Index
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
A
- a - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- ABSOLUTE - Enum constant in enum org.tribuo.regression.sgd.TrainTest.LossEnum
- AbsoluteLoss - Class in org.tribuo.regression.sgd.objectives
-
Absolute loss (i.e., l1).
- AbsoluteLoss() - Constructor for class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- AbstractCARTTrainer<T> - Class in org.tribuo.common.tree
-
Base class for
Trainer
's that use an approximation of the CART algorithm to build a decision tree. - AbstractCARTTrainer(int, float, float, long) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer
-
After calls to this superconstructor subclasses must call postConfig().
- AbstractCARTTrainer.AbstractCARTTrainerProvenance - Class in org.tribuo.common.tree
-
Deprecated.
- AbstractCARTTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer.AbstractCARTTrainerProvenance
-
Deprecated.
- AbstractCARTTrainerProvenance(AbstractCARTTrainer<T>) - Constructor for class org.tribuo.common.tree.AbstractCARTTrainer.AbstractCARTTrainerProvenance
-
Deprecated.
- AbstractEvaluator<T,
C, - Class in org.tribuo.evaluationE, M> -
Base class for evaluators.
- AbstractEvaluator() - Constructor for class org.tribuo.evaluation.AbstractEvaluator
- AbstractSequenceEvaluator<T,
C, - Class in org.tribuo.sequenceE, M> -
Base class for sequence evaluators.
- AbstractSequenceEvaluator() - Constructor for class org.tribuo.sequence.AbstractSequenceEvaluator
- AbstractTrainingNode<T> - Class in org.tribuo.common.tree
-
Base class for decision tree nodes used at training time.
- AbstractTrainingNode(int, int) - Constructor for class org.tribuo.common.tree.AbstractTrainingNode
-
Builds an abstract training node.
- accuracy() - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
The overall accuracy of the evaluation.
- accuracy() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- accuracy(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
The per label accuracy of the evaluation.
- accuracy(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- accuracy(EvaluationMetric.Average, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the accuracy using the specified average type and confusion matrix.
- accuracy(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the accuracy given this confusion matrix.
- accuracy(T, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates a per label accuracy given this confusion matrix.
- ACCURACY - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The accuracy.
- ADABOOST - Enum constant in enum org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
- AdaBoostTrainer - Class in org.tribuo.classification.ensemble
-
Implements Adaboost.SAMME one of the more popular algorithms for multiclass boosting.
- AdaBoostTrainer(Trainer<Label>, int) - Constructor for class org.tribuo.classification.ensemble.AdaBoostTrainer
-
Constructs an adaboost trainer using the supplied weak learner trainer and the specified number of boosting rounds.
- AdaBoostTrainer(Trainer<Label>, int, long) - Constructor for class org.tribuo.classification.ensemble.AdaBoostTrainer
-
Constructs an adaboost trainer using the supplied weak learner trainer, the specified number of boosting rounds and the supplied seed.
- AdaDelta - Class in org.tribuo.math.optimisers
-
An implementation of the AdaDelta gradient optimiser.
- AdaDelta() - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
Sets rho to 0.95 and epsilon to 1e-6.
- AdaDelta(double) - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
Keeps rho at 0.95, passes through epsilon.
- AdaDelta(double, double) - Constructor for class org.tribuo.math.optimisers.AdaDelta
-
It's recommended to keep rho at 0.95.
- ADADELTA - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- AdaGrad - Class in org.tribuo.math.optimisers
-
An implementation of the AdaGrad gradient optimiser.
- AdaGrad(double) - Constructor for class org.tribuo.math.optimisers.AdaGrad
-
Sets epsilon to 1e-6.
- AdaGrad(double, double) - Constructor for class org.tribuo.math.optimisers.AdaGrad
- ADAGRAD - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- AdaGradRDA - Class in org.tribuo.math.optimisers
-
An implementation of the AdaGrad gradient optimiser with regularized dual averaging.
- AdaGradRDA(double, double) - Constructor for class org.tribuo.math.optimisers.AdaGradRDA
- AdaGradRDA(double, double, double, double, int) - Constructor for class org.tribuo.math.optimisers.AdaGradRDA
- ADAGRADRDA - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- Adam - Class in org.tribuo.math.optimisers
-
An implementation of the Adam gradient optimiser.
- Adam() - Constructor for class org.tribuo.math.optimisers.Adam
-
Sets initialLearningRate to 0.001, betaOne to 0.9, betaTwo to 0.999, epsilon to 1e-6.
- Adam(double, double) - Constructor for class org.tribuo.math.optimisers.Adam
-
Sets betaOne to 0.9 and betaTwo to 0.999
- Adam(double, double, double, double) - Constructor for class org.tribuo.math.optimisers.Adam
-
It's highly recommended not to modify these parameters, use one of the other constructors.
- ADAM - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- add - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Adds the specified constant.
- add() - Static method in interface org.tribuo.util.Merger
-
A merger which adds the elements.
- add(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that adds the operand to each value.
- add(int) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- add(int, double) - Method in class org.tribuo.math.la.DenseVector
- add(int, double) - Method in interface org.tribuo.math.la.SGDVector
-
Adds
value
to the element atindex
. - add(int, double) - Method in class org.tribuo.math.la.SparseVector
- add(int, int, double) - Method in class org.tribuo.math.la.DenseMatrix
- add(int, int, double) - Method in class org.tribuo.math.la.DenseSparseMatrix
- add(int, int, double) - Method in interface org.tribuo.math.la.Matrix
-
Adds the argument value to the value at the supplied index.
- add(int, Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- add(String) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a single feature with a value of 1.
- add(String, double) - Method in class org.tribuo.impl.ArrayExample
-
Adds a single feature.
- add(String, double) - Method in class org.tribuo.MutableFeatureMap
-
Adds an occurrence of a feature with a given name.
- add(Example<T>) - Method in class org.tribuo.ImmutableDataset
-
Adds an
Example
to the dataset, which will remove features with unknown names. - add(Example<T>) - Method in class org.tribuo.MutableDataset
-
Adds an example to the dataset, which observes the output and each feature value.
- add(Example<T>, Merger) - Method in class org.tribuo.ImmutableDataset
-
Adds a
Example
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids (merging duplicate ids). - add(Feature) - Method in class org.tribuo.Example
-
Adds a feature.
- add(Feature) - Method in class org.tribuo.impl.ArrayExample
- add(Feature) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a feature to this example.
- add(Feature) - Method in class org.tribuo.impl.IndexedArrayExample
- add(Feature) - Method in class org.tribuo.impl.ListExample
- add(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
Adds
other
to this vector, producing a newDenseVector
. - add(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Adds
other
to this vector, producing a newSGDVector
. - add(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
Adds
other
to this vector, producing a newSGDVector
. - add(SequenceExample<T>) - Method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Adds a
SequenceExample
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids. - add(SequenceExample<T>) - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Adds a
SequenceExample
to this dataset. - add(SequenceExample<T>, Merger) - Method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Adds a
SequenceExample
to the dataset, which will insert feature ids, remove unknown features and sort the examples by the feature ids. - add(Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- ADD - Enum constant in enum org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
- addAcrossDim1(int[], double) - Method in class org.tribuo.math.la.DenseMatrix
- addAcrossDim2(int[], double) - Method in class org.tribuo.math.la.DenseMatrix
- addAll(int, Collection<? extends Row<T>>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- addAll(Collection<? extends Example<T>>) - Method in class org.tribuo.MutableDataset
-
Adds all the Examples in the supplied collection to this dataset.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.Example
-
Adds a collection of features.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.ArrayExample
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Adds a collection of features to this example.
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.IndexedArrayExample
- addAll(Collection<? extends Feature>) - Method in class org.tribuo.impl.ListExample
- addAll(Collection<? extends Row<T>>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- addAll(Collection<SequenceExample<T>>) - Method in class org.tribuo.sequence.MutableSequenceDataset
-
Adds all the SequenceExamples in the supplied collection to this dataset.
- addChar() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Add a character to the buffer that we're building for a token.
- addExample(Example<T>) - Method in class org.tribuo.sequence.SequenceExample
-
Adds an
Example
to this sequence. - ADJUSTED_MI - Enum constant in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
The normalized mutual information adjusted for chance.
- adjustedMI() - Method in interface org.tribuo.clustering.evaluation.ClusteringEvaluation
-
Measures the adjusted normalized mutual information between the predicted ids and the supplied ids.
- adjustedMI(ClusteringMetric.Context) - Static method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
Calculates the adjusted normalized mutual information between two clusterings.
- advance() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- advance() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- advance() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Advances the tokenizer to the next token.
- advance() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- aggregate(List<Feature>) - Method in interface org.tribuo.data.text.FeatureAggregator
-
Aggregates feature values with the same names.
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.AverageAggregator
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.SumAggregator
- aggregate(List<Feature>) - Method in class org.tribuo.data.text.impl.UniqueAggregator
- AggregateDataSource<T> - Class in org.tribuo.datasource
-
Aggregates multiple
DataSource
s, and round-robins the iterators. - AggregateDataSource(List<DataSource<T>>) - Constructor for class org.tribuo.datasource.AggregateDataSource
- AggregateDataSource.AggregateDataSourceProvenance - Class in org.tribuo.datasource
-
Provenance for the
AggregateDataSource
. - AggregateDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- algorithm - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- algorithm - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- algorithm - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- ALL - Enum constant in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Selects all provenance stored in the model.
- ALL_OUTPUTS - Static variable in class org.tribuo.Model
-
Used in getTopFeatures when the Model doesn't support per output feature lists.
- AllClassificationOptions() - Constructor for class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- allProvenances() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- allProvenances() - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- allProvenances() - Method in class org.tribuo.provenance.DatasetProvenance
- allProvenances() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- AllTrainerOptions - Class in org.tribuo.classification.experiments
-
Aggregates all the classification algorithms.
- AllTrainerOptions() - Constructor for class org.tribuo.classification.experiments.AllTrainerOptions
- AllTrainerOptions.AlgorithmType - Enum in org.tribuo.classification.experiments
- alpha - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- alpha - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- alpha - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- alphas - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
- annotateGraph(Graph, Session) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Annotates a graph with an extra placeholder and assign operation for each VariableV2.
- ANOMALOUS - Enum constant in enum org.tribuo.anomaly.Event.EventType
-
An anomalous event, with id 1.
- ANOMALOUS_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The anomalous event.
- anomalyCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of anomalous events observed.
- AnomalyDataGenerator - Class in org.tribuo.anomaly.example
-
Generates three example train and test datasets, used for unit testing.
- AnomalyDataGenerator() - Constructor for class org.tribuo.anomaly.example.AnomalyDataGenerator
- AnomalyEvaluation - Interface in org.tribuo.anomaly.evaluation
-
An
Evaluation
for anomaly detectionEvent
s. - AnomalyEvaluator - Class in org.tribuo.anomaly.evaluation
- AnomalyEvaluator() - Constructor for class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- AnomalyFactory - Class in org.tribuo.anomaly
-
A factory for generating events.
- AnomalyFactory() - Constructor for class org.tribuo.anomaly.AnomalyFactory
- AnomalyFactory.AnomalyFactoryProvenance - Class in org.tribuo.anomaly
-
Provenance for
AnomalyFactory
. - AnomalyFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
-
Constructs an anomaly factory provenance from the marshalled form.
- AnomalyInfo - Class in org.tribuo.anomaly
-
The base class for tracking anomalous events.
- AnomalyInfo() - Constructor for class org.tribuo.anomaly.AnomalyInfo
-
Constructs a new empty anomaly info.
- AnomalyInfo(AnomalyInfo) - Constructor for class org.tribuo.anomaly.AnomalyInfo
-
Copies the supplied anomaly info.
- AnomalyMetric - Class in org.tribuo.anomaly.evaluation
-
A metric for evaluating anomaly detection problems.
- AnomalyMetric(MetricTarget<Event>, String, ToDoubleBiFunction<MetricTarget<Event>, AnomalyMetric.Context>) - Constructor for class org.tribuo.anomaly.evaluation.AnomalyMetric
-
Creates an anomaly detection metric, with a specific name, using the supplied evaluation function.
- AnomalyMetrics - Enum in org.tribuo.anomaly.evaluation
-
Default metrics for evaluating anomaly detection.
- apply(E) - Method in interface org.tribuo.evaluation.EvaluationRenderer
-
Convert the evaluation to a string.
- applyTransformerList(double, List<Transformer>) - Static method in class org.tribuo.transform.TransformerMap
-
Applies a
List
ofTransformer
s to the supplied double value, returning the transformed value. - argmax(List<R>, Function<R, Double>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied evaluations.
- argmax(List<T>) - Static method in class org.tribuo.util.Util
-
Find the index of the maximum value in a list.
- argmax(EvaluationMetric<T, C>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).
- argmax(EvaluationMetric<T, C>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Calculates the argmax of a metric across the supplied datasets.
- argmin(List<T>) - Static method in class org.tribuo.util.Util
-
Find the index of the minimum value in a list.
- array - Variable in class org.tribuo.common.tree.impl.IntArrayContainer
- ArrayExample<T> - Class in org.tribuo.impl
-
An
Example
backed by two arrays, one of String and one of double. - ArrayExample(Example<T>) - Constructor for class org.tribuo.impl.ArrayExample
-
Copy constructor.
- ArrayExample(T) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output.
- ArrayExample(T, float) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a weight.
- ArrayExample(T, float, int) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a weight, with an initial size for the feature arrays.
- ArrayExample(T, float, Map<String, Object>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output, a weight and the metadata.
- ArrayExample(T, String[], double[]) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output, an array of names and an array of values.
- ArrayExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and a list of features.
- ArrayExample(T, Map<String, Object>) - Constructor for class org.tribuo.impl.ArrayExample
-
Constructs an example from an output and the metadata.
- ArrayExample(T, Example<U>, float) - Constructor for class org.tribuo.impl.ArrayExample
-
Clones an example's features, but uses the supplied output and weight.
- asMap() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- asMap() - Method in interface org.tribuo.evaluation.Evaluation
-
Get a map of all the metrics stored in this evaluation.
- asMap() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- asMap() - Method in interface org.tribuo.sequence.SequenceEvaluation
-
Get a map of all the metrics stored in this evaluation.
- ASSIGN_OP - Static variable in class org.tribuo.interop.tensorflow.TensorflowUtil
- ASSIGN_PLACEHOLDER - Static variable in class org.tribuo.interop.tensorflow.TensorflowUtil
- auc(double[], double[]) - Static method in class org.tribuo.util.Util
-
Calculates the area under the curve, bounded below by the x axis.
- AUCROC - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The area under the receiver-operator curve (ROC).
- AUCROC(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Area under the ROC curve.
- AUCROC(Label, List<Prediction<Label>>) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Area under the ROC curve.
- AUCROC(MetricTarget<Label>, List<Prediction<Label>>) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Area under the ROC curve.
- AverageAggregator - Class in org.tribuo.data.text.impl
-
A feature aggregator that averages feature values across a feature list.
- AverageAggregator() - Constructor for class org.tribuo.data.text.impl.AverageAggregator
- averageAUCROC(boolean) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Area under the ROC curve averaged across labels.
- AVERAGED_PRECISION - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The averaged precision.
- averagedExplainedVariance() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average explained variance across all dimensions.
- averagedPrecision(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Summarises a Precision-Recall Curve by taking the weighted mean of the precisions at a given threshold, where the weight is the recall achieved at that threshold.
- averagedPrecision(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Summarises a Precision-Recall Curve by taking the weighted mean of the precisions at a given threshold, where the weight is the recall achieved at that threshold.
- averagedPrecision(Label, List<Prediction<Label>>) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
- averagedPrecision(MetricTarget<Label>, List<Prediction<Label>>) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
- averageMAE() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average Mean Absolute Error across all dimensions.
- averageR2() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average R2 across all dimensions.
- averageRMSE() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
The average RMSE across all dimensions.
- AveragingCombiner - Class in org.tribuo.regression.ensemble
-
A combiner which performs a weighted or unweighted average of the predicted regressors independently across the output dimensions.
- AveragingCombiner() - Constructor for class org.tribuo.regression.ensemble.AveragingCombiner
B
- b - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- BAGGING - Enum constant in enum org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
- BaggingTrainer<T> - Class in org.tribuo.ensemble
-
A Trainer that wraps another trainer and produces a bagged ensemble.
- BaggingTrainer() - Constructor for class org.tribuo.ensemble.BaggingTrainer
-
For the configuration system.
- BaggingTrainer(Trainer<T>, EnsembleCombiner<T>, int) - Constructor for class org.tribuo.ensemble.BaggingTrainer
- BaggingTrainer(Trainer<T>, EnsembleCombiner<T>, int, long) - Constructor for class org.tribuo.ensemble.BaggingTrainer
- BALANCED_ERROR_RATE - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The balanced error rate, i.e., the mean of the per class recalls.
- BALANCED_ERROR_RATE - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The balanced error rate, i.e., the mean of the per class recalls.
- balancedErrorRate() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the balanced error rate, i.e., the mean of the per label recalls.
- balancedErrorRate() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- balancedErrorRate() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- balancedErrorRate(ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the balanced error rate, i.e., the mean of the recalls.
- BasicPipeline - Class in org.tribuo.data.text.impl
-
An example implementation of
TextPipeline
. - BasicPipeline(Tokenizer, int) - Constructor for class org.tribuo.data.text.impl.BasicPipeline
- batchSize - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- begin - Variable in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
- begin - Variable in class org.tribuo.classification.sgd.crf.Chunk
- beliefPropagation(ChainHelper.ChainCliqueValues) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs belief propagation on a linear chain CRF.
- betas - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
- BIAS_FEATURE - Static variable in class org.tribuo.Model
-
Used to denote the bias feature in a linear model.
- binarise - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Binarises the output around 1.0.
- binarise() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that sets negative and zero values to zero and positive values to one.
- BINARISED_CATEGORICAL - Enum constant in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Categoricals binarised into separate features.
- binaryAUCROC(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the area under the receiver operator characteristic curve, i.e., the AUC of the ROC curve.
- BinaryFeaturesExample<T> - Class in org.tribuo.impl
-
An
Example
backed by a single array of feature names. - BinaryFeaturesExample(Example<T>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Copy constructor.
- BinaryFeaturesExample(T) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output.
- BinaryFeaturesExample(T, float) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a weight.
- BinaryFeaturesExample(T, float, int) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a weight, with an initial size for the feature arrays.
- BinaryFeaturesExample(T, float, Map<String, Object>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output, a weight and the metadata.
- BinaryFeaturesExample(T, String[]) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and an array of names.
- BinaryFeaturesExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and a list of features.
- BinaryFeaturesExample(T, Map<String, Object>) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Constructs an example from an output and the metadata.
- BinaryFeaturesExample(T, Example<U>, float) - Constructor for class org.tribuo.impl.BinaryFeaturesExample
-
Clones an example's features, but uses the supplied output and weight.
- BinaryResponseProcessor<T> - Class in org.tribuo.data.columnar.processors.response
-
A
ResponseProcessor
that takes a single value of the field as the positive class and all other values as the negative class. - BinaryResponseProcessor(String, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Constructs a binary response processor which emits a positive value for a single string and a negative value for all other field values.
- binarySearch(List<? extends Comparable<? super T>>, T) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySearch(List<? extends Comparable<? super T>>, T, int, int) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySearch(List<? extends T>, int, ToIntFunction<T>) - Static method in class org.tribuo.util.Util
-
A binary search function.
- binarySparseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
- binarySparseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets with sparse features and unknown features in the test data.
- BinningTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which bins values.
- BinningTransformation.BinningTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
BinningTransformation
. - BinningTransformation.BinningType - Enum in org.tribuo.transform.transformations
-
The allowed binning types.
- BinningTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- BREAK_ITERATOR - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- breakIteratorOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- BreakIteratorTokenizer - Class in org.tribuo.util.tokens.impl
-
A tokenizer wrapping a
BreakIterator
instance. - BreakIteratorTokenizer(Locale) - Constructor for class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- BreakIteratorTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
BreakIteratorTokenizer
. - BreakIteratorTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
- broadcastIntersectAndAddInPlace(SGDVector, boolean) - Method in class org.tribuo.math.la.DenseMatrix
-
Broadcasts the input vector and adds it to each row/column of the matrix.
- buff - Variable in class org.tribuo.util.tokens.universal.Range
- BUILD_TIMESTAMP - Static variable in class org.tribuo.Tribuo
-
The build timestamp.
- buildTree(int[]) - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- buildTree(int[]) - Method in class org.tribuo.common.tree.AbstractTrainingNode
- buildTree(int[]) - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- buildTree(int[]) - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
-
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
- BYTE - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
C
- c - Variable in class org.tribuo.util.infotheory.impl.CachedTriple
- C_SVC - Enum constant in enum org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Original SVM algorithm.
- CachedPair<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
A pair of things with a cached hashcode.
- CachedPair(T1, T2) - Constructor for class org.tribuo.util.infotheory.impl.CachedPair
- CachedTriple<T1,
T2, - Class in org.tribuo.util.infotheory.implT3> -
A triple of things.
- CachedTriple(T1, T2, T3) - Constructor for class org.tribuo.util.infotheory.impl.CachedTriple
- cacheProvenance() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- cacheProvenance() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- calculateCountDist(List<T>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Generate the counts for a single vector.
- calculateEntropy(DoubleStream) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy of a stream, assuming each element of the stream is an element of the same probability distribution.
- calculateEntropy(Stream<Double>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy of a stream, assuming each element of the stream is an element of the same probability distribution.
- calculateHashCode() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
-
Overridden hashcode.
- calculateWeightedCountDist(ArrayList<T>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Generate the counts for a single vector.
- canonicalise(FeatureMap) - Method in class org.tribuo.sequence.SequenceExample
-
Reassigns feature name Strings in each Example inside this SequenceExample to point to those in the
FeatureMap
. - canonicalize(FeatureMap) - Method in class org.tribuo.Example
-
Reassigns feature name Strings in the Example to point to those in the
FeatureMap
. - canonicalize(FeatureMap) - Method in class org.tribuo.impl.ArrayExample
- canonicalize(FeatureMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- canonicalize(FeatureMap) - Method in class org.tribuo.impl.ListExample
- CART - Enum constant in enum org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
- CART - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- CART_INDEPENDENT - Enum constant in enum org.tribuo.regression.rtree.TrainTest.TreeType
- CART_JOINT - Enum constant in enum org.tribuo.regression.rtree.TrainTest.TreeType
- CARTClassificationOptions - Class in org.tribuo.classification.dtree
-
Options for building a classification tree trainer.
- CARTClassificationOptions() - Constructor for class org.tribuo.classification.dtree.CARTClassificationOptions
- CARTClassificationOptions.ImpurityType - Enum in org.tribuo.classification.dtree
- CARTClassificationOptions.TreeType - Enum in org.tribuo.classification.dtree
- CARTClassificationTrainer - Class in org.tribuo.classification.dtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTClassificationTrainer() - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART trainer.
- CARTClassificationTrainer(int, float, float, LabelImpurity, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- CARTClassificationTrainer(int, float, long) - Constructor for class org.tribuo.classification.dtree.CARTClassificationTrainer
-
Creates a CART Trainer.
- cartImpurity - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- CARTJointRegressionTrainer - Class in org.tribuo.regression.rtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTJointRegressionTrainer() - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int, boolean) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- CARTJointRegressionTrainer(int, float, float, RegressorImpurity, boolean, long) - Constructor for class org.tribuo.regression.rtree.CARTJointRegressionTrainer
-
Creates a CART Trainer.
- cartMaxDepth - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- cartMinChildWeight - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- cartOptions - Variable in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- cartOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- cartPrintTree - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- CARTRegressionTrainer - Class in org.tribuo.regression.rtree
-
A
Trainer
that uses an approximation of the CART algorithm to build a decision tree. - CARTRegressionTrainer() - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART trainer.
- CARTRegressionTrainer(int) - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART trainer.
- CARTRegressionTrainer(int, float, float, RegressorImpurity, long) - Constructor for class org.tribuo.regression.rtree.CARTRegressionTrainer
-
Creates a CART Trainer.
- cartSeed - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- cartSplitFraction - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- cartTreeAlgorithm - Variable in class org.tribuo.classification.dtree.CARTClassificationOptions
- CATEGORICAL - Enum constant in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Categorical features with the values converted into doubles.
- CategoricalIDInfo - Class in org.tribuo
-
Same as a
CategoricalInfo
, but with an additional int id field. - CategoricalIDInfo(CategoricalInfo, int) - Constructor for class org.tribuo.CategoricalIDInfo
-
Constructs a categorical id info copying the information from the supplied info, with the specified id.
