Interface SparseTrainer<T extends Output<T>>
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,Trainer<T>
- All Known Subinterfaces:
DecisionTreeTrainer<T>
- All Known Implementing Classes:
AbstractCARTTrainer,CARTClassificationTrainer,CARTJointRegressionTrainer,CARTRegressionTrainer,ElasticNetCDTrainer,LARSLassoTrainer,LARSTrainer,SkeletalIndependentRegressionSparseTrainer,SLMTrainer
Denotes this trainer emits a
SparseModel.-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT -
Method Summary
Modifier and TypeMethodDescriptiondefault SparseModel<T> Trains a sparse predictive model using the examples in the given data set.train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.default SparseModel<T> train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfigMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenanceMethods inherited from interface org.tribuo.Trainer
getInvocationCount, setInvocationCount
-
Method Details
-
train
Trains a sparse predictive model using the examples in the given data set. -
train
-
train
default SparseModel<T> train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.- Specified by:
trainin interfaceTrainer<T extends Output<T>>- Parameters:
examples- the data set containing the examples.runProvenance- Training run specific provenance (e.g., fold number).invocationCount- The state of the RNG the trainer should be set to before training- Returns:
- a predictive model that can be used to generate predictions for new examples.
-