Class LibLinearAnomalyTrainer
java.lang.Object
org.tribuo.common.liblinear.LibLinearTrainer<Event>
org.tribuo.anomaly.liblinear.LibLinearAnomalyTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,Trainer<Event>
A
Trainer which wraps a liblinear-java anomaly detection trainer using a one-class SVM.
Note the train method is synchronized on LibLinearTrainer.class due to a global RNG in liblinear-java.
This is insufficient to ensure reproducibility if liblinear-java is used directly in the same JVM as Tribuo, but
avoids locking on classes Tribuo does not control.
See:
Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. "LIBLINEAR: A library for Large Linear Anomaly" Journal of Machine Learning Research, 2008.and for the original algorithm:
Cortes C, Vapnik V. "Support-Vector Networks" Machine Learning, 1995.
-
Field Summary
Fields inherited from class org.tribuo.common.liblinear.LibLinearTrainer
cost, epsilon, libLinearParams, maxIterations, terminationCriterion, trainerTypeFields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT -
Constructor Summary
ConstructorsConstructorDescriptionCreates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1, nu:0.5).LibLinearAnomalyTrainer(double nu) Creates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1) and the specified nu.LibLinearAnomalyTrainer(LinearAnomalyType trainerType, double cost, double terminationCriterion, double nu) Creates a trainer for a LibLinearAnomalyModel.LibLinearAnomalyTrainer(LinearAnomalyType trainerType, double cost, int maxIterations, double terminationCriterion, double nu) Creates a trainer for a LibLinear model -
Method Summary
Modifier and TypeMethodDescriptionprotected LibLinearModel<Event> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Event> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) Construct the appropriate subtype of LibLinearModel for the prediction task.protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][], double[][]> extractData(Dataset<Event> data, ImmutableOutputInfo<Event> outputInfo, ImmutableFeatureMap featureMap) Extracts the features andOutputs in LibLinear's format.voidUsed by the OLCUT configuration system, and should not be called by external code.protected de.bwaldvogel.liblinear.ParametersetupParameters(ImmutableOutputInfo<Event> labelIDMap) Constructs the parameters.protected List<de.bwaldvogel.liblinear.Model> trainModels(de.bwaldvogel.liblinear.Parameter curParams, int numFeatures, de.bwaldvogel.liblinear.FeatureNode[][] features, double[][] outputs) Train all the liblinear instances necessary for this dataset.Methods inherited from class org.tribuo.common.liblinear.LibLinearTrainer
exampleToNodes, getInvocationCount, getProvenance, setInvocationCount, toString, train, train, train
-
Constructor Details
-
LibLinearAnomalyTrainer
public LibLinearAnomalyTrainer()Creates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1, nu:0.5). -
LibLinearAnomalyTrainer
public LibLinearAnomalyTrainer(double nu) Creates a trainer using the default values (type:ONECLASS_SVM, cost:1, maxIterations:1000, terminationCriterion:0.1) and the specified nu.- Parameters:
nu- The nu parameter in the one-class SVM.
-
LibLinearAnomalyTrainer
public LibLinearAnomalyTrainer(LinearAnomalyType trainerType, double cost, double terminationCriterion, double nu) Creates a trainer for a LibLinearAnomalyModel. Sets maxIterations to 1000.- Parameters:
trainerType- Loss function and optimisation method combination.cost- Cost penalty for each incorrectly classified training point.terminationCriterion- How close does the optimisation function need to be before terminating that subproblem (usually set to 0.1).nu- The nu parameter in the one-class SVM.
-
LibLinearAnomalyTrainer
public LibLinearAnomalyTrainer(LinearAnomalyType trainerType, double cost, int maxIterations, double terminationCriterion, double nu) Creates a trainer for a LibLinear model- Parameters:
trainerType- Loss function and optimisation method combination.cost- Cost penalty for each incorrectly classified training point.maxIterations- The maximum number of dataset iterations.terminationCriterion- How close does the optimisation function need to be before terminating that subproblem (usually set to 0.1).nu- The nu parameter in the one-class SVM.
-
-
Method Details
-
postConfig
public void postConfig()Used by the OLCUT configuration system, and should not be called by external code.- Specified by:
postConfigin interfacecom.oracle.labs.mlrg.olcut.config.Configurable- Overrides:
postConfigin classLibLinearTrainer<Event>
-
setupParameters
Description copied from class:LibLinearTrainerConstructs the parameters. Most of the time this is a no-op, but classification overrides it to incorporate label weights if they exist.- Overrides:
setupParametersin classLibLinearTrainer<Event>- Parameters:
labelIDMap- The output info.- Returns:
- The Parameters to use for training.
-
trainModels
protected List<de.bwaldvogel.liblinear.Model> trainModels(de.bwaldvogel.liblinear.Parameter curParams, int numFeatures, de.bwaldvogel.liblinear.FeatureNode[][] features, double[][] outputs) Description copied from class:LibLinearTrainerTrain all the liblinear instances necessary for this dataset.- Specified by:
trainModelsin classLibLinearTrainer<Event>- Parameters:
curParams- The LibLinear parameters.numFeatures- The number of features in this dataset.features- The features themselves.outputs- The outputs.- Returns:
- A list of liblinear models.
-
createModel
protected LibLinearModel<Event> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Event> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) Description copied from class:LibLinearTrainerConstruct the appropriate subtype of LibLinearModel for the prediction task.- Specified by:
createModelin classLibLinearTrainer<Event>- Parameters:
provenance- The model provenance.featureIDMap- The feature id map.outputIDInfo- The output id info.models- The list of linear models.- Returns:
- An implementation of LibLinearModel.
-
extractData
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][], double[][]> extractData(Dataset<Event> data, ImmutableOutputInfo<Event> outputInfo, ImmutableFeatureMap featureMap) Description copied from class:LibLinearTrainerExtracts the features andOutputs in LibLinear's format.- Specified by:
extractDatain classLibLinearTrainer<Event>- Parameters:
data- The input data.outputInfo- The output info.featureMap- The feature info.- Returns:
- The features and outputs.
-