- CategoricalInfo - Class in org.tribuo
-
Stores information about Categorical features.
- CategoricalInfo(String) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a new empty categorical info for the supplied feature name.
- CategoricalInfo(CategoricalInfo) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a deep copy of the supplied categorical info.
- CategoricalInfo(CategoricalInfo, String) - Constructor for class org.tribuo.CategoricalInfo
-
Constructs a deep copy of the supplied categorical info, with the new feature name.
- cdf - Variable in class org.tribuo.CategoricalInfo
-
The CDF to sample from.
- centroids - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
- centroids - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- ChainBPResults(double, DenseVector[], DenseVector[], ChainHelper.ChainCliqueValues) - Constructor for class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
- ChainCliqueValues(DenseVector[], DenseMatrix) - Constructor for class org.tribuo.classification.sgd.crf.ChainHelper.ChainCliqueValues
- ChainHelper - Class in org.tribuo.classification.sgd.crf
-
A collection of helper methods for performing training and inference in a CRF.
- ChainHelper.ChainBPResults - Class in org.tribuo.classification.sgd.crf
-
Belief Propagation results.
- ChainHelper.ChainCliqueValues - Class in org.tribuo.classification.sgd.crf
-
Clique scores within a chain.
- ChainHelper.ChainViterbiResults - Class in org.tribuo.classification.sgd.crf
-
Viterbi output from a linear chain.
- ChainViterbiResults(double, int[], ChainHelper.ChainCliqueValues) - Constructor for class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
- charAt(int) - Method in class org.tribuo.util.tokens.universal.Range
- checkIsBinary(Feature) - Static method in class org.tribuo.impl.BinaryFeaturesExample
- checkpointPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- Chunk - Class in org.tribuo.classification.sgd.crf
-
Chunk class used for chunk level confidence prediction in the
CRFModel
. - Chunk(int, int[]) - Constructor for class org.tribuo.classification.sgd.crf.Chunk
- Classifiable<T> - Interface in org.tribuo.classification
-
A tag interface for multi-class and multi-label classification tasks.
- ClassificationEnsembleOptions - Class in org.tribuo.classification.ensemble
-
Options for building a classification ensemble.
- ClassificationEnsembleOptions() - Constructor for class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- ClassificationEnsembleOptions.EnsembleType - Enum in org.tribuo.classification.ensemble
- ClassificationOptions<TRAINER> - Interface in org.tribuo.classification
-
An
Options
that can produce a classificationTrainer
based on the provided arguments. - ClassifierEvaluation<T> - Interface in org.tribuo.classification.evaluation
-
Defines methods that calculate classification performance, used for both multi-class and multi-label classification.
- ClassifierTrainingNode - Class in org.tribuo.classification.dtree.impl
-
A decision tree node used at training time.
- ClassifierTrainingNode(LabelImpurity, Dataset<Label>) - Constructor for class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
-
Constructor which creates the inverted file.
- className - Variable in class org.tribuo.provenance.ModelProvenance
- clear() - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- clear() - Method in class org.tribuo.classification.MutableLabelInfo
- clear() - Method in class org.tribuo.clustering.MutableClusteringInfo
- clear() - Method in class org.tribuo.impl.ListExample
- clear() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- clear() - Method in class org.tribuo.MutableDataset
-
Clears all the examples out of this dataset, and flushes the FeatureMap, OutputInfo, and transform provenances.
- clear() - Method in class org.tribuo.MutableFeatureMap
-
Clears all the feature observations.
- clear() - Method in interface org.tribuo.MutableOutputInfo
-
Clears the OutputInfo, removing all things it's observed.
- clear() - Method in class org.tribuo.regression.MutableRegressionInfo
- clear() - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- clone() - Method in class org.tribuo.Feature
- clone() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- clone() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- clone() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Clones a tokenizer with it's configuration.
- clone() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- close() - Method in class org.tribuo.data.csv.CSVIterator
- close() - Method in class org.tribuo.data.sql.SQLDataSource
- close() - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- close() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
-
Close the session and graph if they exist.
- close() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointModel
- close() - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
- close() - Method in class org.tribuo.interop.tensorflow.TensorflowModel
- close() - Method in class org.tribuo.json.JsonFileIterator
- closeTensorList(List<Tensor<?>>) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Closes a list of
Tensor
s. - clusterCounts - Variable in class org.tribuo.clustering.ClusteringInfo
- ClusterID - Class in org.tribuo.clustering
-
A clustering id.
- ClusterID(int) - Constructor for class org.tribuo.clustering.ClusterID
-
Creates a ClusterID with the sentinel score of
Double.NaN
. - ClusterID(int, double) - Constructor for class org.tribuo.clustering.ClusterID
-
Creates a ClusterID with the specified id number and score.
- ClusteringDataGenerator - Class in org.tribuo.clustering.example
-
Generates three example train and test datasets, used for unit testing.
- ClusteringDataGenerator() - Constructor for class org.tribuo.clustering.example.ClusteringDataGenerator
- ClusteringEvaluation - Interface in org.tribuo.clustering.evaluation
-
An
Evaluation
for clustering tasks. - ClusteringEvaluator - Class in org.tribuo.clustering.evaluation
- ClusteringEvaluator() - Constructor for class org.tribuo.clustering.evaluation.ClusteringEvaluator
- ClusteringFactory - Class in org.tribuo.clustering
-
A factory for making ClusterID related classes.
- ClusteringFactory() - Constructor for class org.tribuo.clustering.ClusteringFactory
-
ClusteringFactory is stateless and immutable, but we need to be able to construct them via the config system.
- ClusteringFactory.ClusteringFactoryProvenance - Class in org.tribuo.clustering
-
Provenance for
ClusteringFactory
. - ClusteringFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
-
Rebuilds a clustering factory provenance from the marshalled form.
- ClusteringInfo - Class in org.tribuo.clustering
-
The base class for a ClusterID OutputInfo.
- ClusteringMetric - Class in org.tribuo.clustering.evaluation
-
A metric for evaluating clustering problems.
- ClusteringMetric(MetricTarget<ClusterID>, String, BiFunction<MetricTarget<ClusterID>, ClusteringMetric.Context, Double>) - Constructor for class org.tribuo.clustering.evaluation.ClusteringMetric
- ClusteringMetrics - Enum in org.tribuo.clustering.evaluation
-
Default metrics for evaluating clusterings.
- cmi(List<T1>, List<T2>, Set<List<T3>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the conditional mutual information between first and second conditioned on the set.
- coeff - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- COLUMNAR - Enum constant in enum org.tribuo.data.DataOptions.InputFormat
- ColumnarDataSource<T> - Class in org.tribuo.data.columnar
-
A
ConfigurableDataSource
base class which takes columnar data (e.g., csv or DB table rows) and generatesExample
s. - ColumnarDataSource() - Constructor for class org.tribuo.data.columnar.ColumnarDataSource
-
For OLCUT.
- ColumnarDataSource(OutputFactory<T>, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.columnar.ColumnarDataSource
-
Constructs a columnar data source with the specified parameters.
- ColumnarExplainer<T> - Interface in org.tribuo.classification.explanations
-
An explainer for data using Tribuo's columnar data package.
- ColumnarFeature - Class in org.tribuo.data.columnar
-
A Feature with extra bookkeeping for use inside the columnar package.
- ColumnarFeature(String, String, double) - Constructor for class org.tribuo.data.columnar.ColumnarFeature
-
Constructs a
ColumnarFeature
from the field name, column entry and value. - ColumnarFeature(String, String, String, double) - Constructor for class org.tribuo.data.columnar.ColumnarFeature
-
Constructs a
ColumnarFeature
which is the conjunction of features from two fields. - ColumnarIterator - Class in org.tribuo.data.columnar
-
An abstract class for iterators that read data in to a columnar format, usually from a file of some kind.
- ColumnarIterator() - Constructor for class org.tribuo.data.columnar.ColumnarIterator
-
Constructs a ColumnarIterator wrapped around a buffering spliterator.
- ColumnarIterator(int, int, long) - Constructor for class org.tribuo.data.columnar.ColumnarIterator
-
Constructs a ColumnarIterator wrapped around a buffering spliterator.
- ColumnarIterator.Row - Class in org.tribuo.data.columnar
-
A representation of a row of untyped data from a columnar data source.
- columnSum() - Method in class org.tribuo.math.la.DenseMatrix
- columnSum(int) - Method in class org.tribuo.math.la.DenseMatrix
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.ensemble.VotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>, float[]) - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- combine(ImmutableOutputInfo<Label>, List<Prediction<Label>>, float[]) - Method in class org.tribuo.classification.ensemble.VotingCombiner
- combine(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- combine(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>, float[]) - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- combine(ImmutableOutputInfo<T>, List<Prediction<T>>) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Combine the predictions.
- combine(ImmutableOutputInfo<T>, List<Prediction<T>>, float[]) - Method in interface org.tribuo.ensemble.EnsembleCombiner
-
Combine the supplied predictions.
- combiner - Variable in class org.tribuo.ensemble.BaggingTrainer
- combiner - Variable in class org.tribuo.ensemble.WeightedEnsembleModel
- COMMA - Enum constant in enum org.tribuo.data.DataOptions.Delimiter
- compareTo(Feature) - Method in class org.tribuo.Feature
- compareTo(MatrixIterator) - Method in interface org.tribuo.math.la.MatrixIterator
- compareTo(VectorIterator) - Method in interface org.tribuo.math.la.VectorIterator
- compareTo(InvertedFeature) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- CompletelyConfigurableTrainTest - Class in org.tribuo.data
-
Build and run a predictor for a standard dataset.
- CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.data
- compute(C) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Compute the result of this metric from the input context.
- compute(AnomalyMetric.Context) - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- compute(LabelMetric.Context) - Method in class org.tribuo.classification.evaluation.LabelMetric
- compute(ClusteringMetric.Context) - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- compute(MultiLabelMetric.Context) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- compute(RegressionMetric.Context) - Method in class org.tribuo.regression.evaluation.RegressionMetric
- computeResults(C, Set<? extends EvaluationMetric<T, C>>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Computes each metric given the context.
- computeResults(C, Set<? extends EvaluationMetric<T, C>>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Computes each metric given the context.
- conditionalEntropy(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional entropy of two arrays, using histogram probability estimators.
- conditionalMI(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- conditionalMI(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted conditional mutual information, using histogram probability estimators.
- conditionalMI(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- conditionalMI(TripleDistribution<T1, T2, T3>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- conditionalMI(WeightedTripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- conditionalMIFlipped(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon conditional mutual information, using histogram probability estimators.
- ConfidencePredictingSequenceModel - Class in org.tribuo.classification.sequence
-
A Sequence model which can provide confidence predictions for subsequence predictions.
- ConfidencePredictingSequenceModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>) - Constructor for class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
- ConfidencePredictingSequenceModel.Subsequence - Class in org.tribuo.classification.sequence
-
A range class used to define a subsequence of a SequenceExample.
- ConfigurableDataSource<T> - Interface in org.tribuo
-
It's a
DataSource
that's alsoConfigurable
. - ConfigurableTestOptions() - Constructor for class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- ConfigurableTrainTest - Class in org.tribuo.classification.experiments
-
Build and run a classifier for a standard dataset.
- ConfigurableTrainTest - Class in org.tribuo.data
-
Build and run a predictor for a standard dataset.
- ConfigurableTrainTest() - Constructor for class org.tribuo.classification.experiments.ConfigurableTrainTest
- ConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.classification.experiments
- ConfigurableTrainTest.ConfigurableTrainTestOptions - Class in org.tribuo.data
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- ConfigurableTrainTestOptions() - Constructor for class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- configured - Variable in class org.tribuo.data.columnar.RowProcessor
- ConfiguredDataSourceProvenance - Interface in org.tribuo.provenance
-
A tag interface for configurable data source provenance.
- confusion(Label, Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- confusion(Label, Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Note: confusion is not stored in the underlying map, so it won't show up in aggregation.
- confusion(MultiLabel, MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- confusion(MultiLabel, MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- confusion(T, T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of times label
truth
was predicted as labelpredicted
. - confusion(T, T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of times the supplied predicted label was returned for the supplied true class.
- ConfusionMatrix<T> - Interface in org.tribuo.classification.evaluation
-
A confusion matrix for
Classifiable
s. - ConfusionMetrics - Class in org.tribuo.classification.evaluation
-
Static functions for computing classification metrics based on a
ConfusionMatrix
. - confusionString() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns a confusion matrix formatted String for display.
- CONJUNCTION - Static variable in class org.tribuo.data.columnar.ColumnarFeature
- connString - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- CONSTANT - Enum constant in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the supplied label for all inputs.
- CONSTANT - Enum constant in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the specified constant value.
- CONSTANTSGD - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- CONSTRAINED_BP - Enum constant in enum org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Constrained Belief Propagation from "Confidence Estimation for Information Extraction" Culotta and McCallum 2004.
- constrainedBeliefPropagation(ChainHelper.ChainCliqueValues, int[]) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs constrained belief propagation on a linear chain CRF.
- constructFromLists(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
-
Generates the counts for two vectors.
- constructFromLists(List<T1>, List<T2>, List<Double>) - Static method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Generates the counts for two vectors.
- constructFromLists(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
- constructFromLists(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>, int, int) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
- constructFromMap(Map<CachedPair<T1, T2>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.PairDistribution
- constructFromMap(Map<CachedPair<T1, T2>, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
-
Generates a WeightedPairDistribution by generating the marginal distributions for the first and second elements.
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>, int, int, int, int, int, int) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
- constructFromMap(Map<CachedTriple<T1, T2, T3>, MutableLong>, Map<CachedPair<T1, T2>, MutableLong>, Map<CachedPair<T1, T3>, MutableLong>, Map<CachedPair<T2, T3>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>, Map<T3, MutableLong>) - Static method in class org.tribuo.util.infotheory.impl.TripleDistribution
- constructFromMap(Map<CachedTriple<T1, T2, T3>, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- constructInfoForExternalModel(Map<Event, Integer>) - Method in class org.tribuo.anomaly.AnomalyFactory
- constructInfoForExternalModel(Map<Label, Integer>) - Method in class org.tribuo.classification.LabelFactory
- constructInfoForExternalModel(Map<ClusterID, Integer>) - Method in class org.tribuo.clustering.ClusteringFactory
-
Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.
- constructInfoForExternalModel(Map<MultiLabel, Integer>) - Method in class org.tribuo.multilabel.MultiLabelFactory
- constructInfoForExternalModel(Map<Regressor, Integer>) - Method in class org.tribuo.regression.RegressionFactory
- constructInfoForExternalModel(Map<T, Integer>) - Method in interface org.tribuo.OutputFactory
-
Creates an
ImmutableOutputInfo
from the supplied mapping. - contains(int) - Method in class org.tribuo.impl.IndexedArrayExample
-
Does this example contain a feature with id i.
- contains(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- contains(String) - Method in class org.tribuo.multilabel.MultiLabel
-
Does this MultiLabel contain this string?
- contains(Label) - Method in class org.tribuo.multilabel.MultiLabel
-
Does this MultiLabel contain this Label?
- containsAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
- containsMetadata(String) - Method in class org.tribuo.Example
-
Test if the metadata contains the supplied key.
- Context(Model<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric.Context
- Context(SequenceModel<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric.Context
- convert(byte) - Static method in enum org.tribuo.datasource.IDXDataSource.IDXType
-
Converts the byte into the enum.
- convert(SequenceExample<Label>, ImmutableFeatureMap, ImmutableOutputInfo<Label>) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Converts a
SequenceExample
into an array ofSparseVector
s and labels suitable for CRF prediction. - convert(SequenceExample<T>, ImmutableFeatureMap) - Static method in class org.tribuo.classification.sgd.crf.CRFModel
-
Converts a
SequenceExample
into an array ofSparseVector
s suitable for CRF prediction. - convertBatchOutput(ImmutableOutputInfo<Label>, List<float[][]>, int[], Example<Label>[]) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- convertBatchOutput(ImmutableOutputInfo<Regressor>, List<float[][]>, int[], Example<Regressor>[]) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- convertBatchOutput(ImmutableOutputInfo<T>, List<float[][]>, int[], Example<T>[]) - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction
. - convertDataset(Dataset<T>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertDataset(Dataset<T>, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExample(Example<T>, ImmutableFeatureMap) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExample(Example<T>, ImmutableFeatureMap, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Converts an examples into a DMatrix.
- convertExamples(Iterable<Example<T>>, ImmutableFeatureMap) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
- convertExamples(Iterable<Example<T>>, ImmutableFeatureMap, Function<T, Float>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Converts an iterable of examples into a DMatrix.
- convertFeatures(SparseVector) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.ExternalModel
-
Converts from a SparseVector using the external model's indices into the ingestion format for the external model.
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- convertFeatures(SparseVector) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.ExternalModel
-
Converts from a list of SparseVector using the external model's indices into the ingestion format for the external model.
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- convertFeaturesList(List<SparseVector>) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
- convertOutput(float[][], int[], List<Example<T>>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertOutput(float[][], int, Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- convertOutput(List<OnnxValue>, int[], List<Example<T>>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Converts a tensor into a prediction.
- convertOutput(List<OnnxValue>, int, Example<T>) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Converts a tensor into a prediction.
- convertOutput(Tensor<?>, int[], List<Example<T>>) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
-
Converts a tensor into a prediction.
- convertOutput(Tensor<?>, int, Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
-
Converts a tensor into a prediction.
- convertOutput(ImmutableOutputInfo<Label>, List<float[]>, int, Example<Label>) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- convertOutput(ImmutableOutputInfo<Regressor>, List<float[]>, int, Example<Regressor>) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- convertOutput(ImmutableOutputInfo<T>, List<float[]>, int, Example<T>) - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction
. - convertOutput(V, int[], List<Example<T>>) - Method in class org.tribuo.interop.ExternalModel
-
Converts the output of the external model into a list of
Prediction
s. - convertOutput(V, int, Example<T>) - Method in class org.tribuo.interop.ExternalModel
-
Converts the output of the external model into a
Prediction
. - convertSingleExample(Example<T>, ImmutableFeatureMap, ArrayList<Float>, ArrayList<Integer>, ArrayList<Long>, long) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Writes out the features from an example into the three supplied
ArrayList
s. - convertSparseVector(SparseVector) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used when predicting with an externally trained XGBoost model.
- convertSparseVectors(List<SparseVector>) - Static method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used when predicting with an externally trained XGBoost model.
- convertTensorToArray(Tensor<?>) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Extracts the appropriate type of primitive array from a
Tensor
. - convertTensorToScalar(Tensor<?>) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Converts a
Tensor
into a scalar object, boxing the primitive types. - convertToDense() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- convertToDense() - Method in interface org.tribuo.math.optimisers.util.ShrinkingTensor
- convertToDense() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- convertToMap(ObjectNode) - Static method in class org.tribuo.json.JsonUtil
-
Converts a Json node into a Map from String to String for use in downstream processing by
RowProcessor
. - convertTree() - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
- convertTree() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
Converts a tree from a training representation to the final inference time representation.
- convertTree() - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- convertTree() - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- copy() - Method in class org.tribuo.anomaly.AnomalyInfo
- copy() - Method in class org.tribuo.anomaly.Event
- copy() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- copy() - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- copy() - Method in class org.tribuo.CategoricalIDInfo
- copy() - Method in class org.tribuo.CategoricalInfo
- copy() - Method in class org.tribuo.classification.ImmutableLabelInfo
- copy() - Method in class org.tribuo.classification.Label
- copy() - Method in class org.tribuo.classification.LabelInfo
- copy() - Method in class org.tribuo.classification.MutableLabelInfo
- copy() - Method in class org.tribuo.clustering.ClusterID
- copy() - Method in class org.tribuo.clustering.ClusteringInfo
- copy() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- copy() - Method in class org.tribuo.clustering.MutableClusteringInfo
- copy() - Method in class org.tribuo.common.tree.AbstractTrainingNode
- copy() - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Returns a copy of the elements in use.
- copy() - Method in class org.tribuo.common.tree.LeafNode
- copy() - Method in interface org.tribuo.common.tree.Node
-
Copies the node and it's children.
- copy() - Method in class org.tribuo.common.tree.SplitNode
- copy() - Method in class org.tribuo.data.columnar.RowProcessor
-
Deprecated.
- copy() - Method in class org.tribuo.Example
-
Returns a deep copy of this Example.
- copy() - Method in class org.tribuo.impl.ArrayExample
- copy() - Method in class org.tribuo.impl.BinaryFeaturesExample
- copy() - Method in class org.tribuo.impl.IndexedArrayExample
- copy() - Method in class org.tribuo.impl.ListExample
- copy() - Method in class org.tribuo.math.la.DenseMatrix
-
Copies the matrix.
- copy() - Method in class org.tribuo.math.la.DenseVector
- copy() - Method in interface org.tribuo.math.la.SGDVector
-
Returns a deep copy of this vector.
- copy() - Method in class org.tribuo.math.la.SparseVector
- copy() - Method in class org.tribuo.math.optimisers.AdaDelta
- copy() - Method in class org.tribuo.math.optimisers.AdaGrad
- copy() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- copy() - Method in class org.tribuo.math.optimisers.Adam
- copy() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- copy() - Method in class org.tribuo.math.optimisers.Pegasos
- copy() - Method in class org.tribuo.math.optimisers.RMSProp
- copy() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- copy() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Copies a gradient optimiser with it's configuration.
- copy() - Method in class org.tribuo.Model
-
Copies a model, returning a deep copy of any mutable state, and a shallow copy otherwise.
- copy() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- copy() - Method in class org.tribuo.multilabel.MultiLabel
- copy() - Method in class org.tribuo.multilabel.MultiLabelInfo
- copy() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- copy() - Method in interface org.tribuo.Output
-
Deep copy of the output up to it's immutable state.
- copy() - Method in interface org.tribuo.OutputInfo
-
Generates a copy of this OutputInfo, including it's mutability.
- copy() - Method in class org.tribuo.RealIDInfo
- copy() - Method in class org.tribuo.RealInfo
- copy() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- copy() - Method in class org.tribuo.regression.MutableRegressionInfo
- copy() - Method in class org.tribuo.regression.RegressionInfo
- copy() - Method in class org.tribuo.regression.Regressor
- copy() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- copy() - Method in class org.tribuo.sequence.SequenceExample
-
Returns a deep copy of this SequenceExample.
- copy() - Method in class org.tribuo.SparseModel
- copy() - Method in interface org.tribuo.VariableInfo
-
Returns a copy of this variable info.
- copy(String) - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Returns a copy of this FieldProcessor bound to the supplied newFieldName.
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- copy(String) - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Note: the copy shares the text pipeline with the original.
- copy(String, EnsembleModelProvenance, List<Model<T>>) - Method in class org.tribuo.ensemble.EnsembleModel
- copy(String, EnsembleModelProvenance, List<Model<T>>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- copy(String, ModelProvenance) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- copy(String, ModelProvenance) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- copy(String, ModelProvenance) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.nearest.KNNModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.tree.TreeModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.common.xgboost.XGBoostModel
- copy(String, ModelProvenance) - Method in class org.tribuo.ensemble.EnsembleModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
- copy(String, ModelProvenance) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
- copy(String, ModelProvenance) - Method in class org.tribuo.Model
-
Copies a model, replacing it's provenance and name with the supplied values.
- copy(String, ModelProvenance) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- copy(String, ModelProvenance) - Method in class org.tribuo.regression.slm.SparseLinearModel
- copy(String, ModelProvenance) - Method in class org.tribuo.transform.TransformedModel
- copyDataset(Dataset<T>) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
- copyDataset(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, Merger) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(SequenceDataset<T>) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyDataset(SequenceDataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
- copyDataset(SequenceDataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, Merger) - Static method in class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates an immutable deep copy of the supplied dataset.
- copyModel(Model) - Static method in class org.tribuo.common.liblinear.LibLinearModel
-
Copies the model by writing it out to a String and loading it back in.
- copyModel(svm_model) - Static method in class org.tribuo.common.libsvm.LibSVMModel
-
Copies an svm_model, as it does not provide a copy method.
- copyParameters(svm_parameter) - Static method in class org.tribuo.common.libsvm.SVMParameters
-
Deep copy of the svm_parameters including the arrays.
- copyResourceToTmp(String) - Static method in class org.tribuo.tests.Resources
- copyValues(int) - Method in class org.tribuo.impl.ArrayExample
-
Returns a copy of the feature values array at the specific size.
- CoreTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI Options for all the tokenizers in the core package.
- CoreTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.CoreTokenizerOptions
- CoreTokenizerOptions.CoreTokenizerType - Enum in org.tribuo.util.tokens.options
- coreTokenizerType - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- CORRELATED - Enum constant in enum org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
- COSINE - Enum constant in enum org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Cosine similarity as a distance measure.
- COSINE - Enum constant in enum org.tribuo.common.nearest.KNNTrainer.Distance
-
Cosine similarity used as a distance measure.
- cosineDistance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the cosine distance of two vectors.
- cosineSimilarity(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the cosine similarity of two vectors.
- cost - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- cost - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- count - Variable in class org.tribuo.SkeletalVariableInfo
-
How often the feature occurs in the dataset.
- count - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
- count - Variable in class org.tribuo.util.infotheory.impl.TripleDistribution
- count - Variable in class org.tribuo.util.infotheory.impl.WeightCountTuple
- count - Variable in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- count - Variable in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- countMap - Variable in class org.tribuo.regression.RegressionInfo
- createBootstrapView(Dataset<T>, int, long) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset.
- createBootstrapView(Dataset<T>, int, long, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset.
- createConstantTrainer(double) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return a fixed value.
- createConstantTrainer(String) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return a fixed label.
- createContext(Model<Event>, List<Prediction<Event>>) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createContext(Model<Event>, List<Prediction<Event>>) - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- createContext(Model<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createContext(Model<Label>, List<Prediction<Label>>) - Method in class org.tribuo.classification.evaluation.LabelMetric
- createContext(Model<ClusterID>, List<Prediction<ClusterID>>) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createContext(Model<ClusterID>, List<Prediction<ClusterID>>) - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- createContext(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createContext(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- createContext(Model<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createContext(Model<Regressor>, List<Prediction<Regressor>>) - Method in class org.tribuo.regression.evaluation.RegressionMetric
- createContext(Model<T>, List<Prediction<T>>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Create the context needed for evaluation.
- createContext(Model<T>, List<Prediction<T>>) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Creates the context this metric uses to compute it's value.
- createContext(Model<T>, Dataset<T>) - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
Creates the metric context used to compute this metric's value, generating
Prediction
s for eachExample
in the supplied dataset. - createContext(SequenceModel<Label>, List<List<Prediction<Label>>>) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createContext(SequenceModel<T>, List<List<Prediction<T>>>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Create the context needed for evaluation.
- createDeepCopy(Dataset<T>) - Static method in class org.tribuo.MutableDataset
-
Creates a deep copy of the supplied
Dataset
which is mutable. - createDenseMatrix(double[][]) - Static method in class org.tribuo.math.la.DenseMatrix
-
Defensively copies the values before construction.
- createDenseVector(double[]) - Static method in class org.tribuo.math.la.DenseVector
-
Defensively copies the values before construction.
- createEvaluation(C, Map<MetricID<T>, Double>, EvaluationProvenance) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Create an evaluation for the given results
- createEvaluation(C, Map<MetricID<T>, Double>, EvaluationProvenance) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Create an evaluation for the given results
- createEvaluation(AnomalyMetric.Context, Map<MetricID<Event>, Double>, EvaluationProvenance) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createEvaluation(LabelMetric.Context, Map<MetricID<Label>, Double>, EvaluationProvenance) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createEvaluation(LabelMetric.Context, Map<MetricID<Label>, Double>, EvaluationProvenance) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createEvaluation(ClusteringMetric.Context, Map<MetricID<ClusterID>, Double>, EvaluationProvenance) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createEvaluation(MultiLabelMetric.Context, Map<MetricID<MultiLabel>, Double>, EvaluationProvenance) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createEvaluation(RegressionMetric.Context, Map<MetricID<Regressor>, Double>, EvaluationProvenance) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createFeatureMap(Set<String>) - Static method in class org.tribuo.interop.ExternalModel
-
Creates an immutable feature map from a set of feature names.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
Creates the feature vector.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
Creates the feature vector.
- createFeatures(Example<Regressor>) - Method in class org.tribuo.regression.slm.SparseLinearModel
-
Creates the feature vector.
- createFromPairList(List<Pair<String, Boolean>>) - Static method in class org.tribuo.multilabel.MultiLabel
-
Creates a MultiLabel from a list of dimensions.
- createFromPairList(List<Pair<String, Double>>) - Static method in class org.tribuo.regression.Regressor
-
Creates a Regressor from a list of dimension tuples.
- createFromSparseVectors(SparseVector[]) - Static method in class org.tribuo.math.la.DenseSparseMatrix
-
Defensively copies the values.
- createGaussianTrainer(long) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which sample the output from a gaussian distribution fit to the training data.
- createIDXData(IDXDataSource.IDXType, int[], double[]) - Static method in class org.tribuo.datasource.IDXDataSource.IDXData
-
Constructs an IDXData, validating the input and defensively copying it.
- createLabel(Label) - Method in class org.tribuo.multilabel.MultiLabel
-
Creates a binary label from this multilabel.
- createMeanTrainer() - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the mean of the training data.
- createMedianTrainer() - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the median of the training data.
- createMetrics(Model<Event>) - Method in class org.tribuo.anomaly.evaluation.AnomalyEvaluator
- createMetrics(Model<Label>) - Method in class org.tribuo.classification.evaluation.LabelEvaluator
- createMetrics(Model<ClusterID>) - Method in class org.tribuo.clustering.evaluation.ClusteringEvaluator
- createMetrics(Model<MultiLabel>) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- createMetrics(Model<Regressor>) - Method in class org.tribuo.regression.evaluation.RegressionEvaluator
- createMetrics(Model<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Creates the appropriate set of metrics for this model, by querying for it's
OutputInfo
. - createMetrics(SequenceModel<Label>) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluator
- createMetrics(SequenceModel<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Creates the appropriate set of metrics for this model, by querying for it's
OutputInfo
. - createModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Booster>, XGBoostOutputConverter<T>) - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- createModel(Map<String, T>, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel
for this trainer. - createModel(Map<String, T>, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel
for this trainer. - createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Event>, List<svm_model>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, List<Model>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Label>, List<svm_model>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, List<Model>) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, List<svm_model>) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Construct the appropriate subtype of LibLinearModel for the prediction task.
- createModel(ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<svm_model>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Construct the appropriate subtype of LibSVMModel for the prediction task.
- createMostFrequentTrainer() - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return a fixed label, the one which was most frequent in the training data.
- createOnlineEvaluator(Model<T>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Creates an online evaluator that maintains a list of all the predictions it has seen and can evaluate them upon request.
- createOnnxModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, ExampleTransformer, OutputTransformer<T>, OrtSession.SessionOptions, String, String) - Static method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Creates an
ONNXExternalModel
by loading the model from disk. - createOnnxModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, ExampleTransformer, OutputTransformer<T>, OrtSession.SessionOptions, Path, String) - Static method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Creates an
ONNXExternalModel
by loading the model from disk. - createOutputInfo(OutputFactory<T>, Map<T, Integer>) - Static method in class org.tribuo.interop.ExternalModel
-
Creates an output info from a set of outputs.
- createQuartileTrainer(double) - Static method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Creates a trainer which create models which return the value at the specified fraction of the sorted training data.
- createSparseVector(int, int[], double[]) - Static method in class org.tribuo.math.la.SparseVector
-
Defensively copies the input, and checks that the indices are sorted.
- createSparseVector(int, Map<Integer, Double>) - Static method in class org.tribuo.math.la.SparseVector
-
Builds a SparseVector from a map.
- createSparseVector(Example<T>, ImmutableFeatureMap, boolean) - Static method in class org.tribuo.math.la.SparseVector
-
Builds a
SparseVector
from anExample
. - createStats() - Method in interface org.tribuo.transform.Transformation
-
Creates the statistics object for this Transformation.
- createStats() - Method in class org.tribuo.transform.transformations.BinningTransformation
- createStats() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- createStats() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- createStats() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Returns itself.
- createStratifiedTrainer(long) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return random labels sampled from the training label distribution.
- createSupplier(Tokenizer) - Static method in interface org.tribuo.util.tokens.Tokenizer
- createTensorflowModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, String, String, ExampleTransformer<T>, OutputTransformer<T>, String) - Static method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
-
Creates a TensorflowExternalModel by loading in a frozen graph.
- createThreadLocal(Tokenizer) - Static method in interface org.tribuo.util.tokens.Tokenizer
- createTransformers(TransformationMap) - Method in class org.tribuo.Dataset
-
Takes a
TransformationMap
and converts it into aTransformerMap
by observing all the values in this dataset. - createUniformTrainer(long) - Static method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Creates a trainer which creates models which return random labels sampled uniformly from the labels seen at training time.
- createView(Dataset<T>, Predicate<Example<T>>, String) - Static method in class org.tribuo.dataset.DatasetView
-
Creates a view from the supplied dataset, using the specified predicate to test if each example should be in this view.
- createWeightedBootstrapView(Dataset<T>, int, long, float[]) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.
- createWeightedBootstrapView(Dataset<T>, int, long, float[], ImmutableFeatureMap, ImmutableOutputInfo<T>) - Static method in class org.tribuo.dataset.DatasetView
-
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.
- createWhitespaceTokenizer() - Static method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Creates a tokenizer that splits on whitespace.
- createWithEmptyOutputs(List<? extends List<? extends Feature>>, OutputFactory<T>) - Static method in class org.tribuo.sequence.SequenceExample
-
Creates a SequenceExample using
OutputFactory.getUnknownOutput()
as the output for each sequence element. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, String) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied model on disk. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, Path) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied model on disk. - createXGBoostModel(OutputFactory<T>, Map<String, Integer>, Map<T, Integer>, XGBoostOutputConverter<T>, Booster, URL) - Static method in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Creates an
XGBoostExternalModel
from the supplied model. - CRFModel - Class in org.tribuo.classification.sgd.crf
-
An inference time model for a CRF trained using SGD.
- CRFModel.ConfidenceType - Enum in org.tribuo.classification.sgd.crf
-
The type of subsequence level confidence to predict.
- CRFOptions - Class in org.tribuo.classification.sgd.crf
-
CLI options for training a linear chain CRF model.
- CRFOptions() - Constructor for class org.tribuo.classification.sgd.crf.CRFOptions
- CRFOptions() - Constructor for class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- CRFParameters - Class in org.tribuo.classification.sgd.crf
-
A
Parameters
for training a CRF using SGD. - CRFTrainer - Class in org.tribuo.classification.sgd.crf
-
A trainer for CRFs using SGD.
- CRFTrainer(StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Creates a CRFTrainer which uses SGD to learn the parameters.
- CRFTrainer(StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Sets the minibatch size to 1.
- CRFTrainer(StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.classification.sgd.crf.CRFTrainer
-
Sets the minibatch size to 1 and the logging interval to 100.
- crossValidation - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- CrossValidation<T,
E> - Class in org.tribuo.evaluation -
A class that does k-fold cross-validation.
- CrossValidation(Trainer<T>, Dataset<T>, Evaluator<T, E>, int) - Constructor for class org.tribuo.evaluation.CrossValidation
-
Builds a k-fold cross-validation loop.
- CrossValidation(Trainer<T>, Dataset<T>, Evaluator<T, E>, int, long) - Constructor for class org.tribuo.evaluation.CrossValidation
-
Builds a k-fold cross-validation loop.
- CSV - Enum constant in enum org.tribuo.data.DataOptions.InputFormat
- CSVDataSource<T> - Class in org.tribuo.data.csv
-
A
DataSource
for loading separable data from a text file (e.g., CSV, TSV) and applyingFieldProcessor
s to it. - CSVDataSource(URI, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(URI, RowProcessor<T>, boolean, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(URI, RowProcessor<T>, boolean, char, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource(Path, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(Path, RowProcessor<T>, boolean, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data.
- CSVDataSource(Path, RowProcessor<T>, boolean, char, char) - Constructor for class org.tribuo.data.csv.CSVDataSource
-
Creates a CSVDataSource using the specified RowProcessor to process the data, and the supplied separator and quote characters to read the input data file.
- CSVDataSource.CSVDataSourceProvenance - Class in org.tribuo.data.csv
-
Provenance for
CSVDataSource
. - CSVDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- CSVIterator - Class in org.tribuo.data.csv
-
An iterator over a CSV file.
- CSVIterator(Reader) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char, String[]) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(Reader, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied Reader.
- CSVIterator(URI) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char, String[]) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVIterator(URI, char, char, List<String>) - Constructor for class org.tribuo.data.csv.CSVIterator
-
Builds a CSVIterator for the supplied URI.
- CSVLoader<T> - Class in org.tribuo.data.csv
-
Load a DataSource/Dataset from a CSV file.
- CSVLoader(char, char, OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied separator, quote and output factory.
- CSVLoader(char, OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied separator and output factory.
- CSVLoader(OutputFactory<T>) - Constructor for class org.tribuo.data.csv.CSVLoader
-
Creates a CSVLoader using the supplied output factory.
- CSVLoader.CSVLoaderProvenance - Class in org.tribuo.data.csv
-
Provenance for CSVs loaded by
CSVLoader
. - CSVLoaderProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- csvQuoteChar - Variable in class org.tribuo.data.DataOptions
- csvResponseName - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- csvResponseName - Variable in class org.tribuo.data.DataOptions
- CSVSaver - Class in org.tribuo.data.csv
-
Saves a Dataset in CSV format suitable for loading by
CSVLoader
. - CSVSaver() - Constructor for class org.tribuo.data.csv.CSVSaver
-
Builds a CSV saver using the default separator and quote from
CSVIterator
. - CSVSaver(char, char) - Constructor for class org.tribuo.data.csv.CSVSaver
-
Builds a CSV saver using the supplied separator and quote.
- cumulativeSum(boolean[]) - Static method in class org.tribuo.util.Util
-
Produces a cumulative sum array.
- cumulativeSum(double[]) - Static method in class org.tribuo.util.Util
-
Produces a cumulative sum array.
- currentRow - Variable in class org.tribuo.data.columnar.ColumnarIterator
D
- DART - Enum constant in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A gradient boosted decision tree using dropout.
- data - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- data - Variable in class org.tribuo.data.text.TextDataSource
-
The actual data read out of the text file.
- data - Variable in class org.tribuo.Dataset
-
The data in this data set.
- data - Variable in class org.tribuo.sequence.SequenceDataset
-
The data in this data set.
- DataOptions - Class in org.tribuo.data
-
Options for working with training and test data in a CLI.
- DataOptions() - Constructor for class org.tribuo.data.DataOptions
- DataOptions.Delimiter - Enum in org.tribuo.data
-
The delimiters supported by CSV files in this options object.
- DataOptions.InputFormat - Enum in org.tribuo.data
-
The input formats supported by this options object.
- DataProvenance - Interface in org.tribuo.provenance
-
Tag interface for data sources provenances.
- Dataset<T> - Class in org.tribuo
-
A class for sets of data, which are used to train and evaluate classifiers.
- Dataset(DataSource<T>) - Constructor for class org.tribuo.Dataset
-
Creates a dataset.
- Dataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.Dataset
-
Creates a dataset.
- DATASET - Enum constant in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select the dataset provenance.
- DATASET - Static variable in class org.tribuo.provenance.ModelProvenance
- DatasetExplorer - Class in org.tribuo.data
-
A CLI for exploring a serialised
Dataset
. - DatasetExplorer() - Constructor for class org.tribuo.data.DatasetExplorer
- DatasetExplorer.DatasetExplorerOptions - Class in org.tribuo.data
- DatasetExplorerOptions() - Constructor for class org.tribuo.data.DatasetExplorer.DatasetExplorerOptions
- datasetName - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- datasetProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- DatasetProvenance - Class in org.tribuo.provenance
-
Base class for dataset provenance.
- DatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.DatasetProvenance
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, String, boolean, boolean, int, int, int) - Constructor for class org.tribuo.provenance.DatasetProvenance
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, Dataset<T>) - Constructor for class org.tribuo.provenance.DatasetProvenance
- DatasetProvenance(DataProvenance, ListProvenance<ObjectProvenance>, SequenceDataset<T>) - Constructor for class org.tribuo.provenance.DatasetProvenance
- DatasetView<T> - Class in org.tribuo.dataset
-
DatasetView provides an immutable view on another
Dataset
that only exposes selected examples. - DatasetView(Dataset<T>, int[], String) - Constructor for class org.tribuo.dataset.DatasetView
-
Creates a DatasetView which includes the supplied indices from the dataset.
- DatasetView(Dataset<T>, int[], ImmutableFeatureMap, ImmutableOutputInfo<T>, String) - Constructor for class org.tribuo.dataset.DatasetView
-
Creates a DatasetView which includes the supplied indices from the dataset.
- DatasetView.DatasetViewProvenance - Class in org.tribuo.dataset
-
Provenance for the
DatasetView
. - DatasetViewProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- dataSource - Variable in class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
- DataSource<T> - Interface in org.tribuo
-
A interface for things that can be given to a Dataset's constructor.
- DATASOURCE_CREATION_TIME - Static variable in interface org.tribuo.provenance.DataSourceProvenance
- DataSourceProvenance - Interface in org.tribuo.provenance
-
Data source provenance.
- DateExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and translates it to a
LocalDate
based on the specifiedDateTimeFormatter
. - DateExtractor(String, String, String) - Constructor for class org.tribuo.data.columnar.extractors.DateExtractor
-
Constructs a date extractor that emits a LocalDate by applying the supplied format to the specified field.
- DateExtractor(String, String, DateTimeFormatter) - Constructor for class org.tribuo.data.columnar.extractors.DateExtractor
-
Deprecated.
- dbConfig - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- DecisionTreeOptions() - Constructor for class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- DecisionTreeTrainer<T> - Interface in org.tribuo.common.tree
-
A tag interface for a
Trainer
so the random forests trainer can check if it's actually a tree. - decode(Tensor<?>, List<SequenceExample<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputTransformer
-
Decode graph output tensors corresponding to a batch of input sequences.
- decode(Tensor<?>, SequenceExample<T>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputTransformer
-
Decode a tensor of graph output into a list of predictions for the input sequence.
- deepCopy() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- deepCopy() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Returns a deep copy of this tree feature.
- DEFAULT - Enum constant in enum org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
- DEFAULT_BATCH_SIZE - Static variable in class org.tribuo.interop.ExternalModel
-
Default batch size for external model batch predictions.
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.impl.TripleDistribution
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.InformationTheory
- DEFAULT_MAP_SIZE - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
- DEFAULT_METADATA_SIZE - Static variable in class org.tribuo.Example
-
The default initial size of the metadata map.
- DEFAULT_NAME - Static variable in class org.tribuo.regression.Regressor
- DEFAULT_RESPONSE - Static variable in class org.tribuo.data.csv.CSVSaver
- DEFAULT_SCORE - Static variable in class org.tribuo.anomaly.Event
-
The default score of events.
- DEFAULT_SEED - Static variable in interface org.tribuo.Trainer
-
Default seed used to initialise RNGs.
- DEFAULT_SIZE - Static variable in class org.tribuo.common.tree.AbstractTrainingNode
-
Default buffer size used in the split operation.
- DEFAULT_SIZE - Static variable in class org.tribuo.impl.ArrayExample
- DEFAULT_SIZE - Static variable in class org.tribuo.impl.BinaryFeaturesExample
- DEFAULT_SPLIT_CHAR - Static variable in class org.tribuo.regression.RegressionFactory
- DEFAULT_SPLIT_CHARACTERS - Static variable in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- DEFAULT_SPLIT_EXCEPTING_IN_DIGITS_CHARACTERS - Static variable in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- DEFAULT_WEIGHT - Static variable in class org.tribuo.Example
-
The default weight.
- DEFAULT_WEIGHT - Static variable in class org.tribuo.sequence.SequenceExample
- DefaultFeatureExtractor - Class in org.tribuo.classification.sequence.viterbi
-
A label feature extractor that produces several kinds of label-based features.
- DefaultFeatureExtractor() - Constructor for class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- DefaultFeatureExtractor(int, int, boolean, boolean, boolean) - Constructor for class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- degree - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- delimiter - Variable in class org.tribuo.data.DataOptions
- DELTA - Static variable in class org.tribuo.math.la.VectorTuple
- DemoOptions() - Constructor for class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
- dense - Variable in class org.tribuo.MutableDataset
-
Denotes if this dataset contains implicit zeros or not.
- DENSE - Enum constant in enum org.tribuo.interop.tensorflow.TrainTest.InputType
- DenseMatrix - Class in org.tribuo.math.la
-
A dense matrix, backed by a primitive array.
- DenseMatrix(int, int) - Constructor for class org.tribuo.math.la.DenseMatrix
- DenseMatrix(DenseMatrix) - Constructor for class org.tribuo.math.la.DenseMatrix
- DenseMatrix(Matrix) - Constructor for class org.tribuo.math.la.DenseMatrix
- DenseSparseMatrix - Class in org.tribuo.math.la
-
A matrix which is dense in the first dimension and sparse in the second.
- DenseSparseMatrix(List<SparseVector>) - Constructor for class org.tribuo.math.la.DenseSparseMatrix
- DenseSparseMatrix(DenseSparseMatrix) - Constructor for class org.tribuo.math.la.DenseSparseMatrix
- denseTrainTest() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Makes a simple dataset for training and testing.
- denseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
- denseTrainTest() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
- denseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
- denseTrainTest(double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.
- denseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 classes, {Foo,Bar,Baz,Quux}.
- denseTrainTest(double) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}, and there are 4 clusters, {0,1,2,3}.
- denseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- DenseTransformer - Class in org.tribuo.interop.onnx
-
Converts a sparse Tribuo example into a dense float vector, then wraps it in an
OnnxTensor
. - DenseTransformer<T> - Class in org.tribuo.interop.tensorflow
-
Converts a sparse example into a dense float vector, then wraps it in a
Tensor
. - DenseTransformer() - Constructor for class org.tribuo.interop.onnx.DenseTransformer
- DenseTransformer() - Constructor for class org.tribuo.interop.tensorflow.DenseTransformer
- DenseVector - Class in org.tribuo.math.la
-
A dense vector, backed by a double array.
- DenseVector(double[]) - Constructor for class org.tribuo.math.la.DenseVector
-
Does not defensively copy the input, used internally.
- DenseVector(int) - Constructor for class org.tribuo.math.la.DenseVector
- DenseVector(int, double) - Constructor for class org.tribuo.math.la.DenseVector
- DenseVector(DenseVector) - Constructor for class org.tribuo.math.la.DenseVector
- densify() - Method in class org.tribuo.MutableDataset
-
Iterates through the examples, converting implicit zeros into explicit zeros.
- densify(List<String>) - Method in class org.tribuo.Example
-
Converts all implicit zeros into explicit zeros based on the supplied feature names.
- densify(List<String>) - Method in class org.tribuo.impl.ArrayExample
- densify(List<String>) - Method in class org.tribuo.impl.BinaryFeaturesExample
- densify(List<String>) - Method in class org.tribuo.impl.IndexedArrayExample
- densify(List<String>) - Method in class org.tribuo.impl.ListExample
- densify(FeatureMap) - Method in class org.tribuo.Example
-
Converts all implicit zeros into explicit zeros based on the supplied feature map.
- densify(FeatureMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- depth - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- depth - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- depth - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- depth - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- DESCRIPTION - Static variable in class org.tribuo.provenance.SimpleDataSourceProvenance
- DescriptiveStats - Class in org.tribuo.evaluation
-
Descriptive statistics calculated across a list of doubles.
- DescriptiveStats() - Constructor for class org.tribuo.evaluation.DescriptiveStats
- DescriptiveStats(List<Double>) - Constructor for class org.tribuo.evaluation.DescriptiveStats
- deserialise(Session, Map<String, Object>) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Writes a map containing the name of each Tensorflow VariableV2 and the associated parameter array into the supplied session.
- difference(SparseVector) - Method in class org.tribuo.math.la.SparseVector
-
Generates an array of the indices that are active in this vector but are not present in
other
. - differencesIndices(double[]) - Static method in class org.tribuo.util.Util
-
Returns an array containing the indices where values are different.
- differencesIndices(double[], double) - Static method in class org.tribuo.util.Util
-
Returns an array containing the indices where values are different.
- dim1 - Variable in class org.tribuo.math.la.DenseMatrix
- dim2 - Variable in class org.tribuo.math.la.DenseMatrix
- dimensions - Variable in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
- dimensions - Variable in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
- DimensionTuple(String, double) - Constructor for class org.tribuo.regression.Regressor.DimensionTuple
-
Creates a dimension tuple from the supplied name and value.
