Interface EnsembleCombiner<T extends Output<T>>
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>,Serializable
- All Known Implementing Classes:
AveragingCombiner,FullyWeightedVotingCombiner,MultiLabelVotingCombiner,VotingCombiner
public interface EnsembleCombiner<T extends Output<T>>
extends com.oracle.labs.mlrg.olcut.config.Configurable, com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>, Serializable
An interface for combining predictions. Implementations should be final and immutable.
-
Method Summary
Modifier and TypeMethodDescriptioncombine(ImmutableOutputInfo<T> outputInfo, List<Prediction<T>> predictions) Combine the predictions.combine(ImmutableOutputInfo<T> outputInfo, List<Prediction<T>> predictions, float[] weights) Combine the supplied predictions.default ONNXNodeexportCombiner(ONNXNode input) Exports this ensemble combiner into the ONNX context of its input.exportCombiner(ONNXNode input, U weight) Exports this ensemble combiner into the ONNX context of its input.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfigMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
-
Method Details
-
combine
Combine the predictions.- Parameters:
outputInfo- The output domain.predictions- The predictions to combine.- Returns:
- The ensemble prediction.
-
combine
Prediction<T> combine(ImmutableOutputInfo<T> outputInfo, List<Prediction<T>> predictions, float[] weights) Combine the supplied predictions. predictions.size() must equal weights.length.- Parameters:
outputInfo- The output domain.predictions- The predictions to combine.weights- The weights to use for each prediction.- Returns:
- The ensemble prediction.
-
exportCombiner
Exports this ensemble combiner into the ONNX context of its input.The input should be a 3-tensor [batch_size, num_outputs, num_ensemble_members].
For compatibility reasons this method has a default implementation, though when called it will throw an
IllegalStateException. In a future version this method will not have a default implementation and ensemble combiners will be required to provide ONNX support.- Parameters:
input- the node to be ensembled according to this implementation.- Returns:
- The leaf node of the graph of operations added to ensemble input.
-
exportCombiner
Exports this ensemble combiner into the ONNX context of its input.The input should be a 3-tensor [batch_size, num_outputs, num_ensemble_members].
For compatibility reasons this method has a default implementation, though when called it will throw an
IllegalStateException. In a future version this method will not have a default implementation and ensemble combiners will be required to provide ONNX support.- Type Parameters:
U- The type of the weights input reference.- Parameters:
input- the node to be ensembled according to this implementation.weight- The node of weights for ensembling.- Returns:
- The leaf node of the graph of operations added to ensemble input.
-