Interface ClassifierEvaluation<T extends Classifiable<T>>
- Type Parameters:
T- The output type.
- All Superinterfaces:
Evaluation<T>,com.oracle.labs.mlrg.olcut.provenance.Provenancable<EvaluationProvenance>
- All Known Subinterfaces:
LabelEvaluation,MultiLabelEvaluation
- All Known Implementing Classes:
MultiLabelEvaluationImpl
Defines methods that calculate classification performance, used for both multi-class and multi-label classification.
-
Method Summary
Modifier and TypeMethodDescriptiondoubleReturns the balanced error rate, i.e., the mean of the per label recalls.doubleReturns the number of times labeltruthwas predicted as labelpredicted.doubleReturns the F_1 score, i.e., the harmonic mean of the precision and recall.doublefn()Returns the micro averaged number of false negatives.doubleReturns the number of false negatives, i.e., the number of times the true label was incorrectly predicted as another label.doublefp()Returns the micro average of the number of false positives across all the labels, i.e., the total number of false positives.doubleReturns the number of false positives, i.e., the number of times this label was predicted but it was not the true label..Returns the underlying confusion matrix.doubleReturns the macro averaged F_1 across all the labels.doubleReturns the macro averaged precision.doubleReturns the macro averaged recall.doublemacroFN()Returns the macro averaged number of false negatives.doublemacroFP()Returns the macro averaged number of false positives, averaged across the labels.doublemacroTN()Returns the macro averaged number of true negatives.doublemacroTP()Returns the macro averaged number of true positives, averaged across the labels.doubleReturns the micro averaged F_1 across all labels.doubleReturns the micro averaged precision.doubleReturns the micro averaged recall.doubleReturns the precision of this label, i.e., the number of true positives divided by the number of true positives plus false positives.doubleReturns the recall of this label, i.e., the number of true positives divided by the number of true positives plus false negatives.doubletn()Returns the total number of true negatives.doubleReturns the number of true negatives for that label, i.e., the number of times it wasn't predicted, and was not the true label.doubletp()Returns the micro average of the number of true positives across all the labels, i.e., the total number of true positives.doubleReturns the number of true positives, i.e., the number of times the label was correctly predicted.Methods inherited from interface org.tribuo.evaluation.Evaluation
asMap, get, getPredictionsMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
-
Method Details
-
confusion
-
tp
Returns the number of true positives, i.e., the number of times the label was correctly predicted.- Parameters:
label- The label to calculate.- Returns:
- The number of true positives for that label.
-
tp
double tp()Returns the micro average of the number of true positives across all the labels, i.e., the total number of true positives.- Returns:
- The micro averaged number of true positives.
-
macroTP
double macroTP()Returns the macro averaged number of true positives, averaged across the labels.- Returns:
- The macro averaged number of true positives.
-
fp
Returns the number of false positives, i.e., the number of times this label was predicted but it was not the true label..- Parameters:
label- the label to calculate.- Returns:
- The number of false positives for that label.
-
fp
double fp()Returns the micro average of the number of false positives across all the labels, i.e., the total number of false positives.- Returns:
- The micro averaged number of false positives.
-
macroFP
double macroFP()Returns the macro averaged number of false positives, averaged across the labels.- Returns:
- The macro averaged number of false positives.
-
tn
Returns the number of true negatives for that label, i.e., the number of times it wasn't predicted, and was not the true label.- Parameters:
label- The label to use.- Returns:
- the number of true negatives.
-
tn
double tn()Returns the total number of true negatives. This isn't very useful in multiclass problems.- Returns:
- The number of true negatives.
-
macroTN
double macroTN()Returns the macro averaged number of true negatives.- Returns:
- The macro averaged number of true negatives.
-
fn
Returns the number of false negatives, i.e., the number of times the true label was incorrectly predicted as another label.- Parameters:
label- The true label.- Returns:
- The number of false negatives.
-
fn
double fn()Returns the micro averaged number of false negatives.- Returns:
- The micro averaged number of false negatives.
-
macroFN
double macroFN()Returns the macro averaged number of false negatives.- Returns:
- The macro averaged number of false negatives.
-
precision
Returns the precision of this label, i.e., the number of true positives divided by the number of true positives plus false positives.- Parameters:
label- The label.- Returns:
- The precision.
-
microAveragedPrecision
double microAveragedPrecision()Returns the micro averaged precision.- Returns:
- The micro averaged precision.
-
macroAveragedPrecision
double macroAveragedPrecision()Returns the macro averaged precision.- Returns:
- The macro averaged precision.
-
recall
Returns the recall of this label, i.e., the number of true positives divided by the number of true positives plus false negatives.- Parameters:
label- The label.- Returns:
- The recall.
-
microAveragedRecall
double microAveragedRecall()Returns the micro averaged recall.- Returns:
- The micro averaged recall.
-
macroAveragedRecall
double macroAveragedRecall()Returns the macro averaged recall.- Returns:
- The macro averaged recall.
-
f1
Returns the F_1 score, i.e., the harmonic mean of the precision and recall.- Parameters:
label- The label.- Returns:
- The F_1 score.
-
microAveragedF1
double microAveragedF1()Returns the micro averaged F_1 across all labels.- Returns:
- The F_1 score.
-
macroAveragedF1
double macroAveragedF1()Returns the macro averaged F_1 across all the labels.- Returns:
- The F_1 score.
-
balancedErrorRate
double balancedErrorRate()Returns the balanced error rate, i.e., the mean of the per label recalls.- Returns:
- The balanced error rate.
-
getConfusionMatrix
ConfusionMatrix<T> getConfusionMatrix()Returns the underlying confusion matrix.- Returns:
- The confusion matrix.
-