- DimensionTuple(String, double, double) - Constructor for class org.tribuo.regression.Regressor.DimensionTuple
-
Creates a dimension tuple from the supplied name, value and variance.
- directory - Variable in class org.tribuo.classification.experiments.RunAll.RunAllOptions
- DirectoryFileSource<T> - Class in org.tribuo.data.text
-
A data source for a somewhat-common format for text classification datasets: a top level directory that contains a number of subdirectories.
- DirectoryFileSource() - Constructor for class org.tribuo.data.text.DirectoryFileSource
-
for olcut
- DirectoryFileSource(Path, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.DirectoryFileSource
- DirectoryFileSource(OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.DirectoryFileSource
-
Creates a data source that will use the given feature extractor and document preprocessors on the data read from the files in the directories representing classes.
- DirectoryFileSource.DirectoryFileSourceProvenance - Class in org.tribuo.data.text
-
Provenance for
DirectoryFileSource
. - DirectoryFileSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- distance - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
- distance - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- distance(SGDVector, DoubleUnaryOperator, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- DISTANCE_DELTA - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- div - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Divides by the specified constant.
- div(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that divides each value by the operand.
- DMatrixTuple(DMatrix, int[], Example<T>[]) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- DocumentPreprocessor - Interface in org.tribuo.data.text
-
An interface for things that can pre-process documents before they are broken into features.
- dot(SGDVector) - Method in class org.tribuo.math.la.DenseVector
- dot(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the dot product between this vector and
other
. - dot(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- dot(SGDVector) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- DOUBLE - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
- DoubleExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a double.
- DoubleExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.DoubleExtractor
-
Extracts a double value from the supplied field name.
- DoubleExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.DoubleExtractor
-
Extracts a double value from the supplied field name.
- DoubleFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
Processes a column that contains a real value.
- DoubleFieldProcessor(String) - Constructor for class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
-
Constructs a field processor which extracts a single double valued feature from the specified field name.
- dropInvalidExamples - Variable in class org.tribuo.ImmutableDataset
-
If true, instead of throwing an exception when an invalid
Example
is encountered, this Dataset will log a warning and drop it. - DTYPE - Static variable in class org.tribuo.interop.tensorflow.TensorflowUtil
- DummyClassifierModel - Class in org.tribuo.classification.baseline
-
A model which performs dummy classifications (e.g., constant output, uniform sampled labels, stratified sampled labels).
- DummyClassifierTrainer - Class in org.tribuo.classification.baseline
-
A trainer for simple baseline classifiers.
- DummyClassifierTrainer.DummyType - Enum in org.tribuo.classification.baseline
-
Types of dummy classifier.
- DummyRegressionModel - Class in org.tribuo.regression.baseline
-
A model which performs dummy regressions (e.g., constant output, gaussian sampled output, mean value, median, quartile).
- DummyRegressionTrainer - Class in org.tribuo.regression.baseline
-
A trainer for simple baseline regressors.
- DummyRegressionTrainer.DummyRegressionTrainerProvenance - Class in org.tribuo.regression.baseline
-
Deprecated.
- DummyRegressionTrainer.DummyType - Enum in org.tribuo.regression.baseline
-
Types of dummy regression model.
- DummyRegressionTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.Constructs a provenance from the marshalled form.
- DummyRegressionTrainerProvenance(DummyRegressionTrainer) - Constructor for class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.Constructs a provenance from the host.
E
- ELASTICNET - Enum constant in enum org.tribuo.regression.slm.TrainTest.SLMType
- ElasticNetCDTrainer - Class in org.tribuo.regression.slm
-
An ElasticNet trainer that uses co-ordinate descent.
- ElasticNetCDTrainer(double, double) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
- ElasticNetCDTrainer(double, double, double, int, boolean, long) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
- ElasticNetCDTrainer(double, double, long) - Constructor for class org.tribuo.regression.slm.ElasticNetCDTrainer
- elements - Variable in class org.tribuo.math.la.DenseVector
- EmptyDatasetProvenance - Class in org.tribuo.provenance.impl
-
An empty DatasetProvenance, should not be used except by the provenance removal system.
- EmptyDatasetProvenance() - Constructor for class org.tribuo.provenance.impl.EmptyDatasetProvenance
- EmptyDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyDatasetProvenance
- EmptyDataSourceProvenance - Class in org.tribuo.provenance.impl
-
An empty DataSourceProvenance, should not be used except by the provenance removal system.
- EmptyDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- emptyExample() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Generates an example with no features.
- emptyExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with no features.
- emptyMultiDimExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with no features.
- EmptyTrainerProvenance - Class in org.tribuo.provenance.impl
-
An empty TrainerProvenance, should not be used except by the provenance removal system.
- EmptyTrainerProvenance() - Constructor for class org.tribuo.provenance.impl.EmptyTrainerProvenance
- EmptyTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.EmptyTrainerProvenance
- encode(List<SequenceExample<T>>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceExampleTransformer
-
Encodes a batch of examples as a feed dict.
- encode(List<SequenceExample<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputTransformer
-
Encodes a batch of labels as a feed dict.
- encode(SequenceExample<T>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceExampleTransformer
-
Encodes an example as a feed dict.
- encode(SequenceExample<T>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.sequence.SequenceOutputTransformer
-
Encodes an example's label as a feed dict.
- end - Variable in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
- end - Variable in class org.tribuo.util.tokens.Token
- end - Variable in class org.tribuo.util.tokens.universal.Range
- ensemble - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- EnsembleCombiner<T> - Interface in org.tribuo.ensemble
-
An interface for combining predictions.
- EnsembleExcuse<T> - Class in org.tribuo.ensemble
-
An
Excuse
which has a List of excuses for each of the ensemble members. - EnsembleExcuse(Example<T>, Prediction<T>, Map<String, List<Pair<String, Double>>>, List<Excuse<T>>) - Constructor for class org.tribuo.ensemble.EnsembleExcuse
- EnsembleModel<T> - Class in org.tribuo.ensemble
-
A model which contains a list of other
Model
s. - EnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>) - Constructor for class org.tribuo.ensemble.EnsembleModel
- EnsembleModelProvenance - Class in org.tribuo.provenance
-
Model provenance for ensemble models.
- EnsembleModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, ListProvenance<? extends ModelProvenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
- EnsembleModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>, ListProvenance<? extends ModelProvenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
- EnsembleModelProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.EnsembleModelProvenance
- ensembleName() - Method in class org.tribuo.common.tree.RandomForestTrainer
- ensembleName() - Method in class org.tribuo.ensemble.BaggingTrainer
- ensembleOptions - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- ensembleOptions - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- ensembleOptions - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- ensembleOptions - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- ensembleSize - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- ensembleSize - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- ensembleSize - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- entropy(List<T>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon entropy, using histogram probability estimators.
- Entropy - Class in org.tribuo.classification.dtree.impurity
-
A log_e entropy impurity measure.
- Entropy() - Constructor for class org.tribuo.classification.dtree.impurity.Entropy
- ENTROPY - Enum constant in enum org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
- entrySet() - Method in class org.tribuo.transform.TransformerMap
-
Get the feature names and associated list of transformers.
- EPOCH - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- epochs - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- epochs - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- epochs - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- epochs - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- epsilon - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- epsilon - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- epsilon - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- EPSILON - Static variable in class org.tribuo.transform.transformations.SimpleTransform
- EPSILON_SVR - Enum constant in enum org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
epsilon-insensitive SVR.
- EQUAL_FREQUENCY - Enum constant in enum org.tribuo.transform.transformations.BinningTransformation.BinningType
- EQUAL_WIDTH - Enum constant in enum org.tribuo.transform.transformations.BinningTransformation.BinningType
- equalFrequency(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates bins which contain the same amount of training data that is, each bin has an equal probability of occurrence in the training data.
- equals(Object) - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- equals(Object) - Method in class org.tribuo.anomaly.Event
- equals(Object) - Method in class org.tribuo.classification.evaluation.LabelMetric
- equals(Object) - Method in class org.tribuo.classification.Label
- equals(Object) - Method in class org.tribuo.classification.LabelFactory
- equals(Object) - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- equals(Object) - Method in class org.tribuo.clustering.ClusterID
- equals(Object) - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- equals(Object) - Method in class org.tribuo.clustering.ClusteringFactory
- equals(Object) - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- equals(Object) - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- equals(Object) - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- equals(Object) - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- equals(Object) - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- equals(Object) - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- equals(Object) - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- equals(Object) - Method in class org.tribuo.evaluation.DescriptiveStats
- equals(Object) - Method in class org.tribuo.evaluation.metrics.MetricTarget
- equals(Object) - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- equals(Object) - Method in class org.tribuo.Feature
- equals(Object) - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- equals(Object) - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- equals(Object) - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- equals(Object) - Method in class org.tribuo.impl.ArrayExample
- equals(Object) - Method in class org.tribuo.impl.BinaryFeaturesExample
- equals(Object) - Method in class org.tribuo.impl.IndexedArrayExample
- equals(Object) - Method in class org.tribuo.impl.ListExample
- equals(Object) - Method in class org.tribuo.interop.ExternalTrainerProvenance
- equals(Object) - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- equals(Object) - Method in class org.tribuo.math.la.DenseMatrix
- equals(Object) - Method in class org.tribuo.math.la.DenseSparseMatrix
- equals(Object) - Method in class org.tribuo.math.la.DenseVector
-
Equals is defined mathematically, that is two SGDVectors are equal iff they have the same indices and the same values at those indices.
- equals(Object) - Method in class org.tribuo.math.la.MatrixTuple
- equals(Object) - Method in class org.tribuo.math.la.SparseVector
-
Equals is defined mathematically, that is two SGDVectors are equal iff they have the same indices and the same values at those indices.
- equals(Object) - Method in class org.tribuo.math.la.VectorTuple
- equals(Object) - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabel
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabelFactory
- equals(Object) - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- equals(Object) - Method in class org.tribuo.provenance.DatasetProvenance
- equals(Object) - Method in class org.tribuo.provenance.EvaluationProvenance
- equals(Object) - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- equals(Object) - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- equals(Object) - Method in class org.tribuo.provenance.ModelProvenance
- equals(Object) - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- equals(Object) - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- equals(Object) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- equals(Object) - Method in class org.tribuo.regression.RegressionFactory
- equals(Object) - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- equals(Object) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- equals(Object) - Method in class org.tribuo.regression.Regressor
-
Regressors are equal if they have the same number of dimensions and equal dimension names.
- equals(Object) - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- equals(Object) - Method in class org.tribuo.SkeletalVariableInfo
- equals(Object) - Method in class org.tribuo.transform.TransformationMap.TransformationList
- equals(Object) - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- equals(Object) - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- equals(Object) - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.CachedPair
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.Row
- equals(Object) - Method in class org.tribuo.util.infotheory.impl.WeightCountTuple
- equalWidth(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates fixed equal width bins between the observed min and max values.
- eta - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- eta - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- EUCLIDEAN - Enum constant in enum org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Euclidean (or l2) distance.
- euclideanDistance(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
The l2 or euclidean distance between this vector and the other vector.
- euclideanDistance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
The l2 or euclidean distance between this vector and the other vector.
- euclideanDistance(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- EV - Enum constant in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Explained Variance of the predictions.
- evaluate() - Method in class org.tribuo.evaluation.CrossValidation
-
Performs k fold cross validation, returning the k evaluations.
- evaluate() - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Creates an
Evaluation
containing all the current predictions. - evaluate(Model<T>, List<Prediction<T>>, List<T>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, List<Prediction<T>>, DataProvenance) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(Model<T>, List<Prediction<T>>, DataProvenance) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, Dataset<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and dataset, by calling
Model.predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(Model<T>, Dataset<T>) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the dataset using the supplied model, returning an immutable
Evaluation
of the appropriate type. - evaluate(Model<T>, DataSource<T>) - Method in class org.tribuo.evaluation.AbstractEvaluator
-
Produces an evaluation for the supplied model and datasource, by calling
Model.predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(Model<T>, DataSource<T>) - Method in interface org.tribuo.evaluation.Evaluator
-
Evaluates the dataset using the supplied model, returning an immutable
Evaluation
of the appropriate type. - evaluate(SequenceModel<T>, List<List<Prediction<T>>>, DataProvenance) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(SequenceModel<T>, List<List<Prediction<T>>>, DataProvenance) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the supplied model and predictions by aggregating the appropriate statistics.
- evaluate(SequenceModel<T>, SequenceDataset<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and dataset, by calling
SequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(SequenceModel<T>, SequenceDataset<T>) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the dataset using the supplied model, returning an immutable evaluation.
- evaluate(SequenceModel<T>, SequenceDataSource<T>) - Method in class org.tribuo.sequence.AbstractSequenceEvaluator
-
Produces an evaluation for the supplied model and datasource, by calling
SequenceModel.predict(org.tribuo.sequence.SequenceExample<T>)
to create the predictions, then aggregating the appropriate statistics. - evaluate(SequenceModel<T>, SequenceDataSource<T>) - Method in interface org.tribuo.sequence.SequenceEvaluator
-
Evaluates the datasource using the supplied model, returning an immutable evaluation.
- Evaluation<T> - Interface in org.tribuo.evaluation
-
An immutable evaluation of a specific model and dataset.
- EvaluationAggregator - Class in org.tribuo.evaluation
-
Aggregates metrics from a list of evaluations, or a list of models and datasets.
- EvaluationMetric<T,
C> - Interface in org.tribuo.evaluation.metrics -
A metric that can be calculated for the specified output type.
- EvaluationMetric.Average - Enum in org.tribuo.evaluation.metrics
-
Specifies what form of average to use for a
EvaluationMetric
. - EvaluationProvenance - Class in org.tribuo.provenance
-
Provenance for evaluations.
- EvaluationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.EvaluationProvenance
- EvaluationProvenance(ModelProvenance, DataProvenance) - Constructor for class org.tribuo.provenance.EvaluationProvenance
- EvaluationRenderer<T,
E> - Interface in org.tribuo.evaluation -
Renders an
Evaluation
into a String. - evaluator - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- Evaluator<T,
E> - Interface in org.tribuo.evaluation -
An evaluation factory which produces immutable
Evaluation
s of a givenDataset
using the givenModel
. - Event - Class in org.tribuo.anomaly
- Event(Event.EventType) - Constructor for class org.tribuo.anomaly.Event
-
Constructs a new event of the specified type with the default score of
Event.DEFAULT_SCORE
. - Event(Event.EventType, double) - Constructor for class org.tribuo.anomaly.Event
-
Constructs a new event of the specified type and score.
- Event.EventType - Enum in org.tribuo.anomaly
-
The type of event.
- Example<T> - Class in org.tribuo
-
An example used for training and evaluation.
- Example(Example<T>) - Constructor for class org.tribuo.Example
-
Copies the output, weight and metadata into this example.
- Example(T) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output and
Example.DEFAULT_WEIGHT
as the weight. - Example(T, float) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output and weight.
- Example(T, float, Map<String, Object>) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output, weight and metadata.
- Example(T, Map<String, Object>) - Constructor for class org.tribuo.Example
-
Construct an empty example using the supplied output, metadata and
Example.DEFAULT_WEIGHT
as the weight. - ExampleArray(SparseVector[], int[], double[]) - Constructor for class org.tribuo.classification.sgd.Util.ExampleArray
- examples - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
- exampleToNodes(Example<T>, ImmutableFeatureMap, List<FeatureNode>) - Static method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Converts a Tribuo
Example
into a liblinearFeatureNode
array, including a bias feature. - exampleToNodes(Example<T>, ImmutableFeatureMap, List<svm_node>) - Static method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Convert the example into an array of svm_node which represents a sparse feature vector.
- exampleTransformer - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
- exampleTransformer - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- ExampleTransformer - Interface in org.tribuo.interop.onnx
-
Transforms a
SparseVector
, extracting the features from it as aOnnxTensor
. - ExampleTransformer<T> - Interface in org.tribuo.interop.tensorflow
-
TensorFlow support is experimental, and may change without a major version bump.
- excuse(String) - Method in class org.tribuo.Excuse
-
Returns the features involved in this excuse.
- Excuse<T> - Class in org.tribuo
-
Holds an
Example
, aPrediction
and a Map from String to List of Pairs that contains the per output explanation. - Excuse(Example<T>, Prediction<T>, Map<String, List<Pair<String, Double>>>) - Constructor for class org.tribuo.Excuse
-
Constructs an excuse for the prediction of the supplied example, using the feature weights.
- exp - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Exponentiates the inputs
- exp() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that applies
Math.exp(double)
. - expandRegexMapping(Collection<String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against the supplied list of field names. - expandRegexMapping(ImmutableFeatureMap) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against the supplied feature map. - expandRegexMapping(Model<T>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against theImmutableFeatureMap
contained in the suppliedModel
. - EXPECTED - Enum constant in enum org.tribuo.anomaly.Event.EventType
-
An expected event, with id 0.
- EXPECTED_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The expected event.
- expectedCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of expected events observed.
- explain(CommandInterpreter, String[]) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- explain(String) - Method in class org.tribuo.classification.explanations.lime.LIMEText
- explain(String) - Method in interface org.tribuo.classification.explanations.TextExplainer
- explain(Map<String, String>) - Method in interface org.tribuo.classification.explanations.ColumnarExplainer
-
Explains the supplied data.
- explain(Map<String, String>) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
- explain(Example<Label>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
- explain(Example<Label>) - Method in interface org.tribuo.classification.explanations.TabularExplainer
-
Explain why the supplied
Example
is classified a certain way. - explainedVariance() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculatest the explained variance for all dimensions.
- explainedVariance(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the explained variance based on the supplied statistics.
- explainedVariance(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.
- explainedVariance(Regressor, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the explained variance based on the supplied statistics for a single dimension.
- explainWithSamples(Map<String, String>) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
- explainWithSamples(Example<Label>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
- Explanation<T> - Interface in org.tribuo.classification.explanations
-
An explanation knows what features are used, what the explaining Model is and what the original Model's prediction is.
- explanationTrainer - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- expNormalize(double) - Method in class org.tribuo.math.la.DenseVector
-
An optimisation for the exponential normalizer when you already know the normalization constant.
- ExpNormalizer - Class in org.tribuo.math.util
-
Normalizes the exponential values of the input array.
- ExpNormalizer() - Constructor for class org.tribuo.math.util.ExpNormalizer
- ExternalDatasetProvenance - Class in org.tribuo.interop
-
A dummy provenance used to describe the dataset of external models.
- ExternalDatasetProvenance(String, OutputFactory<T>, boolean, int, int) - Constructor for class org.tribuo.interop.ExternalDatasetProvenance
- ExternalDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.ExternalDatasetProvenance
- ExternalModel<T,
U, - Class in org.tribuo.interopV> -
This is the base class for third party models which are trained externally and loaded into Tribuo for prediction.
- ExternalModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, Integer>) - Constructor for class org.tribuo.interop.ExternalModel
- ExternalModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, int[], int[], boolean) - Constructor for class org.tribuo.interop.ExternalModel
- externalPrediction(OnnxTensor) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Runs the session to make a prediction.
- externalPrediction(DMatrix) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- externalPrediction(Tensor<?>) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
-
Runs the session to make a prediction.
- externalPrediction(U) - Method in class org.tribuo.interop.ExternalModel
-
Runs the external model's prediction function.
- ExternalTrainerProvenance - Class in org.tribuo.interop
-
A dummy provenance for a model trained outside Tribuo.
- ExternalTrainerProvenance(URL) - Constructor for class org.tribuo.interop.ExternalTrainerProvenance
-
Creates an external trainer provenance, storing the location and pulling in the timestamp and file hash.
- ExternalTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.ExternalTrainerProvenance
-
Used by the provenance serialization system.
- extract(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- extract(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- extract(ColumnarIterator.Row) - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Returns Optional which is filled if extraction succeeded.
- extract(T, String) - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- extract(T, String) - Method in interface org.tribuo.data.text.TextFeatureExtractor
-
Extracts an example from the supplied input text and output object.
- extractData(Dataset<Event>, ImmutableOutputInfo<Event>, ImmutableFeatureMap) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- extractData(Dataset<Label>, ImmutableOutputInfo<Label>, ImmutableFeatureMap) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- extractData(Dataset<Label>, ImmutableOutputInfo<Label>, ImmutableFeatureMap) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- extractData(Dataset<Regressor>, ImmutableOutputInfo<Regressor>, ImmutableFeatureMap) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- extractData(Dataset<Regressor>, ImmutableOutputInfo<Regressor>, ImmutableFeatureMap) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- extractData(Dataset<T>, ImmutableOutputInfo<T>, ImmutableFeatureMap) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Extracts the features and
Output
s in LibLinear's format. - extractData(Dataset<T>, ImmutableOutputInfo<T>, ImmutableFeatureMap) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Extracts the features and
Output
s in LibLinear's format. - extractFeatures(List<Label>, double) - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- extractFeatures(List<Label>, double) - Method in interface org.tribuo.classification.sequence.viterbi.LabelFeatureExtractor
-
Generates features based on the previously produced labels.
- extractFeatures(List<Label>, double) - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- extractField(String) - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Extracts the field value, or returns
Optional.empty()
if it failed to parse. - extractNames(OutputInfo<Regressor>) - Static method in class org.tribuo.regression.Regressor
-
Extracts the names from the supplied Regressor domain in their canonical order.
- extractor - Variable in class org.tribuo.data.text.DirectoryFileSource
-
The extractor that we'll use to turn text into examples.
- extractor - Variable in class org.tribuo.data.text.TextDataSource
-
The extractor that we'll use to turn text into examples.
- extractOutput(Event) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Converts an output into a double for use in training.
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.provenance.SkeletalTrainerProvenance
- extractProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.regression.example.GaussianDataSource.GaussianDataSourceProvenance
-
Extracts the relevant provenance information fields for this class.
- extractTFProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance
- extractTFProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance
- extractTFProvenanceInfo(Map<String, Provenance>) - Static method in class org.tribuo.interop.tensorflow.TensorflowTrainer.TensorflowTrainerProvenance
F
- f1(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the F_1 score.
- f1(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- f1(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the F_1 score.
- f1(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- f1(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the F_1 score, i.e., the harmonic mean of the precision and recall.
- F1 - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- F1 - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- F1 - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The F_1 score, i.e., the harmonic mean of the precision and the recall.
- Feature - Class in org.tribuo
-
A class for features.
- Feature(String, double) - Constructor for class org.tribuo.Feature
-
Creates an immutable feature.
- FEATURE_TYPE - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- FEATURE_VALUE - Static variable in class org.tribuo.data.columnar.processors.field.IdentityProcessor
-
The value of the emitted features.
- FeatureAggregator - Interface in org.tribuo.data.text
-
An interface for aggregating feature values into other values.
- featureBackwardMapping - Variable in class org.tribuo.interop.ExternalModel
- featureForwardMapping - Variable in class org.tribuo.interop.ExternalModel
- FeatureHasher - Class in org.tribuo.data.text.impl
-
Hashes the feature names to reduce the dimensionality.
- FeatureHasher(int) - Constructor for class org.tribuo.data.text.impl.FeatureHasher
- featureIDMap - Variable in class org.tribuo.ImmutableDataset
-
A map from feature names to IDs for the features found in this dataset.
- featureIDMap - Variable in class org.tribuo.Model
-
The features this model knows about.
- featureIDMap - Variable in class org.tribuo.sequence.ImmutableSequenceDataset
-
A map from feature names to IDs for the features found in this dataset.
- featureIDMap - Variable in class org.tribuo.sequence.SequenceModel
- featureIDs - Variable in class org.tribuo.impl.IndexedArrayExample
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.data.DatasetExplorer
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.ModelExplorer
-
Shows a specific feature's information.
- featureInfo(CommandInterpreter, String) - Method in class org.tribuo.sequence.SequenceModelExplorer
- featureIterator() - Method in class org.tribuo.sequence.SequenceExample
-
Creates an iterator over every feature in this sequence.
- featureMap - Variable in class org.tribuo.MutableDataset
-
A map from feature names to feature info objects.
- featureMap - Variable in class org.tribuo.sequence.MutableSequenceDataset
-
A map from feature names to IDs for the features found in this dataset.
- FeatureMap - Class in org.tribuo
-
A map from Strings to
VariableInfo
objects storing information about a feature. - FeatureMap() - Constructor for class org.tribuo.FeatureMap
-
Constructs an empty feature map.
- FeatureMap(Map<String, ? extends VariableInfo>) - Constructor for class org.tribuo.FeatureMap
-
Constructs a feature map wrapping the supplied map.
