Class CARTRegressionTrainer
java.lang.Object
org.tribuo.common.tree.AbstractCARTTrainer<Regressor>
org.tribuo.regression.rtree.CARTRegressionTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,DecisionTreeTrainer<Regressor>,SparseTrainer<Regressor>,Trainer<Regressor>,WeightedExamples
-
Nested Class Summary
Nested classes/interfaces inherited from class org.tribuo.common.tree.AbstractCARTTrainer
AbstractCARTTrainer.AbstractCARTTrainerProvenance -
Field Summary
Fields inherited from class org.tribuo.common.tree.AbstractCARTTrainer
fractionFeaturesInSplit, maxDepth, MIN_EXAMPLES, minChildWeight, minImpurityDecrease, rng, seed, trainInvocationCounter, useRandomSplitPointsFields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT -
Constructor Summary
ConstructorsConstructorDescriptionCreates a CART trainer.CARTRegressionTrainer(int maxDepth) Creates a CART trainer.CARTRegressionTrainer(int maxDepth, float minChildWeight, float minImpurityDecrease, float fractionFeaturesInSplit, boolean useRandomSplitPoints, RegressorImpurity impurity, long seed) Creates a CART Trainer.CARTRegressionTrainer(int maxDepth, float minChildWeight, float minImpurityDecrease, float fractionFeaturesInSplit, RegressorImpurity impurity, long seed) Creates a CART Trainer. -
Method Summary
Modifier and TypeMethodDescriptionprotected AbstractTrainingNode<Regressor> mkTrainingNode(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) Makes the initial training node.toString()train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.Methods inherited from class org.tribuo.common.tree.AbstractCARTTrainer
getFractionFeaturesInSplit, getInvocationCount, getMinImpurityDecrease, getUseRandomSplitPoints, postConfig, setInvocationCount, train
-
Constructor Details
-
CARTRegressionTrainer
public CARTRegressionTrainer(int maxDepth, float minChildWeight, float minImpurityDecrease, float fractionFeaturesInSplit, boolean useRandomSplitPoints, RegressorImpurity impurity, long seed) Creates a CART Trainer.- Parameters:
maxDepth- maxDepth The maximum depth of the tree.minChildWeight- minChildWeight The minimum node weight to consider it for a split.minImpurityDecrease- The minimum decrease in impurity necessary to split a node.fractionFeaturesInSplit- fractionFeaturesInSplit The fraction of features available in each split.useRandomSplitPoints- Whether to choose split points for features at random.impurity- impurity The impurity function to use to determine split quality.seed- The RNG seed.
-
CARTRegressionTrainer
public CARTRegressionTrainer(int maxDepth, float minChildWeight, float minImpurityDecrease, float fractionFeaturesInSplit, RegressorImpurity impurity, long seed) Creates a CART Trainer.Computes the exact split point.
- Parameters:
maxDepth- maxDepth The maximum depth of the tree.minChildWeight- minChildWeight The minimum node weight to consider it for a split.minImpurityDecrease- The minimum decrease in impurity necessary to split a node.fractionFeaturesInSplit- fractionFeaturesInSplit The fraction of features available in each split.impurity- impurity The impurity function to use to determine split quality.seed- The RNG seed.
-
CARTRegressionTrainer
public CARTRegressionTrainer()Creates a CART trainer.Sets the impurity to the
MeanSquaredError, uses all the features, computes the exact split point, and sets the minimum number of examples in a leaf toAbstractCARTTrainer.MIN_EXAMPLES. -
CARTRegressionTrainer
public CARTRegressionTrainer(int maxDepth) Creates a CART trainer.Sets the impurity to the
MeanSquaredError, uses all the features, computes the exact split point and sets the minimum number of examples in a leaf toAbstractCARTTrainer.MIN_EXAMPLES.- Parameters:
maxDepth- The maximum depth of the tree.
-
-
Method Details
-
mkTrainingNode
protected AbstractTrainingNode<Regressor> mkTrainingNode(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) Description copied from class:AbstractCARTTrainerMakes the initial training node.- Specified by:
mkTrainingNodein classAbstractCARTTrainer<Regressor>- Parameters:
examples- The dataset to use.leafDeterminer- The leaf determination function.- Returns:
- The initial training node.
-
train
public TreeModel<Regressor> train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Description copied from interface:SparseTrainerTrains a sparse predictive model using the examples in the given data set.- Specified by:
trainin interfaceSparseTrainer<Regressor>- Specified by:
trainin interfaceTrainer<Regressor>- Overrides:
trainin classAbstractCARTTrainer<Regressor>- Parameters:
examples- the data set containing the examples.runProvenance- Training run specific provenance (e.g., fold number).- Returns:
- a predictive model that can be used to generate predictions for new examples.
-
train
public TreeModel<Regressor> train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Description copied from interface:SparseTrainerTrains a predictive model using the examples in the given data set.- Specified by:
trainin interfaceSparseTrainer<Regressor>- Specified by:
trainin interfaceTrainer<Regressor>- Overrides:
trainin classAbstractCARTTrainer<Regressor>- Parameters:
examples- the data set containing the examples.runProvenance- Training run specific provenance (e.g., fold number).invocationCount- The state of the RNG the trainer should be set to before training- Returns:
- a predictive model that can be used to generate predictions for new examples.
-
toString
-
getProvenance
-