Class KernelSVMOptions
java.lang.Object
org.tribuo.classification.sgd.kernel.KernelSVMOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options,ClassificationOptions<KernelSVMTrainer>
Options for using the KernelSVMTrainer.
See:
Shalev-Shwartz S, Singer Y, Srebro N, Cotter A "Pegasos: Primal Estimated Sub-Gradient Solver for SVM" Mathematical Programming, 2011.
-
Nested Class Summary
Nested Classes -
Field Summary
FieldsModifier and TypeFieldDescriptiondoubleDegree in polynomial kernel function.intNumber of SGD epochs.doubleGamma value in kernel function.doubleIntercept in kernel function.Kernel function.doubleLambda value in gradient optimisation.intLog the objective after n examples.longSets the random seed for the Kernel SVM.Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionConstructs the trainer based on the provided arguments.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
kernelIntercept
@Option(longName="kernel-intercept", usage="Intercept in kernel function. Defaults to 1.0.") public double kernelInterceptIntercept in kernel function. Defaults to 1.0. -
kernelDegree
@Option(longName="kernel-degree", usage="Degree in polynomial kernel function. Defaults to 1.0.") public double kernelDegreeDegree in polynomial kernel function. Defaults to 1.0. -
kernelGamma
@Option(longName="kernel-gamma", usage="Gamma value in kernel function. Defaults to 1.0.") public double kernelGammaGamma value in kernel function. Defaults to 1.0. -
kernelEpochs
@Option(longName="kernel-epochs", usage="Number of SGD epochs. Defaults to 5.") public int kernelEpochsNumber of SGD epochs. Defaults to 5. -
kernelKernel
@Option(longName="kernel-kernel", usage="Kernel function. Defaults to LINEAR.") public KernelSVMOptions.KernelEnum kernelKernelKernel function. Defaults to LINEAR. -
kernelLambda
@Option(longName="kernel-lambda", usage="Lambda value in gradient optimisation. Defaults to 0.01.") public double kernelLambdaLambda value in gradient optimisation. Defaults to 0.01. -
kernelLoggingInterval
@Option(longName="kernel-logging-interval", usage="Log the objective after <int> examples. Defaults to 100.") public int kernelLoggingIntervalLog the objective after n examples. Defaults to 100. -
kernelSeed
@Option(longName="kernel-seed", usage="Sets the random seed for the Kernel SVM.") public long kernelSeedSets the random seed for the Kernel SVM.
-
-
Constructor Details
-
KernelSVMOptions
public KernelSVMOptions()
-
-
Method Details
-
getTrainer
Description copied from interface:ClassificationOptionsConstructs the trainer based on the provided arguments.- Specified by:
getTrainerin interfaceClassificationOptions<KernelSVMTrainer>- Returns:
- The trainer.
-