- FeatureMap(FeatureMap) - Constructor for class org.tribuo.FeatureMap
-
Constructs a deep copy of the supplied feature map.
- featureNameComparator() - Static method in class org.tribuo.Feature
-
A comparator using the lexicographic ordering of feature names.
- featureNames - Variable in class org.tribuo.impl.ArrayExample
- featureNames - Variable in class org.tribuo.impl.BinaryFeaturesExample
- FeatureProcessor - Interface in org.tribuo.data.columnar
-
Takes a list of columnar features and adds new features or removes existing features.
- features - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
- features - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
- FEATURES_FILE_MODIFIED_TIME - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- FEATURES_RESOURCE_HASH - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- FeatureTransformer - Interface in org.tribuo.data.text
-
A feature transformer maps a list of features to a new list of features Useful for example to apply the hashing trick to a set of features
- FeatureTuple() - Constructor for class org.tribuo.impl.IndexedArrayExample.FeatureTuple
- FeatureTuple(String, int, double) - Constructor for class org.tribuo.impl.IndexedArrayExample.FeatureTuple
- featureValues - Variable in class org.tribuo.impl.ArrayExample
- FieldExtractor<T> - Interface in org.tribuo.data.columnar
-
Extracts a value from a field to be placed in an
Example
's metadata field. - fieldName - Variable in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- FieldProcessor - Interface in org.tribuo.data.columnar
-
An interface for things that process the columns in a data set.
- FieldProcessor.GeneratedFeatureType - Enum in org.tribuo.data.columnar
-
The types of generated features.
- fieldProcessorMap - Variable in class org.tribuo.data.columnar.RowProcessor
- FieldResponseProcessor<T> - Class in org.tribuo.data.columnar.processors.response
-
A response processor that returns the value in a given field.
- FieldResponseProcessor(String, String, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Constructs a response processor which passes the field value through the output factory.
- fields - Variable in class org.tribuo.data.columnar.ColumnarIterator
- FILE_MODIFIED_TIME - Static variable in interface org.tribuo.provenance.DataSourceProvenance
- fileCompleter() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- fileCompleter() - Method in class org.tribuo.data.DatasetExplorer
- fileCompleter() - Method in class org.tribuo.ModelExplorer
-
Completers for files.
- fileCompleter() - Method in class org.tribuo.sequence.SequenceModelExplorer
- fill(double) - Method in class org.tribuo.math.la.DenseVector
-
Fills this
DenseVector
withvalue
. - fill(int[]) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Overwrites values from the supplied array into this array.
- fill(IntArrayContainer) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Overwrites values in this array with the supplied array.
- finalise() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- finalise() - Method in class org.tribuo.math.optimisers.ParameterAveraging
-
This sets the parameters to their average value.
- finalise() - Method in class org.tribuo.math.optimisers.Pegasos
- finalise() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Finalises the gradient optimisation, setting the parameters to their correct values.
- FIRST - Enum constant in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the first feature value in the list.
- FIRST - Enum constant in enum org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
- firstCount - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
- firstDimensionName - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
- fixSize() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- fixSize() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Fixes the size of each
InvertedFeature
's inner arrays. - FLOAT - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
- FloatExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a float.
- FloatExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.FloatExtractor
-
Extracts a float value from the supplied field name.
- FloatExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.FloatExtractor
-
Extracts a float value from the supplied field name.
- fmix32(int) - Static method in class org.tribuo.util.MurmurHash3
- fmix64(long) - Static method in class org.tribuo.util.MurmurHash3
- fn() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged number of false negatives.
- fn() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of false negatives.
- fn() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- fn() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fn(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- fn(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- fn(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of false negatives, possibly averaged depending on the metric target.
- fn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- fn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fn(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of false negatives, i.e., the number of times the true label was incorrectly predicted as another label.
- fn(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of false negatives for the supplied label.
- FN - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of false negatives.
- FN - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The number of false negatives.
- FN - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of false negatives.
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- foreachInPlace(DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- foreachInPlace(DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Applies a
DoubleUnaryOperator
elementwise to thisTensor
. - forEachRemaining(Consumer<? super ColumnarIterator.Row>) - Method in class org.tribuo.data.columnar.ColumnarIterator
- formatDuration(long, long) - Static method in class org.tribuo.util.Util
-
Formats a duration given two times in milliseconds.
- forTarget(MetricTarget<Label>) - Method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Gets the LabelMetric wrapped around the supplied MetricTarget.
- forTarget(MetricTarget<ClusterID>) - Method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
- forTarget(MetricTarget<MultiLabel>) - Method in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
- fp() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro average of the number of false positives across all the labels, i.e., the total number of false positives.
- fp() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of false positives.
- fp() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- fp() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fp(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- fp(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- fp(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of false positives, possibly averaged depending on the metric target.
- fp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- fp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- fp(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of false positives, i.e., the number of times this label was predicted but it was not the true label..
- fp(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of false positives for the supplied label.
- FP - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of false positives.
- FP - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The number of false positives.
- FP - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of false positives.
- fpr - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
- fraction - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- fractionFeaturesInSplit - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Number of features to sample per split.
- frequencyBasedSample(Random, long) - Method in class org.tribuo.CategoricalInfo
-
Samples a value from this feature according to the frequency of observation.
- frequencyBasedSample(SplittableRandom, long) - Method in class org.tribuo.CategoricalInfo
-
Samples a value from this feature according to the frequency of observation.
- fscore(double, double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the Fscore.
- fscore(MetricTarget<T>, ConfusionMatrix<T>, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Computes the Fscore.
- fullEquals(Event) - Method in class org.tribuo.anomaly.Event
- fullEquals(Label) - Method in class org.tribuo.classification.Label
- fullEquals(ClusterID) - Method in class org.tribuo.clustering.ClusterID
- fullEquals(MultiLabel) - Method in class org.tribuo.multilabel.MultiLabel
- fullEquals(Regressor) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- fullEquals(Regressor) - Method in class org.tribuo.regression.Regressor
- fullEquals(T) - Method in interface org.tribuo.Output
-
Compares other to this output.
- FULLY_WEIGHTED_VOTING - Enum constant in enum org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
- FullyWeightedVotingCombiner - Class in org.tribuo.classification.ensemble
-
A combiner which performs a weighted or unweighted vote across the predicted labels.
- FullyWeightedVotingCombiner() - Constructor for class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
G
- gamma - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- gamma - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- gamma - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- GAMMA - Enum constant in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Gamma loss function.
- gatherAcrossDim1(int[]) - Method in class org.tribuo.math.la.DenseMatrix
- gatherAcrossDim2(int[]) - Method in class org.tribuo.math.la.DenseMatrix
- GAUSSIAN - Enum constant in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Samples from a Gaussian using the means and variances from the training data.
- gaussianAnomaly() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates two datasets, one without anomalies drawn from a single gaussian and the second drawn from a mixture of two gaussians, with the second tagged anomalous.
- gaussianAnomaly(long, double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates two datasets, one without anomalies drawn from a single gaussian and the second drawn from a mixture of two gaussians, with the second tagged anomalous.
- gaussianClusters(long, long) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a dataset drawn from a mixture of 5 2d gaussians.
- GaussianDataSource - Class in org.tribuo.regression.example
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- GaussianDataSource(int, float, float, float, float, float, long) - Constructor for class org.tribuo.regression.example.GaussianDataSource
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- GaussianDataSource.GaussianDataSourceProvenance - Class in org.tribuo.regression.example
-
Provenance for
GaussianDataSource
. - GaussianDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.example.GaussianDataSource.GaussianDataSourceProvenance
-
Constructs a provenance from the marshalled form.
- GBTREE - Enum constant in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A gradient boosted decision tree.
- general - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- general - Variable in class org.tribuo.classification.experiments.RunAll.RunAllOptions
- general - Variable in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- general - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- general - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- general - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- general - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- general - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- general - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- general - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- general - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- general - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- generalOptions - Variable in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- generateBootstrap() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Generates the indices from this DatasetViewProvenance by rerunning the bootstrap sample.
- generateBootstrapIndices(int, Random) - Static method in class org.tribuo.util.Util
-
Draws a bootstrap sample of indices.
- generateBootstrapIndices(int, SplittableRandom) - Static method in class org.tribuo.util.Util
-
Draws a bootstrap sample of indices.
- generateCDF(double[]) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCDF(float[]) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCDF(long[], long) - Static method in class org.tribuo.util.Util
-
Generates a cumulative distribution function from the supplied probability mass function.
- generateCorrelated(int, int, double, double) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
These correlations don't map to mutual information values, as if xyDraw is above xyCorrelation then the draw is completely random.
- generateDataset() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
- generateDataset(int, float, float, float, float, float, long) - Static method in class org.tribuo.regression.example.GaussianDataSource
-
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
- generateEmptyExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example with no examples.
- generateExample(long, Map<String, String>, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateExample(Map<String, String>, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateExample(ColumnarIterator.Row, boolean) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generate an
Example
from the supplied row. - generateFeatureName(String, String) - Static method in class org.tribuo.data.columnar.ColumnarFeature
-
Generates a feature name based on the field name.
- generateFeatureName(String, String, String) - Static method in class org.tribuo.data.columnar.ColumnarFeature
-
Generates a feature name used for conjunction features.
- generateFeatures(Map<String, String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generates the features from the supplied row.
- generateGorillaA() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
- generateGorillaB() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
- generateGorillaDataset(int) - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
- generateHashedFeatureMap(FeatureMap, Hasher) - Static method in class org.tribuo.hash.HashedFeatureMap
-
Converts a standard
FeatureMap
by hashing each entry using the supplied hash functionHasher
. - generateIDs(List<? extends VariableInfo>) - Static method in class org.tribuo.ImmutableFeatureMap
-
Generates the feature ids by sorting the features with the String comparator, then sequentially numbering them.
- generateIDs(FeatureMap) - Static method in class org.tribuo.ImmutableFeatureMap
-
Generates the feature ids by sorting the features with the String comparator, then sequentially numbering them.
- generateImmutableOutputInfo() - Method in class org.tribuo.anomaly.AnomalyInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.classification.LabelInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.clustering.ClusteringInfo
- generateImmutableOutputInfo() - Method in class org.tribuo.multilabel.MultiLabelInfo
- generateImmutableOutputInfo() - Method in interface org.tribuo.OutputInfo
-
Generates an
ImmutableOutputInfo
which has a copy of the data in thisOutputInfo
, but also has id values and is immutable. - generateImmutableOutputInfo() - Method in class org.tribuo.regression.RegressionInfo
- generateInfo() - Method in class org.tribuo.anomaly.AnomalyFactory
- generateInfo() - Method in class org.tribuo.classification.LabelFactory
-
Generates an empty MutableLabelInfo.
- generateInfo() - Method in class org.tribuo.clustering.ClusteringFactory
- generateInfo() - Method in class org.tribuo.multilabel.MultiLabelFactory
- generateInfo() - Method in interface org.tribuo.OutputFactory
-
Generates the appropriate
MutableOutputInfo
so the output values can be tracked by aDataset
or other aggregate. - generateInfo() - Method in class org.tribuo.regression.RegressionFactory
- generateInvalidExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example with features that are unused by the training data.
- generateLabelString(Set<Label>) - Static method in class org.tribuo.multilabel.MultiLabelFactory
- generateMetadata(ColumnarIterator.Row) - Method in class org.tribuo.data.columnar.RowProcessor
-
Generates the example metadata from the supplied row and index.
- generateMutableOutputInfo() - Method in class org.tribuo.anomaly.AnomalyInfo
- generateMutableOutputInfo() - Method in class org.tribuo.classification.LabelInfo
- generateMutableOutputInfo() - Method in class org.tribuo.clustering.ClusteringInfo
- generateMutableOutputInfo() - Method in class org.tribuo.multilabel.MultiLabelInfo
- generateMutableOutputInfo() - Method in interface org.tribuo.OutputInfo
-
Generates a mutable copy of this
OutputInfo
. - generateMutableOutputInfo() - Method in class org.tribuo.regression.RegressionInfo
- generateOtherInvalidExample() - Static method in class org.tribuo.classification.sequence.example.SequenceDataGenerator
-
This generates a sequence example where the first example has no features.
- generateOutput(V) - Method in class org.tribuo.anomaly.AnomalyFactory
- generateOutput(V) - Method in class org.tribuo.classification.LabelFactory
-
Generates the Label string by calling toString on the input.
- generateOutput(V) - Method in class org.tribuo.clustering.ClusteringFactory
-
Generates a ClusterID by calling toString on the input, then calling Integer.parseInt.
- generateOutput(V) - Method in class org.tribuo.multilabel.MultiLabelFactory
-
Parses the MultiLabel value either by toStringing the input and calling
MultiLabel.parseString(java.lang.String)
or if it's aCollection
iterating over the elements calling toString on each element in turn and usingMultiLabel.parseElement(java.lang.String)
. - generateOutput(V) - Method in interface org.tribuo.OutputFactory
-
Parses the
V
and generates the appropriateOutput
value. - generateOutput(V) - Method in class org.tribuo.regression.RegressionFactory
-
Parses the MultipleRegression value either by toStringing the input and calling
Regressor.parseString(java.lang.String)
or if it's a collection iterating over the elements calling toString on each element in turn and usingRegressor.parseElement(int, java.lang.String)
. - generateOutputs(List<V>) - Method in interface org.tribuo.OutputFactory
-
Generate a list of outputs from the supplied list of inputs.
- generatePlaceholderName(String) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a name for a placeholder based on the supplied variable name.
- generatePRCurve(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the Precision Recall curve for a single label.
- generateRealInfo() - Method in class org.tribuo.CategoricalIDInfo
-
Generates a
RealIDInfo
that matches this CategoricalInfo and also contains an id number. - generateRealInfo() - Method in class org.tribuo.CategoricalInfo
-
Generates a
RealInfo
using the currently observed counts to calculate the min, max, mean and variance. - generateROCCurve(boolean[], double[]) - Static method in class org.tribuo.classification.evaluation.LabelEvaluationUtil
-
Calculates the binary ROC for a single label.
- generatesProbabilities - Variable in class org.tribuo.Model
-
Does this model generate probability distributions in the output.
- generatesProbabilities() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- generatesProbabilities() - Method in interface org.tribuo.common.xgboost.XGBoostOutputConverter
-
Does this converter produce probabilities?
- generatesProbabilities() - Method in class org.tribuo.interop.onnx.LabelTransformer
- generatesProbabilities() - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Does this OutputTransformer generate probabilities.
- generatesProbabilities() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- generatesProbabilities() - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- generatesProbabilities() - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Does this OutputTransformer generate probabilities.
- generatesProbabilities() - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- generatesProbabilities() - Method in class org.tribuo.Model
-
Does this model generate probabilistic predictions.
- generatesProbabilities() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- generatesProbabilities(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- generatesProbabilities(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Checks if the model generates probabilities.
- generateTestData() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
- generateTrainData() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
- generateTransformer() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Returns itself.
- generateTransformer() - Method in interface org.tribuo.transform.TransformStatistics
-
Generates the appropriate
Transformer
from the collected statistics. - generateUniform(int, int) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
Generates a sample from a uniform distribution over the integers.
- generateUniformFloatVector(int, float) - Static method in class org.tribuo.util.Util
- generateUniformVector(int, double) - Static method in class org.tribuo.util.Util
- generateUniformVector(int, float) - Static method in class org.tribuo.util.Util
- generateWeightedIndicesSample(int, double[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, double[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, float[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSample(int, float[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights.
- generateWeightedIndicesSampleWithoutReplacement(int, double[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights without replacement.
- generateWeightedIndicesSampleWithoutReplacement(int, float[], Random) - Static method in class org.tribuo.util.Util
-
Generates a sample of indices weighted by the provided weights without replacement.
- generateWeightsString() - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Generates a human readable string containing all the weights in this model.
- generateXOR(int) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
-
Generates a sample from a three variable XOR function.
- get() - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- get() - Method in class org.tribuo.math.LinearParameters
- get() - Method in interface org.tribuo.math.Parameters
-
Get a reference to the underlying
Tensor
array. - get(int) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the
VariableIDInfo
for this id number. - get(int) - Method in class org.tribuo.math.la.DenseVector
- get(int) - Method in interface org.tribuo.math.la.SGDVector
-
Gets an element from this vector.
- get(int) - Method in class org.tribuo.math.la.SparseVector
- get(int) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- get(int) - Method in class org.tribuo.sequence.SequenceExample
-
Gets the example found at the specified index.
- get(int) - Method in class org.tribuo.util.infotheory.impl.RowList
- get(int, int) - Method in class org.tribuo.math.la.DenseMatrix
- get(int, int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- get(int, int) - Method in interface org.tribuo.math.la.Matrix
-
Gets an element from this
Matrix
. - get(int, int) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- get(String) - Method in class org.tribuo.FeatureMap
-
Gets the variable info associated with that feature name, or null if it's unknown.
- get(String) - Method in class org.tribuo.hash.HashedFeatureMap
- get(String) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the
VariableIDInfo
for this name. - get(MetricID<T>) - Method in interface org.tribuo.evaluation.Evaluation
-
Gets the value associated with the specific metric.
- get(MetricID<T>) - Method in interface org.tribuo.sequence.SequenceEvaluation
-
Gets the value associated with the specific metric.
- getA() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getAB() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getABCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getABCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getAC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getACCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getACCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getACount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getACount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getActiveFeatures() - Method in interface org.tribuo.classification.explanations.Explanation
-
Returns the names of the active features in this explanation.
- getActiveFeatures() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getActiveFeatures() - Method in class org.tribuo.SparseModel
-
Return an immutable view on the active features for each dimension.
- getAnomalyCount() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of anomalous events observed.
- getAverageTarget() - Method in class org.tribuo.evaluation.metrics.MetricTarget
-
Returns the average this metric computes, or
Optional.empty()
if it targets an output. - getB() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getBatchSize() - Method in class org.tribuo.interop.ExternalModel
-
Gets the current testing batch size.
- getBatchSize() - Method in class org.tribuo.interop.tensorflow.TensorflowModel
-
Gets the current testing batch size.
- getBC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getBCCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getBCCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getBCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getBCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getBias(int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- getC() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- getCCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getCCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getCentroidVectors() - Method in class org.tribuo.clustering.kmeans.KMeansModel
-
Returns a copy of the centroids.
- getClassName() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- getClassName() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- getClassName() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- getClassName() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- getClassName() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- getClassName() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- getClassName() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- getClassName() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- getClassName() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- getClassName() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getClassName() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- getClassName() - Method in class org.tribuo.provenance.DatasetProvenance
- getClassName() - Method in class org.tribuo.provenance.EvaluationProvenance
- getClassName() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- getClassName() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- getClassName() - Method in class org.tribuo.provenance.ModelProvenance
- getClassName() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- getClassName() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- getClassName() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- getClassName() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- getClassName() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- getCliqueValues(SparseVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generates the local scores and tuples them with the label - label transition weights.
- getCM() - Method in class org.tribuo.classification.evaluation.LabelMetric.Context
- getColumn(int) - Method in class org.tribuo.math.la.DenseMatrix
- getColumnEntry() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
Gets the columnEntry (i.e., the feature name produced by the
FieldExtractor
without the fieldName). - getColumnNames() - Method in class org.tribuo.data.columnar.RowProcessor
-
The set of column names this will use for the feature processing.
- getConfiguredParameters() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- getConfiguredParameters() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getConfiguredParameters() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- getConfiguredParameters() - Method in interface org.tribuo.provenance.OutputFactoryProvenance
- getConfiguredParameters() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- getConfiguredParameters() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- getConfiguredParameters() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- getConfusionMatrix() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the underlying confusion matrix.
- getConfusionMatrix() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the confusion matrix backing this evaluation.
- getConfusionMatrix() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getConnection() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Constructs a connection based on the object fields.
- getCount() - Method in class org.tribuo.SkeletalVariableInfo
-
Returns the occurrence count of this feature.
- getCount() - Method in interface org.tribuo.VariableInfo
-
The occurrence count of this feature.
- getData() - Method in class org.tribuo.dataset.DatasetView
- getData() - Method in class org.tribuo.Dataset
-
Gets the examples as an unmodifiable list.
- getData() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns an unmodifiable view on the data.
- getDatasetProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
The training dataset provenance.
- getDataType() - Method in class org.tribuo.datasource.IDXDataSource
-
The type of the features that were loaded in.
- getDepth() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
The depth of this node in the tree.
- getDescription() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- getDescription() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns a description of the row processor and it's fields.
- getDescription() - Method in class org.tribuo.data.DatasetExplorer
- getDescription() - Method in class org.tribuo.ModelExplorer
- getDescription() - Method in class org.tribuo.sequence.SequenceModelExplorer
- getDigestSupplier(String) - Static method in class org.tribuo.hash.MessageDigestHasher
-
Creates a supplier for the specified hash type.
- getDimension(String) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getDimension(String) - Method in class org.tribuo.regression.Regressor
-
Returns a dimension tuple for the requested dimension, or optional empty if it's not valid.
- getDimension1Size() - Method in class org.tribuo.math.la.DenseMatrix
- getDimension1Size() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getDimension1Size() - Method in interface org.tribuo.math.la.Matrix
-
The size of the first dimension.
- getDimension2Size() - Method in class org.tribuo.math.la.DenseMatrix
- getDimension2Size() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getDimension2Size() - Method in interface org.tribuo.math.la.Matrix
-
The size of the second dimension.
- getDimensionNamesString() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getDimensionNamesString() - Method in class org.tribuo.regression.Regressor
-
Returns a comma separated list of the dimension names.
- getDimensionNamesString(char) - Method in class org.tribuo.regression.Regressor
-
Returns a delimiter separated list of the dimension names.
- getDistribution() - Method in class org.tribuo.common.tree.LeafNode
-
Gets the distribution over scores in this node.
- getDomain() - Method in class org.tribuo.anomaly.AnomalyInfo
-
Returns the set of possible
Event
s. - getDomain() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
Returns the classification domain that this confusion matrix operates over.
- getDomain() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- getDomain() - Method in class org.tribuo.classification.ImmutableLabelInfo
-
Returns the set of possible
Label
s that this LabelInfo has seen. - getDomain() - Method in class org.tribuo.classification.LabelInfo
-
Returns the set of possible
Label
s that this LabelInfo has seen. - getDomain() - Method in class org.tribuo.clustering.ClusteringInfo
- getDomain() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getDomain() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- getDomain() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getDomain() - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Returns a set of MultiLabel, where each has a single Label inside it.
- getDomain() - Method in interface org.tribuo.OutputInfo
- getDomain() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getDomain() - Method in class org.tribuo.regression.RegressionInfo
-
Returns a set containing a Regressor for each dimension with the minimum value observed.
- getDropInvalidExamples() - Method in class org.tribuo.ImmutableDataset
-
Returns true if this immutable dataset dropped any invalid examples on construction.
- getEmptyCopy() - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Returns a 3 element
Tensor
array. - getEmptyCopy() - Method in class org.tribuo.math.LinearParameters
-
This returns a
DenseMatrix
the same size as the Parameters. - getEmptyCopy() - Method in interface org.tribuo.math.Parameters
-
Generates an empty copy of the underlying
Tensor
array. - getEnd() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getEnd() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getEnd() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the ending offset (exclusive) of the current token in the character sequence
- getEnd() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getEvaluation() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
-
Gets the evaluator which scores how close the sparse model's predictions are to the complex model's predictions.
- getEvaluator() - Method in class org.tribuo.anomaly.AnomalyFactory
- getEvaluator() - Method in class org.tribuo.classification.LabelFactory
- getEvaluator() - Method in class org.tribuo.clustering.ClusteringFactory
- getEvaluator() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getEvaluator() - Method in interface org.tribuo.OutputFactory
-
Gets an
Evaluator
suitable for measuring performance of predictions for the Output subclass. - getEvaluator() - Method in class org.tribuo.regression.RegressionFactory
- getEventCount(Event.EventType) - Method in class org.tribuo.anomaly.AnomalyInfo
-
Gets the count of the supplied EventType.
- getExample() - Method in class org.tribuo.Excuse
-
The example being excused.
- getExample() - Method in class org.tribuo.Prediction
-
Returns the example itself.
- getExample(int) - Method in class org.tribuo.dataset.DatasetView
- getExample(int) - Method in class org.tribuo.Dataset
-
Gets the example at the supplied index.
- getExample(int) - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the example at the specified index, or throws IllegalArgumentException if the index is out of bounds.
