Class Adam
java.lang.Object
org.tribuo.math.optimisers.Adam
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>,StochasticGradientOptimiser
An implementation of the Adam gradient optimiser.
Creates two copies of the parameters to store learning rates.
See:
Kingma, D., and Ba, J. "Adam: A Method for Stochastic Optimization" arXiv preprint arXiv:1412.6980, 2014.
-
Constructor Summary
ConstructorsConstructorDescriptionAdam()Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6.Adam(double initialLearningRate, double epsilon) Sets betaOne to 0.9 and betaTwo to 0.999Adam(double initialLearningRate, double betaOne, double betaTwo, double epsilon) It's highly recommended not to modify these parameters, use one of the other constructors. -
Method Summary
Modifier and TypeMethodDescriptioncopy()Copies a gradient optimiser with it's configuration.com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenancevoidinitialise(Parameters parameters) Initialises the gradient optimiser.voidreset()Resets the optimiser so it's ready to optimise a newParameters.Tensor[]Take aTensorarray of gradients and transform them according to the current weight and learning rates.toString()Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfigMethods inherited from interface org.tribuo.math.StochasticGradientOptimiser
finalise
-
Constructor Details
-
Adam
public Adam(double initialLearningRate, double betaOne, double betaTwo, double epsilon) It's highly recommended not to modify these parameters, use one of the other constructors.- Parameters:
initialLearningRate- The initial learning rate.betaOne- The value of beta-one.betaTwo- The value of beta-two.epsilon- The epsilon value.
-
Adam
public Adam(double initialLearningRate, double epsilon) Sets betaOne to 0.9 and betaTwo to 0.999- Parameters:
initialLearningRate- The initial learning rate.epsilon- The epsilon value.
-
Adam
public Adam()Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6. These are the parameters from the Adam paper.
-
-
Method Details
-
initialise
Description copied from interface:StochasticGradientOptimiserInitialises the gradient optimiser.Configures any learning rate parameters.
- Specified by:
initialisein interfaceStochasticGradientOptimiser- Parameters:
parameters- The parameters to optimise.
-
step
Description copied from interface:StochasticGradientOptimiserTake aTensorarray of gradients and transform them according to the current weight and learning rates.Can return the same
Tensorarray or a new one.- Specified by:
stepin interfaceStochasticGradientOptimiser- Parameters:
updates- An array of gradients.weight- The weight for the current gradients.- Returns:
- A
Tensorarray of gradients.
-
toString
-
reset
public void reset()Description copied from interface:StochasticGradientOptimiserResets the optimiser so it's ready to optimise a newParameters.- Specified by:
resetin interfaceStochasticGradientOptimiser
-
copy
Description copied from interface:StochasticGradientOptimiserCopies a gradient optimiser with it's configuration. Usually calls the copy constructor.- Specified by:
copyin interfaceStochasticGradientOptimiser- Returns:
- A gradient optimiser with the same configuration, but independent state.
-
getProvenance
public com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance getProvenance()- Specified by:
getProvenancein interfacecom.oracle.labs.mlrg.olcut.provenance.Provenancable<com.oracle.labs.mlrg.olcut.provenance.ConfiguredObjectProvenance>
-