Interface RegressionEvaluation
- All Superinterfaces:
Evaluation<Regressor>,com.oracle.labs.mlrg.olcut.provenance.Provenancable<EvaluationProvenance>
Defines methods that calculate regression performance.
-
Method Summary
Modifier and TypeMethodDescriptiondoubleThe average explained variance across all dimensions.doubleThe average Mean Absolute Error across all dimensions.doubleThe average R2 across all dimensions.doubleThe average RMSE across all dimensions.Calculatest the explained variance for all dimensions.doubleexplainedVariance(Regressor variable) Calculates the explained variance of the ground truth using the predictions for the supplied dimension.mae()Calculates the Mean Absolute Error for all dimensions.doubleCalculates the Mean Absolute Error for that dimension.r2()Calculates R2 for all dimensions.doubleCalculates R2 for the supplied dimension.rmse()Calculates the RMSE for all dimensions.doubleCalculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.Methods inherited from interface org.tribuo.evaluation.Evaluation
asMap, get, getPredictionsMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
-
Method Details
-
averageMAE
double averageMAE()The average Mean Absolute Error across all dimensions.- Returns:
- The average Mean Absolute Error.
-
mae
Calculates the Mean Absolute Error for that dimension.- Parameters:
variable- The regression dimension to use.- Returns:
- The Mean Absolute Error.
-
mae
-
averageR2
double averageR2()The average R2 across all dimensions.- Returns:
- The average R2.
-
r2
Calculates R2 for the supplied dimension.- Parameters:
variable- The regression dimension to use.- Returns:
- The R2.
-
r2
-
averageRMSE
double averageRMSE()The average RMSE across all dimensions.- Returns:
- The average RMSE.
-
rmse
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.- Parameters:
variable- The regression dimension to use.- Returns:
- The RMSE.
-
rmse
-
averagedExplainedVariance
double averagedExplainedVariance()The average explained variance across all dimensions.- Returns:
- The average explained variance.
-
explainedVariance
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.- Parameters:
variable- The regression dimension to use.- Returns:
- The explained variance.
-
explainedVariance
-