- getExampleIndices() - Method in class org.tribuo.dataset.DatasetView
-
Returns a copy of the indicies used in this view.
- getExampleSize() - Method in class org.tribuo.Prediction
-
Returns the number of features in the example.
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- getExcuse(Example<Label>) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- getExcuse(Example<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- getExcuse(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- getExcuse(Example<Regressor>) - Method in class org.tribuo.regression.slm.SparseLinearModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.liblinear.LibLinearModel
-
This call is expensive as it copies out the weight matrix from the LibLinear model.
- getExcuse(Example<T>) - Method in class org.tribuo.common.libsvm.LibSVMModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.nearest.KNNModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.tree.TreeModel
- getExcuse(Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
- getExcuse(Example<T>) - Method in class org.tribuo.ensemble.EnsembleModel
- getExcuse(Example<T>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- getExcuse(Example<T>) - Method in class org.tribuo.interop.ExternalModel
-
By default third party models don't return excuses.
- getExcuse(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointModel
-
Deep learning models don't do excuses.
- getExcuse(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
-
Deep learning models don't do excuses.
- getExcuse(Example<T>) - Method in class org.tribuo.Model
-
Generates an excuse for an example.
- getExcuse(Example<T>) - Method in class org.tribuo.transform.TransformedModel
- getExcuses(Iterable<Example<T>>) - Method in class org.tribuo.common.liblinear.LibLinearModel
- getExcuses(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Generates an excuse for each example.
- getExpectedCount() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of expected events observed.
- getF1() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the F_1 score of the anomalous events, i.e., the harmonic mean of the precision and the recall.
- getFalseNegatives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of false negatives, i.e., anomalous events classified as expected.
- getFalsePositives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of false positives, i.e., expected events classified as anomalous.
- getFeature() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
- getFeatureID() - Method in class org.tribuo.common.tree.SplitNode
-
Gets the feature ID that this node uses for splitting.
- getFeatureIDMap() - Method in class org.tribuo.Dataset
-
Returns or generates an
ImmutableFeatureMap
. - getFeatureIDMap() - Method in class org.tribuo.ImmutableDataset
- getFeatureIDMap() - Method in class org.tribuo.Model
-
Gets the feature domain.
- getFeatureIDMap() - Method in class org.tribuo.MutableDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getFeatureIDMap() - Method in class org.tribuo.sequence.SequenceDataset
-
An immutable view on the feature map.
- getFeatureIDMap() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the feature domain.
- getFeatureMap() - Method in class org.tribuo.dataset.DatasetView
- getFeatureMap() - Method in class org.tribuo.Dataset
-
Returns this dataset's
FeatureMap
. - getFeatureMap() - Method in class org.tribuo.ImmutableDataset
- getFeatureMap() - Method in class org.tribuo.MutableDataset
- getFeatureMap() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getFeatureMap() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getFeatureMap() - Method in class org.tribuo.sequence.SequenceDataset
-
The feature map.
- getFeatureProcessors() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the set of
FeatureProcessor
s this RowProcessor uses. - getFeatures() - Method in class org.tribuo.common.tree.TreeModel
-
Returns the set of features which are split on in this tree.
- getFeatures() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getFeatureTransformations() - Method in class org.tribuo.transform.TransformationMap
-
Gets the map of feature specific transformations.
- getFeatureType() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Returns the feature type this FieldProcessor generates.
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getFeatureType() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getFeatureWeights() - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- getFeatureWeights() - Method in class org.tribuo.common.liblinear.LibLinearModel
-
Extracts the feature weights from the models.
- getFeatureWeights() - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- getFeatureWeights(int) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Get a copy of the weights for feature
featureID
. - getFeatureWeights(int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- getFeatureWeights(String) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Get a copy of the weights for feature named
featureName
. - getFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
Gets the field name.
- getFieldName() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Gets the field name this extractor operates on.
- getFieldName() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Gets the field name this FieldProcessor uses.
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getFieldName() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getFieldName() - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Gets the field name this ResponseProcessor uses.
- getFieldProcessors() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the map of
FieldProcessor
s this RowProcessor uses. - getFields() - Method in class org.tribuo.data.columnar.ColumnarIterator
-
The immutable list of field names.
- getFields() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
- getFirstCount() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- getFirstFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
If it's a conjunction feature, return the first field name.
- getFlatDataset() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns a view on this SequenceDataset which aggregates all the examples and ignores the sequence structure.
- getFractionFeaturesInSplit() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getFractionFeaturesInSplit() - Method in interface org.tribuo.common.tree.DecisionTreeTrainer
-
Returns the feature subsampling rate.
- getGamma() - Method in class org.tribuo.common.libsvm.SVMParameters
- getGlobalTransformations() - Method in class org.tribuo.transform.TransformationMap
-
Gets the global transformations in this TransformationMap.
- getGreaterThan() - Method in class org.tribuo.common.tree.SplitNode
-
The node used if the value is greater than the splitValue.
- getHashedTrainer(Trainer<T>) - Method in class org.tribuo.hash.HashingOptions
-
Gets the trainer wrapped in a hashing trainer.
- getHasher() - Method in class org.tribuo.hash.HashingOptions
-
Get the specified hasher.
- getHyperparameterFeed() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- getID() - Method in enum org.tribuo.anomaly.Event.EventType
-
Returns the id of the event.
- getID() - Method in class org.tribuo.CategoricalIDInfo
- getID() - Method in class org.tribuo.clustering.ClusterID
-
Gets the cluster id number.
- getID() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The metric ID, a combination of the metric target and metric name.
- getID() - Method in class org.tribuo.RealIDInfo
- getID() - Method in interface org.tribuo.VariableIDInfo
-
The id number associated with this variable.
- getID(String) - Method in class org.tribuo.hash.HashedFeatureMap
-
Gets the id number for this feature, returns -1 if it's unknown.
- getID(String) - Method in class org.tribuo.ImmutableFeatureMap
-
Gets the id number for this feature, returns -1 if it's unknown.
- getID(Event) - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getID(Label) - Method in class org.tribuo.classification.ImmutableLabelInfo
- getID(ClusterID) - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getID(MultiLabel) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getID(Regressor) - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getID(T) - Method in interface org.tribuo.ImmutableOutputInfo
-
Return the id number associated with this output, or -1 if the output is unknown.
- getIdx(int) - Method in class org.tribuo.impl.IndexedArrayExample
-
Gets the feature at internal index i.
- getImpl() - Method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Returns the implementing function for this metric.
- getImpl() - Method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
- getImpl() - Method in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
- getImpurity() - Method in class org.tribuo.classification.dtree.impl.ClassifierTrainingNode
- getImpurity() - Method in class org.tribuo.common.tree.LeafNode
- getImpurity() - Method in interface org.tribuo.common.tree.Node
-
The impurity score of this node.
- getImpurity() - Method in class org.tribuo.common.tree.SplitNode
- getImpurity() - Method in class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- getImpurity() - Method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- getIndex() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
- getInnerExcuses() - Method in class org.tribuo.ensemble.EnsembleExcuse
-
The individual ensemble member's excuses.
- getInnerModels() - Method in class org.tribuo.common.liblinear.LibLinearModel
-
Returns an unmodifiable list containing a copy of each model.
- getInnerModels() - Method in class org.tribuo.common.libsvm.LibSVMModel
-
Returns an unmodifiable copy of the underlying list of libsvm models.
- getInnerModels() - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Returns an unmodifiable list containing a copy of each model.
- getInstanceProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
Provenance for the specific training run which created this model.
- getInstanceValues() - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer.TensorflowTrainerProvenance
- getInstanceValues() - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- getInstanceValues() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- getInvocationCount() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- getInvocationCount() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- getInvocationCount() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- getInvocationCount() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- getInvocationCount() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- getInvocationCount() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- getInvocationCount() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- getInvocationCount() - Method in class org.tribuo.common.nearest.KNNTrainer
- getInvocationCount() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- getInvocationCount() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- getInvocationCount() - Method in class org.tribuo.ensemble.BaggingTrainer
- getInvocationCount() - Method in class org.tribuo.hash.HashingTrainer
- getInvocationCount() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- getInvocationCount() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
- getInvocationCount() - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer
- getInvocationCount() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- getInvocationCount() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- getInvocationCount() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- getInvocationCount() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- getInvocationCount() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- getInvocationCount() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- getInvocationCount() - Method in class org.tribuo.regression.slm.SLMTrainer
- getInvocationCount() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- getInvocationCount() - Method in interface org.tribuo.sequence.SequenceTrainer
-
Returns the number of times the train method has been invoked.
- getInvocationCount() - Method in interface org.tribuo.Trainer
-
The number of times this trainer instance has had it's train method invoked.
- getInvocationCount() - Method in class org.tribuo.transform.TransformTrainer
- getJointCount() - Method in class org.tribuo.util.infotheory.impl.TripleDistribution
- getJointCount() - Method in class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- getJointCounts() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- getK() - Method in class org.tribuo.evaluation.CrossValidation
-
Returns the number of folds.
- getKernelType() - Method in class org.tribuo.common.libsvm.SVMParameters
- getKernelType(int) - Static method in enum org.tribuo.common.libsvm.KernelType
-
Converts the LibSVM int id into the enum value.
- getLabel() - Method in class org.tribuo.classification.Label
-
Gets the name of this label.
- getLabelCount(int) - Method in class org.tribuo.classification.ImmutableLabelInfo
-
Returns the number of times the supplied id was observed before this LabelInfo was frozen.
- getLabelCount(int) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
-
Gets the count of the label occurrence for the specified id number, or 0 if it's unknown.
- getLabelCount(String) - Method in class org.tribuo.classification.LabelInfo
-
Gets the count of the supplied label, or 0 if the label is unknown.
- getLabelCount(String) - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Get the number of times this String was observed, or 0 if unknown.
- getLabelCount(Label) - Method in class org.tribuo.classification.LabelInfo
-
Gets the count of the supplied label, or 0 if the label is unknown.
- getLabelCount(Label) - Method in class org.tribuo.multilabel.MultiLabelInfo
-
Get the number of times this Label was observed, or 0 if unknown.
- getLabelSet() - Method in class org.tribuo.multilabel.MultiLabel
-
The set of labels contained in this multilabel.
- getLabelString() - Method in class org.tribuo.multilabel.MultiLabel
-
Returns a comma separated string representing the labels in this multilabel instance.
- getLanguageTag() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
-
Returns the locale string this tokenizer uses.
- getLessThanOrEqual() - Method in class org.tribuo.common.tree.SplitNode
-
The node used if the value is less than or equal to the splitValue.
- getLinearDecaySGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a linearly decaying learning rate initialised to learningRate.
- getLinearDecaySGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a linearly decaying learning rate initialised to learningRate, with momentum.
- getLocalScores(SparseVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate the local scores (i.e., the linear classifier for each token).
- getLongLittleEndian(byte[], int) - Static method in class org.tribuo.util.MurmurHash3
-
Gets a long from a byte buffer in little endian byte order.
- getLoss() - Method in class org.tribuo.classification.sgd.linear.LinearSGDOptions
-
Returns the loss function specified in the arguments.
- getLossOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- getLowerMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
Returns the lower quartile value.
- getMax() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the max of the values.
- getMax() - Method in class org.tribuo.RealInfo
-
Gets the maximum observed value.
- getMax(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the maximum value this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getMaxFeatureID() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Gets the maximum feature ID found.
- getMaxTokenLength() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getMean() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the mean of the values.
- getMean() - Method in class org.tribuo.RealInfo
-
Gets the sample mean.
- getMean(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the mean value this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
Returns the median value.
- getMemberProvenance() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- getMetadata() - Method in class org.tribuo.Example
-
Returns a copy of this example's metadata.
- getMetadataName() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getMetadataName() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Gets the metadata key name.
- getMetadataName() - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Gets the metadata key name.
- getMetadataTypes() - Method in class org.tribuo.data.columnar.ColumnarDataSource
-
Returns the metadata keys and value types that are created by this DataSource.
- getMetadataTypes() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the metadata keys and value types that are extracted by this RowProcessor.
- getMetadataValue(String) - Method in class org.tribuo.Example
-
Gets the associated metadata value for this key, if it exists.
- getMin() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the min of the values.
- getMin() - Method in class org.tribuo.RealInfo
-
Gets the minimum observed value.
- getMin(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the minimum value this RegressionInfo has seen, or NaN if it's not seen anything.
- getMinCardinality() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The minimum cardinality threshold for the features.
- getMinCardinality() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The minimum cardinality threshold for the features.
- getModel() - Method in interface org.tribuo.classification.explanations.Explanation
-
Returns the explanining model.
- getModel() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getModel() - Method in class org.tribuo.common.libsvm.LibSVMModel
-
Deprecated.
- getModel() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the Model used by this context.
- getModelClassName() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Returns the class name of the model that this class produces.
- getModelClassName() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Returns the class name of the model that this class produces.
- getModelDump() - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Returns the string model dumps from each Booster.
- getModelProvenance() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The model provenance.
- getModels() - Method in class org.tribuo.ensemble.EnsembleModel
-
Returns an unmodifiable view on the ensemble members.
- getN() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Returns the number of values.
- getName() - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- getName() - Method in class org.tribuo.classification.evaluation.LabelMetric
- getName() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- getName() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- getName() - Method in class org.tribuo.data.DatasetExplorer
- getName() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The name of this metric.
- getName() - Method in class org.tribuo.Feature
-
Returns the feature name.
- getName() - Method in class org.tribuo.Model
-
Returns the model name.
- getName() - Method in class org.tribuo.ModelExplorer
- getName() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- getName() - Method in class org.tribuo.regression.evaluation.RegressionMetric
- getName() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the name.
- getName() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the model name.
- getName() - Method in class org.tribuo.sequence.SequenceModelExplorer
- getName() - Method in class org.tribuo.SkeletalVariableInfo
-
Returns the name of the feature.
- getName() - Method in interface org.tribuo.VariableInfo
-
The name of this feature.
- getNames() - Method in class org.tribuo.regression.Regressor
-
The names of the dimensions.
- getNameSet() - Method in class org.tribuo.multilabel.MultiLabel
-
The set of strings that represent the labels in this multilabel.
- getNativeType() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- getNativeType() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- getNativeType() - Method in enum org.tribuo.common.libsvm.KernelType
-
Gets LibSVM's int id.
- getNativeType() - Method in interface org.tribuo.common.libsvm.SVMType
-
The LibSVM int id for the algorithm.
- getNativeType() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.AbstractTrainingNode
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.LeafNode
- getNextNode(SparseVector) - Method in interface org.tribuo.common.tree.Node
-
Returns the next node in the tree based on the supplied example, or null if it's a leaf.
- getNextNode(SparseVector) - Method in class org.tribuo.common.tree.SplitNode
-
Return the appropriate child node.
- getNormalizer() - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Generates a new
VectorNormalizer
which normalizes the predictions into [0,1]. - getNormalizer() - Method in class org.tribuo.classification.sgd.objectives.Hinge
-
Returns a new
NoopNormalizer
. - getNormalizer() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- getNumActiveFeatures() - Method in class org.tribuo.Prediction
-
Returns the number of features used in the prediction.
- getNumberOfSupportVectors() - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
-
Returns the number of support vectors.
- getNumberOfSupportVectors() - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- getNumberOfSupportVectors() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
-
Returns the number of support vectors used.
- getNumberOfSupportVectors() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
-
Returns the support vectors used for each dimension.
- getNumExamples() - Method in class org.tribuo.common.tree.AbstractTrainingNode
-
The number of training examples in this node.
- getNumExamples() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of examples.
- getNumExamplesRemoved() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The number of examples removed due to a lack of features.
- getNumExamplesRemoved() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The number of examples removed due to a lack of features.
- getNumFeatures() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of features.
- getNumModels() - Method in class org.tribuo.ensemble.EnsembleModel
-
The number of ensemble members.
- getNumNamespaces() - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Binarised categoricals can be namespaced, where the field name is appended with "#<non-negative-int>" to denote the namespace.
- getNumOutputs() - Method in class org.tribuo.provenance.DatasetProvenance
-
The number of output dimensions.
- getObservationCount(double) - Method in class org.tribuo.CategoricalInfo
-
Gets the number of times a specific value was observed, and zero if this value is unknown.
- getOptimiser() - Method in class org.tribuo.math.optimisers.GradientOptimiserOptions
-
Gets the configured gradient optimiser.
- getOptionsDescription() - Method in class org.tribuo.classification.dtree.CARTClassificationOptions
- getOptionsDescription() - Method in class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.RunAll.RunAllOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- getOptionsDescription() - Method in class org.tribuo.classification.liblinear.LibLinearOptions
- getOptionsDescription() - Method in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.libsvm.LibSVMOptions
- getOptionsDescription() - Method in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- getOptionsDescription() - Method in class org.tribuo.common.nearest.KNNClassifierOptions
- getOptionsDescription() - Method in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- getOptionsDescription() - Method in class org.tribuo.data.DataOptions
- getOptionsDescription() - Method in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- getOptionsDescription() - Method in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- getOptionsDescription() - Method in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- getOptionsDescription() - Method in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- getOptionsDescription() - Method in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- getOptionsDescription() - Method in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- getOptionsDescription() - Method in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- getOptionsDescription() - Method in class org.tribuo.regression.slm.TrainTest.LARSOptions
- getOptionsDescription() - Method in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- getOptionsDescription() - Method in class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
- getOutput() - Method in class org.tribuo.common.tree.LeafNode
-
Gets the output in this node.
- getOutput() - Method in class org.tribuo.Example
-
Gets the example's
Output
. - getOutput() - Method in class org.tribuo.Prediction
-
Returns the predicted output.
- getOutput(int) - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getOutput(int) - Method in class org.tribuo.classification.ImmutableLabelInfo
- getOutput(int) - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getOutput(int) - Method in interface org.tribuo.ImmutableOutputInfo
-
Returns the output associated with this id, or null if the id is unknown.
- getOutput(int) - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getOutput(int) - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getOutputFactory() - Method in class org.tribuo.data.columnar.ColumnarDataSource
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getOutputFactory() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getOutputFactory() - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Gets the OutputFactory this ResponseProcessor uses.
- getOutputFactory() - Method in class org.tribuo.data.text.DirectoryFileSource
- getOutputFactory() - Method in class org.tribuo.data.text.TextDataSource
-
Returns the output factory used to convert the text input into an
Output
. - getOutputFactory() - Method in class org.tribuo.Dataset
-
Gets the output factory this dataset contains.
- getOutputFactory() - Method in class org.tribuo.datasource.AggregateDataSource
- getOutputFactory() - Method in interface org.tribuo.DataSource
-
Returns the OutputFactory associated with this Output subclass.
- getOutputFactory() - Method in class org.tribuo.datasource.IDXDataSource
- getOutputFactory() - Method in class org.tribuo.datasource.LibSVMDataSource
- getOutputFactory() - Method in class org.tribuo.datasource.ListDataSource
- getOutputFactory() - Method in class org.tribuo.regression.example.GaussianDataSource
- getOutputFactory() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the output factory.
- getOutputFactory() - Method in interface org.tribuo.sequence.SequenceDataSource
-
Gets the OutputFactory which was used to generate the Outputs in this SequenceDataSource.
- getOutputID() - Method in class org.tribuo.impl.IndexedArrayExample
-
Gets the output id dimension number.
- getOutputIDInfo() - Method in class org.tribuo.Dataset
-
Returns or generates an
ImmutableOutputInfo
. - getOutputIDInfo() - Method in class org.tribuo.ImmutableDataset
- getOutputIDInfo() - Method in class org.tribuo.Model
-
Gets the output domain.
- getOutputIDInfo() - Method in class org.tribuo.MutableDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputIDInfo() - Method in class org.tribuo.sequence.SequenceDataset
-
An immutable view on the output info in this dataset.
- getOutputIDInfo() - Method in class org.tribuo.sequence.SequenceModel
-
Gets the output domain.
- getOutputInfo() - Method in class org.tribuo.dataset.DatasetView
- getOutputInfo() - Method in class org.tribuo.Dataset
-
Returns this dataset's
OutputInfo
. - getOutputInfo() - Method in class org.tribuo.ImmutableDataset
- getOutputInfo() - Method in class org.tribuo.MutableDataset
- getOutputInfo() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputInfo() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputInfo() - Method in class org.tribuo.sequence.SequenceDataset
-
The output info in this dataset.
- getOutputs() - Method in class org.tribuo.dataset.DatasetView
-
Gets the set of outputs that occur in the examples in this dataset.
- getOutputs() - Method in class org.tribuo.Dataset
-
Gets the set of outputs that occur in the examples in this dataset.
- getOutputs() - Method in class org.tribuo.ImmutableDataset
- getOutputs() - Method in class org.tribuo.MutableDataset
-
Gets the set of possible outputs in this dataset.
- getOutputs() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getOutputs() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getOutputs() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the set of labels that occur in the examples in this dataset.
- getOutputScores() - Method in class org.tribuo.Prediction
-
Gets the output scores for each output.
- getOutputTarget() - Method in class org.tribuo.evaluation.metrics.MetricTarget
-
Returns the Output this metric targets, or
Optional.empty()
if it's an average. - getParameters() - Method in class org.tribuo.common.libsvm.SVMParameters
- getPos() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getPrecision() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the precision of the anomalous events, i.e., true positives divided by the number of predicted positives.
- getPrediction() - Method in interface org.tribuo.classification.explanations.Explanation
-
The original model's prediction which is being explained.
- getPrediction() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- getPrediction() - Method in class org.tribuo.Excuse
-
Returns the prediction being excused.
- getPrediction(int, Example<T>) - Method in class org.tribuo.common.tree.LeafNode
-
Constructs a new prediction object based on this node's scores.
- getPredictions() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
-
Gets the flattened predictions.
- getPredictions() - Method in interface org.tribuo.evaluation.Evaluation
-
Gets the predictions stored in this evaluation.
- getPredictions() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the predictions used by this context.
- getPredictions() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getProvenance() - Method in class org.tribuo.anomaly.AnomalyFactory
- getProvenance() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- getProvenance() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- getProvenance() - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- getProvenance() - Method in class org.tribuo.classification.dtree.impurity.Entropy
- getProvenance() - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- getProvenance() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- getProvenance() - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- getProvenance() - Method in class org.tribuo.classification.ensemble.VotingCombiner
- getProvenance() - Method in class org.tribuo.classification.LabelFactory
- getProvenance() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- getProvenance() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- getProvenance() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- getProvenance() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- getProvenance() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- getProvenance() - Method in class org.tribuo.classification.sgd.objectives.Hinge
- getProvenance() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- getProvenance() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- getProvenance() - Method in class org.tribuo.clustering.ClusteringFactory
- getProvenance() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- getProvenance() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- getProvenance() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- getProvenance() - Method in class org.tribuo.common.nearest.KNNTrainer
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.feature.UniqueProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.Quartile
- getProvenance() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- getProvenance() - Method in class org.tribuo.data.columnar.RowProcessor
- getProvenance() - Method in class org.tribuo.data.csv.CSVDataSource
- getProvenance() - Method in class org.tribuo.data.sql.SQLDataSource
- getProvenance() - Method in class org.tribuo.data.sql.SQLDBConfig
- getProvenance() - Method in class org.tribuo.data.text.DirectoryFileSource
- getProvenance() - Method in class org.tribuo.data.text.impl.AverageAggregator
- getProvenance() - Method in class org.tribuo.data.text.impl.BasicPipeline
- getProvenance() - Method in class org.tribuo.data.text.impl.FeatureHasher
- getProvenance() - Method in class org.tribuo.data.text.impl.NgramProcessor
- getProvenance() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- getProvenance() - Method in class org.tribuo.data.text.impl.SumAggregator
- getProvenance() - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- getProvenance() - Method in class org.tribuo.data.text.impl.TokenPipeline
- getProvenance() - Method in class org.tribuo.data.text.impl.UniqueAggregator
- getProvenance() - Method in class org.tribuo.dataset.DatasetView
- getProvenance() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
- getProvenance() - Method in class org.tribuo.datasource.AggregateDataSource
- getProvenance() - Method in class org.tribuo.datasource.IDXDataSource
- getProvenance() - Method in class org.tribuo.datasource.LibSVMDataSource
- getProvenance() - Method in class org.tribuo.datasource.ListDataSource
- getProvenance() - Method in class org.tribuo.ensemble.BaggingTrainer
- getProvenance() - Method in class org.tribuo.ensemble.EnsembleModel
- getProvenance() - Method in class org.tribuo.hash.HashCodeHasher
- getProvenance() - Method in class org.tribuo.hash.HashingTrainer
- getProvenance() - Method in class org.tribuo.hash.MessageDigestHasher
- getProvenance() - Method in class org.tribuo.hash.ModHashCodeHasher
- getProvenance() - Method in class org.tribuo.ImmutableDataset
- getProvenance() - Method in class org.tribuo.interop.onnx.DenseTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.ImageTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.LabelTransformer
- getProvenance() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.ImageTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
- getProvenance() - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer
- getProvenance() - Method in class org.tribuo.json.JsonDataSource
- getProvenance() - Method in class org.tribuo.math.kernel.Linear
- getProvenance() - Method in class org.tribuo.math.kernel.Polynomial
- getProvenance() - Method in class org.tribuo.math.kernel.RBF
- getProvenance() - Method in class org.tribuo.math.kernel.Sigmoid
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaDelta
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaGrad
- getProvenance() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- getProvenance() - Method in class org.tribuo.math.optimisers.Adam
- getProvenance() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- getProvenance() - Method in class org.tribuo.math.optimisers.Pegasos
- getProvenance() - Method in class org.tribuo.math.optimisers.RMSProp
- getProvenance() - Method in class org.tribuo.math.optimisers.SGD
- getProvenance() - Method in class org.tribuo.Model
- getProvenance() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- getProvenance() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- getProvenance() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getProvenance() - Method in class org.tribuo.MutableDataset
- getProvenance() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- getProvenance() - Method in class org.tribuo.regression.example.GaussianDataSource
- getProvenance() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- getProvenance() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- getProvenance() - Method in class org.tribuo.regression.RegressionFactory
- getProvenance() - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- getProvenance() - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- getProvenance() - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- getProvenance() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.Huber
- getProvenance() - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- getProvenance() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- getProvenance() - Method in class org.tribuo.regression.slm.SLMTrainer
- getProvenance() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- getProvenance() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- getProvenance() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.MutableSequenceDataset
- getProvenance() - Method in class org.tribuo.sequence.SequenceModel
- getProvenance() - Method in class org.tribuo.transform.TransformationMap
- getProvenance() - Method in class org.tribuo.transform.TransformationMap.TransformationList
- getProvenance() - Method in class org.tribuo.transform.transformations.BinningTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- getProvenance() - Method in class org.tribuo.transform.transformations.SimpleTransform
- getProvenance() - Method in class org.tribuo.transform.TransformerMap
- getProvenance() - Method in class org.tribuo.transform.TransformTrainer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getProvenance() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getRecall() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the recall of the anomalous events, i.e., true positives divided by the number of positives.
