OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addInitializationBinding
public OnnxMl.TrainingInfoProto.Builder addInitializationBinding(int index, OnnxMl.StringStringEntryProto value) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addInitializationBinding
public OnnxMl.TrainingInfoProto.Builder addInitializationBinding(OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addInitializationBinding
public OnnxMl.TrainingInfoProto.Builder addInitializationBinding(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addAllInitializationBinding
public OnnxMl.TrainingInfoProto.Builder addAllInitializationBinding(Iterable<? extends OnnxMl.StringStringEntryProto> values) This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
clearInitializationBinding
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
removeInitializationBinding
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
getInitializationBindingBuilder
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
getInitializationBindingOrBuilder
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
- Specified by:
getInitializationBindingOrBuilder
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getInitializationBindingOrBuilderList
public List<? extends OnnxMl.StringStringEntryProtoOrBuilder> getInitializationBindingOrBuilderList()This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
- Specified by:
getInitializationBindingOrBuilderList
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
addInitializationBindingBuilder
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
addInitializationBindingBuilder
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
getInitializationBindingBuilderList
This field specifies the bindings from the outputs of "initialization" to some initializers in "ModelProto.graph.initializer" and the "algorithm.initializer" in the same TrainingInfoProto. See "update_binding" below for details. By default, this field is empty and no initializer would be changed by the execution of "initialization".
repeated .onnx.StringStringEntryProto initialization_binding = 3;
-
getUpdateBindingList
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
- Specified by:
getUpdateBindingList
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingCount
public int getUpdateBindingCount()Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
- Specified by:
getUpdateBindingCount
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBinding
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
- Specified by:
getUpdateBinding
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
setUpdateBinding
public OnnxMl.TrainingInfoProto.Builder setUpdateBinding(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
setUpdateBinding
public OnnxMl.TrainingInfoProto.Builder setUpdateBinding(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addUpdateBinding
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addUpdateBinding
public OnnxMl.TrainingInfoProto.Builder addUpdateBinding(int index, OnnxMl.StringStringEntryProto value) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addUpdateBinding
public OnnxMl.TrainingInfoProto.Builder addUpdateBinding(OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addUpdateBinding
public OnnxMl.TrainingInfoProto.Builder addUpdateBinding(int index, OnnxMl.StringStringEntryProto.Builder builderForValue) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addAllUpdateBinding
public OnnxMl.TrainingInfoProto.Builder addAllUpdateBinding(Iterable<? extends OnnxMl.StringStringEntryProto> values) Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
clearUpdateBinding
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
removeUpdateBinding
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
getUpdateBindingBuilder
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
getUpdateBindingOrBuilder
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
- Specified by:
getUpdateBindingOrBuilder
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
getUpdateBindingOrBuilderList
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
- Specified by:
getUpdateBindingOrBuilderList
in interfaceOnnxMl.TrainingInfoProtoOrBuilder
-
addUpdateBindingBuilder
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
addUpdateBindingBuilder
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
getUpdateBindingBuilderList
Gradient-based training is usually an iterative procedure. In one gradient descent iteration, we apply x = x - r * g where "x" is the optimized tensor, "r" stands for learning rate, and "g" is gradient of "x" with respect to a chosen loss. To avoid adding assignments into the training graph, we split the update equation into y = x - r * g x = y The user needs to save "y = x - r * g" into TrainingInfoProto.algorithm. To tell that "y" should be assigned to "x", the field "update_binding" may contain a key-value pair of strings, "x" (key of StringStringEntryProto) and "y" (value of StringStringEntryProto). For a neural network with multiple trainable (mutable) tensors, there can be multiple key-value pairs in "update_binding". The initializers appears as keys in "update_binding" are considered mutable variables. This implies some behaviors as described below. 1. We have only unique keys in all "update_binding"s so that two variables may not have the same name. This ensures that one variable is assigned up to once. 2. The keys must appear in names of "ModelProto.graph.initializer" or "TrainingInfoProto.algorithm.initializer". 3. The values must be output names of "algorithm" or "ModelProto.graph.output". 4. Mutable variables are initialized to the value specified by the corresponding initializer, and then potentially updated by "initializer_binding"s and "update_binding"s in "TrainingInfoProto"s. This field usually contains names of trainable tensors (in ModelProto.graph), optimizer states such as momentums in advanced stochastic gradient methods (in TrainingInfoProto.graph), and number of training iterations (in TrainingInfoProto.graph). By default, this field is empty and no initializer would be changed by the execution of "algorithm".
repeated .onnx.StringStringEntryProto update_binding = 4;
-
setUnknownFields
public final OnnxMl.TrainingInfoProto.Builder setUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields) - Specified by:
setUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
setUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-
mergeUnknownFields
public final OnnxMl.TrainingInfoProto.Builder mergeUnknownFields(com.google.protobuf.UnknownFieldSet unknownFields) - Specified by:
mergeUnknownFields
in interfacecom.google.protobuf.Message.Builder
- Overrides:
mergeUnknownFields
in classcom.google.protobuf.GeneratedMessageV3.Builder<OnnxMl.TrainingInfoProto.Builder>
-