Class TrainTest.RegressionTreeOptions
java.lang.Object
org.tribuo.regression.rtree.TrainTest.RegressionTreeOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options
- Enclosing class:
TrainTest
public static class TrainTest.RegressionTreeOptions
extends Object
implements com.oracle.labs.mlrg.olcut.config.Options
Command line options.
-
Field Summary
FieldsModifier and TypeFieldDescriptionintMaximum depth in the decision tree.floatFraction of features in split.The data loading options.Impurity measure to use.floatMinimum child weight.floatMinimumum decrease in impurity required in order for the node to be split.booleanNormalize the leaf outputs so each leaf sums to 1.0.booleanPrints the decision tree.charCharacter to split the CSV response on to generate multiple regression dimensions.Tree type.booleanWhether to choose split points for features at random.Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header -
Constructor Summary
Constructors -
Method Summary
-
Field Details
-
general
The data loading options. -
splitChar
@Option(longName="csv-response-split-char", usage="Character to split the CSV response on to generate multiple regression dimensions. Defaults to ':'.") public char splitCharCharacter to split the CSV response on to generate multiple regression dimensions. Defaults to ':'. -
depth
@Option(charName='d', longName="max-depth", usage="Maximum depth in the decision tree.") public int depthMaximum depth in the decision tree. -
fraction
@Option(charName='e', longName="split-fraction", usage="Fraction of features in split.") public float fractionFraction of features in split. -
minChildWeight
@Option(charName='m', longName="min-child-weight", usage="Minimum child weight.") public float minChildWeightMinimum child weight. -
minImpurityDecrease
@Option(charName='p', longName="min-impurity-decrease", usage="Minimumum decrease in impurity required in order for the node to be split.") public float minImpurityDecreaseMinimumum decrease in impurity required in order for the node to be split. -
useRandomSplitPoints
@Option(charName='r', longName="use-random-split-points", usage="Whether to choose split points for features at random.") public boolean useRandomSplitPointsWhether to choose split points for features at random. -
normalize
@Option(charName='n', longName="normalize", usage="Normalize the leaf outputs so each leaf sums to 1.0.") public boolean normalizeNormalize the leaf outputs so each leaf sums to 1.0. -
impurityType
@Option(charName='i', longName="impurity", usage="Impurity measure to use. Defaults to MSE.") public TrainTest.ImpurityType impurityTypeImpurity measure to use. Defaults to MSE. -
treeType
Tree type. -
printTree
@Option(longName="print-tree", usage="Prints the decision tree.") public boolean printTreePrints the decision tree.
-
-
Constructor Details
-
RegressionTreeOptions
public RegressionTreeOptions()
-
-
Method Details
-
getOptionsDescription
- Specified by:
getOptionsDescriptionin interfacecom.oracle.labs.mlrg.olcut.config.Options
-