- getReference() - Method in interface org.tribuo.math.la.MatrixIterator
-
Gets the MatrixTuple reference that this iterator updates.
- getReference() - Method in interface org.tribuo.math.la.VectorIterator
-
Gets the reference to the VectorTuple this iterator updates.
- getRemoved() - Method in class org.tribuo.dataset.MinimumCardinalityDataset
-
The feature names that were removed.
- getRemoved() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset
-
The feature names that were removed.
- getResponseProcessor() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns the response processor this RowProcessor uses.
- getRMSE(String) - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
-
Get the RMSE of a specific dimension of the explanation model.
- getRow() - Method in class org.tribuo.data.columnar.ColumnarIterator
-
Returns the next row of data based on internal state stored by the implementor, or
Optional.empty()
if there is no more data. - getRow() - Method in class org.tribuo.data.csv.CSVIterator
- getRow() - Method in class org.tribuo.data.sql.ResultSetIterator
- getRow() - Method in class org.tribuo.json.JsonFileIterator
- getRow(int) - Method in class org.tribuo.math.la.DenseMatrix
- getRow(int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- getRow(int) - Method in interface org.tribuo.math.la.Matrix
-
Extract a row as an
SGDVector
. - getRowData() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
- getScore() - Method in class org.tribuo.anomaly.Event
-
Get a real valued score for this label.
- getScore() - Method in class org.tribuo.classification.Label
-
Get a real valued score for this label.
- getScore() - Method in class org.tribuo.clustering.ClusterID
-
Get a real valued score for this ClusterID.
- getScore() - Method in class org.tribuo.multilabel.MultiLabel
-
The overall score for this set of labels.
- getScoreAggregation() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getScores() - Method in class org.tribuo.Excuse
-
Returns the scores for all outputs and the relevant feature values.
- getSecondCount() - Method in class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- getSecondFieldName() - Method in class org.tribuo.data.columnar.ColumnarFeature
-
If it's a conjunction feature, return the second field name.
- getSequenceModel() - Method in class org.tribuo.evaluation.metrics.MetricContext
-
Gets the SequenceModel used by this context.
- getSequenceTrainer() - Method in class org.tribuo.classification.sgd.crf.CRFOptions
-
Returns the configured CRF trainer.
- getSequenceTrainer(Trainer<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions
- getSerializableForm(boolean) - Method in class org.tribuo.anomaly.Event
-
Returns "EventType" or "EventType,score=eventScore".
- getSerializableForm(boolean) - Method in class org.tribuo.classification.Label
-
Returns "labelName" or "labelName,score=labelScore".
- getSerializableForm(boolean) - Method in class org.tribuo.clustering.ClusterID
-
Returns "id" or "id,score=idScore".
- getSerializableForm(boolean) - Method in class org.tribuo.multilabel.MultiLabel
-
For a MultiLabel with label set = {a, b, c}, outputs a string of the form:
- getSerializableForm(boolean) - Method in interface org.tribuo.Output
-
Generates a String suitable for writing to a csv or json file.
- getSerializableForm(boolean) - Method in class org.tribuo.regression.Regressor.DimensionTuple
- getSerializableForm(boolean) - Method in class org.tribuo.regression.Regressor
- getShape() - Method in class org.tribuo.math.la.DenseMatrix
- getShape() - Method in class org.tribuo.math.la.DenseSparseMatrix
- getShape() - Method in class org.tribuo.math.la.DenseVector
- getShape() - Method in class org.tribuo.math.la.SparseVector
- getShape() - Method in interface org.tribuo.math.la.Tensor
-
Returns an int array specifying the shape of this
Tensor
. - getSimpleSGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a constant learning rate set to learningRate.
- getSimpleSGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a constant learning rate set to learningRate, with momentum.
- getSolverType() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- getSolverType() - Method in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
- getSolverType() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Returns the liblinear enum type.
- getSolverType() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- getSolverType() - Method in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns the liblinear enum.
- getSourceDescription() - Method in class org.tribuo.Dataset
-
A String description of this dataset.
- getSourceDescription() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns the description of the source provenance.
- getSourceProvenance() - Method in class org.tribuo.Dataset
-
The provenance of the data this Dataset contains.
- getSourceProvenance() - Method in class org.tribuo.provenance.DatasetProvenance
-
The input data provenance.
- getSourceProvenance() - Method in class org.tribuo.sequence.SequenceDataset
-
Returns the source provenance.
- getSplitCharacters() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Returns a copy of the split characters.
- getSplitPatternRegex() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Gets the String form of the regex in use.
- getSplitXDigitsCharacters() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Returns a copy of the split characters except inside digits.
- getSqrtDecaySGD(double) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a sqrt decaying learning rate initialised to learningRate.
- getSqrtDecaySGD(double, double, SGD.Momentum) - Static method in class org.tribuo.math.optimisers.SGD
-
Generates an SGD optimiser with a sqrt decaying learning rate initialised to learningRate, with momentum.
- getStackSize() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getStandardDeviation() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the standard deviation of the values.
- getStart() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getStart() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getStart() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the starting character offset of the current token in the character sequence
- getStart() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getStatement() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Constructs a statement based on the object fields.
- getSvmType() - Method in class org.tribuo.common.libsvm.SVMParameters
- getTarget() - Method in class org.tribuo.anomaly.evaluation.AnomalyMetric
- getTarget() - Method in class org.tribuo.classification.evaluation.LabelMetric
- getTarget() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- getTarget() - Method in interface org.tribuo.evaluation.metrics.EvaluationMetric
-
The target for this metric instance.
- getTarget() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- getTarget() - Method in class org.tribuo.regression.evaluation.RegressionMetric
- getTest() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
Gets the testing datasource.
- getTestDatasetProvenance() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The test dataset provenance.
- getText() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getText() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getText() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the text of the current token, as a string
- getText() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getToken() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Generates a Token object from the current state of the tokenizer.
- getTokenizer() - Method in class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- getTokenizer() - Method in class org.tribuo.util.tokens.options.SplitPatternTokenizerOptions
- getTokenizer() - Method in interface org.tribuo.util.tokens.options.TokenizerOptions
-
Creates the appropriately configured tokenizer.
- getTopFeatures(int) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- getTopFeatures(int) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- getTopFeatures(int) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- getTopFeatures(int) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- getTopFeatures(int) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- getTopFeatures(int) - Method in class org.tribuo.common.libsvm.LibSVMModel
- getTopFeatures(int) - Method in class org.tribuo.common.nearest.KNNModel
- getTopFeatures(int) - Method in class org.tribuo.common.tree.TreeModel
- getTopFeatures(int) - Method in class org.tribuo.common.xgboost.XGBoostExternalModel
- getTopFeatures(int) - Method in class org.tribuo.common.xgboost.XGBoostModel
- getTopFeatures(int) - Method in class org.tribuo.ensemble.EnsembleModel
- getTopFeatures(int) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
-
Returns an empty map, as the top features are not well defined for most Tensorflow models.
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointModel
-
Deep learning models don't do feature rankings.
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorflowExternalModel
- getTopFeatures(int) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
-
Deep learning models don't do feature rankings.
- getTopFeatures(int) - Method in class org.tribuo.Model
-
Gets the top
n
features associated with this model. - getTopFeatures(int) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
-
This aggregates the top features from each of the models.
- getTopFeatures(int) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- getTopFeatures(int) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- getTopFeatures(int) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- getTopFeatures(int) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- getTopFeatures(int) - Method in class org.tribuo.regression.slm.SparseLinearModel
- getTopFeatures(int) - Method in class org.tribuo.sequence.SequenceModel
-
Gets the top
n
features associated with this model. - getTopFeatures(int) - Method in class org.tribuo.transform.TransformedModel
- getTopLabels(Map<String, Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTopLabels(Map<String, Label>, int) - Static method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- getTotalObservations() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- getTotalObservations() - Method in class org.tribuo.classification.ImmutableLabelInfo
- getTotalObservations() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- getTotalObservations() - Method in interface org.tribuo.ImmutableOutputInfo
-
Returns the total number of observed outputs seen by this ImmutableOutputInfo.
- getTotalObservations() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- getTotalObservations() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- getTrain() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
Gets the training data source.
- getTrainer() - Method in interface org.tribuo.classification.ClassificationOptions
-
Constructs the trainer based on the provided arguments.
- getTrainer() - Method in class org.tribuo.classification.dtree.CARTClassificationOptions
- getTrainer() - Method in class org.tribuo.classification.experiments.AllTrainerOptions
- getTrainer() - Method in class org.tribuo.classification.liblinear.LibLinearOptions
- getTrainer() - Method in class org.tribuo.classification.libsvm.LibSVMOptions
- getTrainer() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
- getTrainer() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- getTrainer() - Method in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- getTrainer() - Method in class org.tribuo.classification.xgboost.XGBoostOptions
- getTrainer() - Method in class org.tribuo.clustering.kmeans.KMeansOptions
- getTrainer() - Method in class org.tribuo.common.nearest.KNNClassifierOptions
- getTrainer() - Method in class org.tribuo.regression.xgboost.XGBoostOptions
-
Gets the configured XGBoostRegressionTrainer.
- getTrainerProvenance() - Method in class org.tribuo.provenance.ModelProvenance
-
The trainer provenance.
- getTrainingTime() - Method in class org.tribuo.provenance.ModelProvenance
-
The training timestamp.
- getTransformationProvenance() - Method in class org.tribuo.provenance.DatasetProvenance
-
The transformation provenances, in application order.
- getTribuoVersion() - Method in class org.tribuo.provenance.DatasetProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.EvaluationProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.ModelProvenance
-
The Tribuo version used to create this dataset.
- getTribuoVersion() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
-
The Tribuo version.
- getTrueNegatives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of true negatives, i.e., expected events classified as events.
- getTruePositives() - Method in interface org.tribuo.anomaly.evaluation.AnomalyEvaluation
-
Returns the number of true positives, i.e., anomalous events classified as anomalous.
- getType() - Method in class org.tribuo.anomaly.Event
-
Gets the event type.
- getType() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- getType() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- getType() - Method in interface org.tribuo.util.tokens.Tokenizer
-
Gets the type of the current token.
- getType() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- getUniqueObservations() - Method in class org.tribuo.CategoricalInfo
-
Gets the number of unique values this CategoricalInfo has observed.
- getUnknownCount() - Method in class org.tribuo.anomaly.AnomalyInfo
- getUnknownCount() - Method in class org.tribuo.classification.LabelInfo
- getUnknownCount() - Method in class org.tribuo.clustering.ClusteringInfo
- getUnknownCount() - Method in class org.tribuo.multilabel.MultiLabelInfo
- getUnknownCount() - Method in interface org.tribuo.OutputInfo
-
Returns the number of unknown
Output
instances (generated byOutputFactory.getUnknownOutput()
) that this OutputInfo has seen. - getUnknownCount() - Method in class org.tribuo.regression.RegressionInfo
- getUnknownOutput() - Method in class org.tribuo.anomaly.AnomalyFactory
- getUnknownOutput() - Method in class org.tribuo.classification.LabelFactory
- getUnknownOutput() - Method in class org.tribuo.clustering.ClusteringFactory
- getUnknownOutput() - Method in class org.tribuo.multilabel.MultiLabelFactory
- getUnknownOutput() - Method in interface org.tribuo.OutputFactory
-
Returns the singleton unknown output of type T which can be used for prediction time examples.
- getUnknownOutput() - Method in class org.tribuo.regression.RegressionFactory
- getUpperMedian() - Method in class org.tribuo.data.columnar.processors.response.Quartile
-
The upper quartile value.
- getValue() - Method in class org.tribuo.Feature
-
Returns the feature value.
- getValue() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the value.
- getValues() - Method in class org.tribuo.regression.Regressor
-
Returns the regression values.
- getValueType() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.DoubleExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.FloatExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IdentityExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IndexExtractor
- getValueType() - Method in class org.tribuo.data.columnar.extractors.IntExtractor
- getValueType() - Method in interface org.tribuo.data.columnar.FieldExtractor
-
Gets the class of the value produced by this extractor.
- getVariance() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Calculates the sample variance of the values.
- getVariance() - Method in class org.tribuo.RealInfo
-
Gets the sample variance.
- getVariance() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
Returns the variance.
- getVariance(String) - Method in class org.tribuo.regression.RegressionInfo
-
Gets the variance this RegressionInfo has seen, or NaN if it's not seen that dimension.
- getVariances() - Method in class org.tribuo.regression.Regressor
-
The variances of the regressed values, if known.
- getWeight() - Method in class org.tribuo.Example
-
Gets the example's weight.
- getWeight() - Method in class org.tribuo.sequence.SequenceExample
-
Gets the weight of this sequence.
- getWeight(int, int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- getWeightMatrix() - Method in class org.tribuo.math.LinearParameters
-
Returns the weight matrix.
- getWeights() - Method in class org.tribuo.regression.slm.SparseLinearModel
-
Gets a copy of the model parameters.
- getWeightsCopy() - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- GINI - Enum constant in enum org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
- GiniIndex - Class in org.tribuo.classification.dtree.impurity
-
The Gini index impurity measure.
- GiniIndex() - Constructor for class org.tribuo.classification.dtree.impurity.GiniIndex
- GradientOptimiserOptions - Class in org.tribuo.math.optimisers
-
CLI options for configuring a gradient optimiser.
- GradientOptimiserOptions() - Constructor for class org.tribuo.math.optimisers.GradientOptimiserOptions
- GradientOptimiserOptions.StochasticGradientOptimiserType - Enum in org.tribuo.math.optimisers
-
Type of the gradient optimisers available in CLIs.
- gradientOptions - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- gradientOptions - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- gradients(Pair<Double, SGDVector>, SparseVector) - Method in class org.tribuo.math.LinearParameters
-
Generate the gradients for a particular feature vector given the loss and the per output gradients.
- GRAPH_HASH - Static variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance
- GRAPH_HASH - Static variable in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance
- GRAPH_HASH - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer.TensorflowTrainerProvenance
- GRAPH_LAST_MOD - Static variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance
- GRAPH_LAST_MOD - Static variable in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance
- GRAPH_LAST_MOD - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer.TensorflowTrainerProvenance
- graphPath - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- greaterThan - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- GROUPS - Enum constant in enum org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
- grow(int) - Method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Grows the backing array, copying the elements.
- growArray() - Method in class org.tribuo.impl.ArrayExample
-
Grows the backing arrays by size+1.
- growArray() - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Grows the backing arrays by size+1.
- growArray(int) - Method in class org.tribuo.impl.ArrayExample
-
Grows the backing arrays storing the names and values.
- growArray(int) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Grows the backing arrays storing the names.
- growArray(int) - Method in class org.tribuo.impl.IndexedArrayExample
- gStatistic - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
- gTest(List<T1>, List<T2>, Set<List<T3>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the GTest statistics for the input variables conditioned on the set.
- GTestStatistics(double, int, double) - Constructor for class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
H
- hadamardProductInPlace(Tensor) - Method in interface org.tribuo.math.la.Tensor
-
Same as
Tensor.hadamardProductInPlace(org.tribuo.math.la.Tensor, java.util.function.DoubleUnaryOperator)
, but applies the identity function. - hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
Only implemented for
DenseMatrix
. - hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- hadamardProductInPlace(Tensor, DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Updates this
Tensor
with the Hadamard product (i.e., a term by term multiply) of this andother
. - handleChar() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Handle a character to add to the token buffer.
- handleDoc(String) - Method in class org.tribuo.data.text.TextDataSource
-
A method that can be overridden to do different things to each document that we've read.
- hash(String) - Method in class org.tribuo.hash.HashCodeHasher
- hash(String) - Method in class org.tribuo.hash.Hasher
-
Hashes the supplied input using the hashing function.
- hash(String) - Method in class org.tribuo.hash.MessageDigestHasher
- hash(String) - Method in class org.tribuo.hash.ModHashCodeHasher
- hashCode() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- hashCode() - Method in class org.tribuo.anomaly.Event
- hashCode() - Method in class org.tribuo.classification.evaluation.LabelMetric
- hashCode() - Method in class org.tribuo.classification.Label
- hashCode() - Method in class org.tribuo.classification.LabelFactory
- hashCode() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- hashCode() - Method in class org.tribuo.clustering.ClusterID
- hashCode() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- hashCode() - Method in class org.tribuo.clustering.ClusteringFactory
- hashCode() - Method in class org.tribuo.data.csv.CSVDataSource.CSVDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- hashCode() - Method in class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.DirectoryFileSource.DirectoryFileSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- hashCode() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- hashCode() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
- hashCode() - Method in class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- hashCode() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- hashCode() - Method in class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
- hashCode() - Method in class org.tribuo.evaluation.DescriptiveStats
- hashCode() - Method in class org.tribuo.evaluation.metrics.MetricTarget
- hashCode() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- hashCode() - Method in class org.tribuo.Feature
- hashCode() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- hashCode() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- hashCode() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- hashCode() - Method in class org.tribuo.impl.ArrayExample
- hashCode() - Method in class org.tribuo.impl.BinaryFeaturesExample
- hashCode() - Method in class org.tribuo.impl.IndexedArrayExample
- hashCode() - Method in class org.tribuo.impl.ListExample
- hashCode() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- hashCode() - Method in class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- hashCode() - Method in class org.tribuo.math.la.DenseMatrix
- hashCode() - Method in class org.tribuo.math.la.DenseSparseMatrix
- hashCode() - Method in class org.tribuo.math.la.DenseVector
- hashCode() - Method in class org.tribuo.math.la.MatrixTuple
- hashCode() - Method in class org.tribuo.math.la.SparseVector
- hashCode() - Method in class org.tribuo.math.la.VectorTuple
- hashCode() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- hashCode() - Method in class org.tribuo.multilabel.MultiLabel
- hashCode() - Method in class org.tribuo.multilabel.MultiLabelFactory
- hashCode() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- hashCode() - Method in class org.tribuo.provenance.DatasetProvenance
- hashCode() - Method in class org.tribuo.provenance.EvaluationProvenance
- hashCode() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- hashCode() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- hashCode() - Method in class org.tribuo.provenance.ModelProvenance
- hashCode() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- hashCode() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
- hashCode() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- hashCode() - Method in class org.tribuo.regression.RegressionFactory
- hashCode() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- hashCode() - Method in class org.tribuo.regression.Regressor.DimensionTuple
-
All regressors have a hashcode based on only the dimension names.
- hashCode() - Method in class org.tribuo.regression.Regressor
-
Regressor's hashcode is based on the hash of the dimension names.
- hashCode() - Method in class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- hashCode() - Method in class org.tribuo.SkeletalVariableInfo
- hashCode() - Method in class org.tribuo.transform.TransformationMap.TransformationList
- hashCode() - Method in class org.tribuo.transform.transformations.BinningTransformation.BinningTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- hashCode() - Method in class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- hashCode() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- hashCode() - Method in class org.tribuo.util.infotheory.impl.CachedPair
-
Overridden hashcode.
- hashCode() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- hashCode() - Method in class org.tribuo.util.infotheory.impl.Row
- hashCode() - Method in class org.tribuo.util.infotheory.impl.WeightCountTuple
- HashCodeHasher - Class in org.tribuo.hash
-
Hashes names using String.hashCode().
- HashCodeHasher(String) - Constructor for class org.tribuo.hash.HashCodeHasher
- HashCodeHasher.HashCodeHasherProvenance - Class in org.tribuo.hash
-
Provenance for the
HashCodeHasher
. - HashCodeHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- hashDim - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- hashDim - Variable in class org.tribuo.data.DataOptions
- HashedFeatureMap - Class in org.tribuo.hash
-
A
FeatureMap
used by theHashingTrainer
to provide feature name hashing and guarantee that theModel
does not contain feature name information, but still works with unhashed features names. - Hasher - Class in org.tribuo.hash
-
An abstract base class for hash functions used to hash the names of features.
- Hasher() - Constructor for class org.tribuo.hash.Hasher
- hashFeatureMap(Dataset<T>, Hasher) - Static method in class org.tribuo.ImmutableDataset
-
Creates an immutable shallow copy of the supplied dataset, using the hasher to generate a
HashedFeatureMap
which transparently maps from the feature name to the hashed variant. - hashingOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- HashingOptions - Class in org.tribuo.hash
-
An Options implementation which provides CLI arguments for the model hashing functionality.
- HashingOptions() - Constructor for class org.tribuo.hash.HashingOptions
- HashingOptions.ModelHashingType - Enum in org.tribuo.hash
-
Supported types of hashes in CLI programs.
- HashingSequenceTrainer<T> - Class in org.tribuo.sequence
-
A SequenceTrainer that hashes all the feature names on the way in.
- HashingSequenceTrainer(SequenceTrainer<T>, Hasher) - Constructor for class org.tribuo.sequence.HashingSequenceTrainer
- HashingSequenceTrainer.HashingSequenceTrainerProvenance - Class in org.tribuo.sequence
-
Provenance for
HashingSequenceTrainer
. - HashingSequenceTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.sequence.HashingSequenceTrainer.HashingSequenceTrainerProvenance
- HashingTrainer<T> - Class in org.tribuo.hash
- HashingTrainer(Trainer<T>, Hasher) - Constructor for class org.tribuo.hash.HashingTrainer
- hashType - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- hasNext() - Method in class org.tribuo.data.columnar.ColumnarIterator
- hasProbabilities() - Method in class org.tribuo.Prediction
-
Are the scores probabilities?
- HC - Enum constant in enum org.tribuo.hash.HashingOptions.ModelHashingType
- HeapMerger - Class in org.tribuo.math.util
-
Merges each
SparseVector
separately using aPriorityQueue
as a heap. - HeapMerger() - Constructor for class org.tribuo.math.util.HeapMerger
- Hinge - Class in org.tribuo.classification.sgd.objectives
-
Hinge loss, scores the correct value margin and any incorrect predictions -margin.
- Hinge() - Constructor for class org.tribuo.classification.sgd.objectives.Hinge
-
Construct a hinge objective with a margin of 1.0.
- Hinge(double) - Constructor for class org.tribuo.classification.sgd.objectives.Hinge
-
Construct a hinge objective with the supplied margin.
- HINGE - Enum constant in enum org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
- HTMLOutput - Class in org.tribuo.util
-
Utilities for nice HTML output that can be put in wikis and such.
- Huber - Class in org.tribuo.regression.sgd.objectives
-
Huber loss, i.e., a mixture of l2 and l1 losses.
- Huber() - Constructor for class org.tribuo.regression.sgd.objectives.Huber
- Huber(double) - Constructor for class org.tribuo.regression.sgd.objectives.Huber
- HUBER - Enum constant in enum org.tribuo.regression.sgd.TrainTest.LossEnum
I
- i - Variable in class org.tribuo.math.la.MatrixTuple
- id - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
- IdentityExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and emits it as a String.
- IdentityExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IdentityExtractor
-
Extracts the String value from the supplied field.
- IdentityExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.IdentityExtractor
-
Extracts the String value from the supplied field.
- IdentityProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which converts the field name and value into a feature with a value ofIdentityProcessor.FEATURE_VALUE
. - IdentityProcessor(String) - Constructor for class org.tribuo.data.columnar.processors.field.IdentityProcessor
-
Constructs a field processor which emits a single feature with a specific value and uses the field name and field value as the feature name.
- idIterator() - Method in class org.tribuo.impl.IndexedArrayExample
-
Iterator over the feature ids and values.
- idMap - Variable in class org.tribuo.ImmutableFeatureMap
-
The map from id numbers to the feature infos.
- IDXDataSource<T> - Class in org.tribuo.datasource
-
A DataSource which can read IDX formatted data (i.e., MNIST).
- IDXDataSource(Path, Path, OutputFactory<T>) - Constructor for class org.tribuo.datasource.IDXDataSource
-
Constructs an IDXDataSource from the supplied paths.
- IDXDataSource.IDXData - Class in org.tribuo.datasource
-
Java side representation for an IDX file.
- IDXDataSource.IDXDataSourceProvenance - Class in org.tribuo.datasource
-
Provenance class for
IDXDataSource
. - IDXDataSource.IDXType - Enum in org.tribuo.datasource
-
The possible IDX input formats.
- IDXDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- IMAGE - Enum constant in enum org.tribuo.interop.tensorflow.TrainTest.InputType
- imageFormat - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- ImageTransformer - Class in org.tribuo.interop.onnx
-
Image transformer.
- ImageTransformer<T> - Class in org.tribuo.interop.tensorflow
-
Image transformer.
- ImageTransformer(int, int, int) - Constructor for class org.tribuo.interop.onnx.ImageTransformer
- ImageTransformer(int, int, int) - Constructor for class org.tribuo.interop.tensorflow.ImageTransformer
- ImmutableAnomalyInfo - Class in org.tribuo.anomaly
-
An
ImmutableOutputInfo
object forEvent
s. - ImmutableClusteringInfo - Class in org.tribuo.clustering
-
An
ImmutableOutputInfo
object for ClusterIDs. - ImmutableClusteringInfo(Map<Integer, MutableLong>) - Constructor for class org.tribuo.clustering.ImmutableClusteringInfo
- ImmutableClusteringInfo(ClusteringInfo) - Constructor for class org.tribuo.clustering.ImmutableClusteringInfo
- ImmutableDataset<T> - Class in org.tribuo
-
This is a
Dataset
which has anImmutableFeatureMap
to store the feature information. - ImmutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>, FeatureMap, OutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataSource<T>, FeatureMap, OutputInfo<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataSource<T>, Model<T>, boolean) - Constructor for class org.tribuo.ImmutableDataset
-
Creates a dataset from a data source.
- ImmutableDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.ImmutableDataset
-
If you call this it's your job to setup outputMap, featureIDMap and fill it with examples.
- ImmutableDataset(DataProvenance, OutputFactory<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.ImmutableDataset
-
This is dangerous, and should not be used unless you've overridden everything in ImmutableDataset.
- ImmutableFeatureMap - Class in org.tribuo
-
ImmutableFeatureMap is used when unknown features should not be added to the FeatureMap.
- ImmutableFeatureMap() - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new empty immutable feature map.
- ImmutableFeatureMap(List<VariableInfo>) - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new immutable feature map copying the supplied variable infos and generating appropriate ID numbers.
- ImmutableFeatureMap(FeatureMap) - Constructor for class org.tribuo.ImmutableFeatureMap
-
Constructs a new immutable version which is a deep copy of the supplied feature map, generating new ID numbers.
- ImmutableLabelInfo - Class in org.tribuo.classification
-
An ImmutableOutputInfo object for Labels.
- ImmutableMultiLabelInfo - Class in org.tribuo.multilabel
-
An ImmutableOutputInfo for working with multi-label tasks.
- ImmutableOutputInfo<T> - Interface in org.tribuo
-
An
OutputInfo
that is fixed, and contains an id number for each valid output. - ImmutableRegressionInfo - Class in org.tribuo.regression
-
A
ImmutableOutputInfo
forRegressor
s. - ImmutableSequenceDataset<T> - Class in org.tribuo.sequence
-
This is a
SequenceDataset
which has anImmutableFeatureMap
to store the feature information. - ImmutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, FeatureMap, OutputInfo<T>, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source.
- ImmutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
Creates a dataset from a data source.
- ImmutableSequenceDataset(DataProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
This is dangerous, and should not be used unless you've overridden everything in ImmutableSequenceDataset.
- ImmutableSequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
-
If you call this it's your job to setup outputIDInfo and featureIDMap.
- ImmutableSequenceDataset(SequenceDataSource<T>, FeatureMap, OutputInfo<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
- ImmutableSequenceDataset(SequenceDataSource<T>, SequenceModel<T>) - Constructor for class org.tribuo.sequence.ImmutableSequenceDataset
- impurity - Variable in class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
- impurity(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the inputs are counts.
- impurity(float[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the input are fractional counts.
- impurity(float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurity(float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurity(float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the impurity based on the supplied weights and targets.
- impurity(int[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the input are counts.
- impurity(int[], float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurity(int[], int, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurity(List<int[]>, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in all the indices arrays.
- impurity(Map<String, Double>) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Takes a
Map
for weighted counts. - impurity(IntArrayContainer, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices container.
- impurityNormed(double[]) - Method in class org.tribuo.classification.dtree.impurity.Entropy
- impurityNormed(double[]) - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- impurityNormed(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity, assuming it's input is a normalized probability distribution.
- impurityTuple(int[], int, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurityTuple(int[], int, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurityTuple(int[], int, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in the indices array.
- impurityTuple(List<int[]>, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- impurityTuple(List<int[]>, float[], float[]) - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- impurityTuple(List<int[]>, float[], float[]) - Method in interface org.tribuo.regression.rtree.impurity.RegressorImpurity
-
Calculates the weighted impurity of the targets specified in all the indices arrays.
- ImpurityTuple(float, float) - Constructor for class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
- impurityType - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- impurityWeighted(double[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the inputs are weighted counts normalizing by their sum.
- impurityWeighted(float[]) - Method in interface org.tribuo.classification.dtree.impurity.LabelImpurity
-
Calculates the impurity assuming the input are weighted counts, normalizing by their sum.
- incr - Variable in class org.tribuo.util.tokens.universal.Range
- incrementalTrain(Dataset<T>, U) - Method in interface org.tribuo.IncrementalTrainer
-
Incrementally trains the supplied model with the new data.
- IncrementalTrainer<T,
U> - Interface in org.tribuo -
An interface for incremental training of
Model
s. - IndependentMultiLabelModel - Class in org.tribuo.multilabel.baseline
-
A
Model
which wraps n binary models, where n is the size of the MultiLabel domain. - IndependentMultiLabelTrainer - Class in org.tribuo.multilabel.baseline
- IndependentMultiLabelTrainer(Trainer<Label>) - Constructor for class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- IndependentRegressionTreeModel - Class in org.tribuo.regression.rtree
- index - Variable in class org.tribuo.math.la.VectorTuple
- index - Variable in class org.tribuo.util.IntDoublePair
- IndexedArrayExample<T> - Class in org.tribuo.impl
-
A version of ArrayExample which also has the id numbers.
- IndexedArrayExample(Example<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.impl.IndexedArrayExample
-
This constructor removes unknown features.
- IndexedArrayExample(IndexedArrayExample<T>) - Constructor for class org.tribuo.impl.IndexedArrayExample
-
Copy constructor.
- IndexedArrayExample.FeatureTuple - Class in org.tribuo.impl
-
A tuple of the feature name, id and value.
- IndexExtractor - Class in org.tribuo.data.columnar.extractors
-
An Extractor with special casing for loading the index from a Row.
- IndexExtractor() - Constructor for class org.tribuo.data.columnar.extractors.IndexExtractor
-
Extracts the index writing to the default metadata field name
Example.NAME
. - IndexExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IndexExtractor
-
Extracts the index, writing to the supplied metadata field name.
- indexOf(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- indexOfMax() - Method in class org.tribuo.math.la.DenseVector
- indexOfMax() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the index of the maximum value.
- indexOfMax() - Method in class org.tribuo.math.la.SparseVector
- indexOfMax() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- indices - Variable in class org.tribuo.Dataset
-
The indices of the shuffled order.
- indices - Variable in class org.tribuo.math.la.SparseVector
- indices() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- InformationTheory - Class in org.tribuo.util.infotheory
-
A class of (discrete) information theoretic functions.
- InformationTheory.GTestStatistics - Class in org.tribuo.util.infotheory
-
An immutable named tuple containing the statistics from a G test.
- InformationTheoryDemo - Class in org.tribuo.util.infotheory.example
-
Demo showing how to calculate various mutual informations and entropies.
- InformationTheoryDemo() - Constructor for class org.tribuo.util.infotheory.example.InformationTheoryDemo
- InformationTheoryDemo.DemoOptions - Class in org.tribuo.util.infotheory.example
- InformationTheoryDemo.DistributionType - Enum in org.tribuo.util.infotheory.example
- INIT - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaDelta
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaGrad
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.AdaGradRDA
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.Adam
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.ParameterAveraging
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.Pegasos
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.RMSProp
- initialise(Parameters) - Method in class org.tribuo.math.optimisers.SGD
- initialise(Parameters) - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Initialises the gradient optimiser.
- initialiseCentroids(int, Dataset<ClusterID>, ImmutableFeatureMap, SplittableRandom) - Static method in class org.tribuo.clustering.kmeans.KMeansTrainer
-
Initialisation method called at the start of each train call.
- initialLearningRate - Variable in class org.tribuo.math.optimisers.SGD
- initOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
- initOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- innerGetExcuse(Example<Label>, double[][]) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
-
The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerGetExcuse(Example<Regressor>, double[][]) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
-
The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerGetExcuse(Example<T>, double[][]) - Method in class org.tribuo.common.liblinear.LibLinearModel
-
The call to getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.
- innerModel - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.common.nearest.KNNModel
-
Uses the model to predict the output for multiple examples.
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.interop.ExternalModel
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
- innerPredict(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Called by the base implementations of
Model.predict(Iterable)
andModel.predict(Dataset)
. - INNERTHREADPOOL - Enum constant in enum org.tribuo.common.nearest.KNNModel.Backend
-
Uses a thread pool at the inner level (i.e., the whole thread pool works on each prediction).
- innerTrainer - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- innerTrainer - Variable in class org.tribuo.ensemble.BaggingTrainer
- inPlaceAdd(double[], double[]) - Static method in class org.tribuo.util.Util
- inPlaceAdd(float[], float[]) - Static method in class org.tribuo.util.Util
- inplaceNormalizeToDistribution(double[]) - Static method in class org.tribuo.util.Util
- inplaceNormalizeToDistribution(float[]) - Static method in class org.tribuo.util.Util
- inPlaceSubtract(double[], double[]) - Static method in class org.tribuo.util.Util
- inPlaceSubtract(float[], float[]) - Static method in class org.tribuo.util.Util
- INPUT_NAME - Static variable in class org.tribuo.interop.tensorflow.TensorflowModel
- inputFormat - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- inputFormat - Variable in class org.tribuo.data.DataOptions
- inputModel - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- inputPath - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- inputPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- inputType - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- INSTANCE - Enum constant in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select any instance provenance from the specific training run that created this model.
- INSTANCE_VALUES - Static variable in class org.tribuo.provenance.ModelProvenance
- instanceProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- INT - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
- IntArrayContainer - Class in org.tribuo.common.tree.impl
-
An array container which maintains the array and the size.
- IntArrayContainer(int) - Constructor for class org.tribuo.common.tree.impl.IntArrayContainer
-
Constructs a new int array container with the specified initial backing array size.
- IntDoublePair - Class in org.tribuo.util
-
A Pair of a primitive int and a primitive double.
- IntDoublePair(int, double) - Constructor for class org.tribuo.util.IntDoublePair
- intersectAndAddInPlace(Tensor) - Method in interface org.tribuo.math.la.Tensor
-
Same as
Tensor.intersectAndAddInPlace(org.tribuo.math.la.Tensor, java.util.function.DoubleUnaryOperator)
, but applies the identity function. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseMatrix
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
Only implemented for
DenseMatrix
. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.la.SparseVector
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in interface org.tribuo.math.la.Tensor
-
Updates this
Tensor
by adding all the values from the intersection withother
. - intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- intersectAndAddInPlace(Tensor, DoubleUnaryOperator) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- intersection(SparseVector) - Method in class org.tribuo.math.la.SparseVector
-
Generates an array of the indices that are active in both this vector and
other
- IntExtractor - Class in org.tribuo.data.columnar.extractors
-
Extracts the field value and converts it to a int.
- IntExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.IntExtractor
-
Extracts a int value from the supplied field name.
- IntExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.IntExtractor
-
Extracts a int value from the supplied field name.
- invalidMultiDimSparseExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.multilabel.example.MultiLabelDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invalidSparseExample() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.
- invertData(Dataset<Regressor>) - Static method in class org.tribuo.regression.rtree.impl.RegressorTrainingNode
-
Inverts a training dataset from row major to column major.
- InvertedFeature - Class in org.tribuo.regression.rtree.impl
-
Internal datastructure for implementing a decision tree.
- InvertedFeature(double, int) - Constructor for class org.tribuo.regression.rtree.impl.InvertedFeature
- InvertedFeature(double, int[]) - Constructor for class org.tribuo.regression.rtree.impl.InvertedFeature
- IS_SEQUENCE - Static variable in interface org.tribuo.provenance.TrainerProvenance
- IS_SNAPSHOT - Static variable in class org.tribuo.Tribuo
-
Is this a snapshot build.
- IS_TRAINING - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- isAnomaly() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isAnomaly() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isAnomaly() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this an anomaly detection algorithm.
- isAnomaly() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isBinary(Feature) - Static method in class org.tribuo.impl.BinaryFeaturesExample
- isClassification() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isClassification() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- isClassification() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isClassification() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Is this class a Classification algorithm?
- isClassification() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a classification algorithm.
- isClassification() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- isClassification() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isConfigured() - Method in class org.tribuo.data.columnar.RowProcessor
-
Returns true if the regexes have been expanded into field processors.
- isDense() - Method in class org.tribuo.MutableDataset
-
Is the dataset dense (i.e., do all features in the domain have a value in each example).
- isDense() - Method in class org.tribuo.provenance.DatasetProvenance
-
Is the Dataset dense?
- isDigit(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character is a digit.
- isEmpty() - Method in class org.tribuo.util.infotheory.impl.RowList
- isGenerateNgrams() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- isGenerateUnigrams() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- isLeaf() - Method in class org.tribuo.common.tree.AbstractTrainingNode
- isLeaf() - Method in class org.tribuo.common.tree.LeafNode
- isLeaf() - Method in interface org.tribuo.common.tree.Node
-
Is it a leaf node?
- isLeaf() - Method in class org.tribuo.common.tree.SplitNode
- isLetterOrDigit(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character should be kept in a word or should be removed from the word if it occurs at one of the ends.
- isNgram(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for a character in a language that may not separate words with whitespace (includes Arabic, CJK, and Thai).
- isNu() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isNu() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isNu() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a nu-SVM.
- isNu() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isProbabilistic() - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Does the objective function score probabilities or not?
- isProbabilistic() - Method in class org.tribuo.classification.sgd.objectives.Hinge
-
Returns false.
- isProbabilistic() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
-
Returns true.
- isRegression() - Method in class org.tribuo.anomaly.libsvm.SVMAnomalyType
- isRegression() - Method in class org.tribuo.classification.liblinear.LinearClassificationType
- isRegression() - Method in class org.tribuo.classification.libsvm.SVMClassificationType
- isRegression() - Method in interface org.tribuo.common.liblinear.LibLinearType
-
Is this class a Regression algorithm?
- isRegression() - Method in interface org.tribuo.common.libsvm.SVMType
-
Is this a regression algorithm.
- isRegression() - Method in class org.tribuo.regression.liblinear.LinearRegressionType
- isRegression() - Method in class org.tribuo.regression.libsvm.SVMRegressionType
- isSampled() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Is this view from a bootstrap sample.
- isSequence() - Method in class org.tribuo.provenance.DatasetProvenance
-
Is it a sequence dataset?
- isSequence() - Method in class org.tribuo.provenance.SkeletalTrainerProvenance
-
Is this a sequence trainer.
- isSplitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Is this character a split character for this tokenizer instance.
- isSplitXDigitCharacter(char) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
-
Is this character a split character except inside a digit for this tokenizer instance.
- isWeighted() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
Is this view a weighted bootstrap sample.
- isWhitespace(char) - Static method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
A quick check for whether a character is whitespace.
- isZeroIndexed() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Returns true if this dataset is zero indexed, false otherwise (i.e., it starts from 1).
- iteration - Variable in class org.tribuo.math.optimisers.SGD
- iterations - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
- iterations - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- iterations - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- iterator() - Method in class org.tribuo.anomaly.ImmutableAnomalyInfo
- iterator() - Method in class org.tribuo.classification.ImmutableLabelInfo
- iterator() - Method in class org.tribuo.clustering.ImmutableClusteringInfo
- iterator() - Method in class org.tribuo.data.columnar.ColumnarDataSource
- iterator() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- iterator() - Method in class org.tribuo.data.text.DirectoryFileSource
- iterator() - Method in class org.tribuo.data.text.TextDataSource
- iterator() - Method in class org.tribuo.dataset.DatasetView
- iterator() - Method in class org.tribuo.Dataset
- iterator() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- iterator() - Method in class org.tribuo.datasource.AggregateDataSource
- iterator() - Method in class org.tribuo.datasource.IDXDataSource
- iterator() - Method in class org.tribuo.datasource.LibSVMDataSource
- iterator() - Method in class org.tribuo.datasource.ListDataSource
- iterator() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- iterator() - Method in class org.tribuo.FeatureMap
- iterator() - Method in class org.tribuo.impl.ArrayExample
- iterator() - Method in class org.tribuo.impl.BinaryFeaturesExample
- iterator() - Method in class org.tribuo.impl.ListExample
- iterator() - Method in class org.tribuo.math.la.DenseMatrix
- iterator() - Method in class org.tribuo.math.la.DenseSparseMatrix
- iterator() - Method in class org.tribuo.math.la.DenseVector
- iterator() - Method in class org.tribuo.math.la.SparseVector
- iterator() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- iterator() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- iterator() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- iterator() - Method in class org.tribuo.provenance.DatasetProvenance
- iterator() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- iterator() - Method in class org.tribuo.provenance.EvaluationProvenance
- iterator() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- iterator() - Method in class org.tribuo.provenance.ModelProvenance
- iterator() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- iterator() - Method in class org.tribuo.regression.example.GaussianDataSource
- iterator() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- iterator() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- iterator() - Method in class org.tribuo.regression.Regressor
- iterator() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
- iterator() - Method in class org.tribuo.sequence.SequenceDataset
- iterator() - Method in class org.tribuo.sequence.SequenceExample
- iterator() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- iterator() - Method in class org.tribuo.util.infotheory.impl.RowList
J
- j - Variable in class org.tribuo.math.la.MatrixTuple
- JOINER - Static variable in class org.tribuo.data.columnar.ColumnarFeature
- jointCounts - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
- jointEntropy(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the Shannon/Guiasu weighted joint entropy of two arrays, using histogram probability estimators.
- jointEntropy(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the Shannon joint entropy of two arrays, using histogram probability estimators.
- jointMI(List<T1>, List<T2>, List<T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon joint mutual information, using histogram probability estimators.
- jointMI(List<T1>, List<T2>, List<T3>, List<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted joint mutual information, using histogram probability estimators.
- jointMI(TripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon joint mutual information, using histogram probability estimators.
- jointMI(TripleDistribution<T1, T2, T3>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- jointMI(WeightedTripleDistribution<T1, T2, T3>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- JointRegressorTrainingNode - Class in org.tribuo.regression.rtree.impl
-
A decision tree node used at training time.
- JointRegressorTrainingNode(RegressorImpurity, Dataset<Regressor>, boolean) - Constructor for class org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
-
Constructor which creates the inverted file.
- JsonDataSource<T> - Class in org.tribuo.json
-
A
DataSource
for loading data from a JSON text file and applyingFieldProcessor
s to it. - JsonDataSource(URI, RowProcessor<T>, boolean) - Constructor for class org.tribuo.json.JsonDataSource
-
Creates a JsonDataSource using the specified RowProcessor to process the data.
- JsonDataSource(Path, RowProcessor<T>, boolean) - Constructor for class org.tribuo.json.JsonDataSource
-
Creates a JsonDataSource using the specified RowProcessor to process the data.
- JsonDataSource.JsonDataSourceProvenance - Class in org.tribuo.json
-
Provenance for
JsonDataSource
. - JsonDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.json.JsonDataSource.JsonDataSourceProvenance
- JsonFileIterator - Class in org.tribuo.json
-
An iterator for JSON format files converting them into a format suitable for
RowProcessor
. - JsonFileIterator(Reader) - Constructor for class org.tribuo.json.JsonFileIterator
-
Builds a JsonFileIterator for the supplied Reader.
- JsonFileIterator(URI) - Constructor for class org.tribuo.json.JsonFileIterator
-
Builds a CSVIterator for the supplied URI.
- JsonUtil - Class in org.tribuo.json
-
Utilities for interacting with JSON objects or text representations.
K
- Kernel - Interface in org.tribuo.math.kernel
-
An interface for a Mercer kernel function.
- kernelDegree - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelDist(double, double) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Calculates an RBF kernel of a specific width.
- kernelEpochs - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelGamma - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelIntercept - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelKernel - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelLambda - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- kernelLoggingInterval - Variable in class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- KernelSVMModel - Class in org.tribuo.classification.sgd.kernel
-
The inference time version of a kernel model trained using Pegasos.
- kernelSVMOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- KernelSVMOptions - Class in org.tribuo.classification.sgd.kernel
-
Options for using the KernelSVMTrainer.
- KernelSVMOptions() - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMOptions
- KernelSVMOptions.KernelEnum - Enum in org.tribuo.classification.sgd.kernel
-
The kernel types.
- KernelSVMTrainer - Class in org.tribuo.classification.sgd.kernel
-
A trainer for a kernelised model using the Pegasos optimiser.
- KernelSVMTrainer(Kernel, double, int, int, long) - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Constructs a trainer for a kernel SVM model.
- KernelSVMTrainer(Kernel, double, int, long) - Constructor for class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Constructs a trainer for a kernel SVM model.
- kernelType - Variable in class org.tribuo.common.libsvm.SVMParameters
- kernelType - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- KernelType - Enum in org.tribuo.common.libsvm
-
Kernel types from libsvm.
- kernelWidth - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- keySet() - Method in class org.tribuo.FeatureMap
-
Returns all the feature names in the domain.
- KFoldSplitter<T> - Class in org.tribuo.evaluation
-
A k-fold splitter to be used in cross-validation.
- KFoldSplitter(int) - Constructor for class org.tribuo.evaluation.KFoldSplitter
-
Builds a k-fold splitter using
Trainer.DEFAULT_SEED
as the seed. - KFoldSplitter(int, long) - Constructor for class org.tribuo.evaluation.KFoldSplitter
-
Builds a k-fold splitter.
- KFoldSplitter.TrainTestFold<T> - Class in org.tribuo.evaluation
-
Stores a train/test split for a dataset.
- KMeansModel - Class in org.tribuo.clustering.kmeans
-
A K-Means model with a selectable distance function.
- KMeansOptions - Class in org.tribuo.clustering.kmeans
-
OLCUT
Options
for the K-Means implementation. - KMeansOptions() - Constructor for class org.tribuo.clustering.kmeans.KMeansOptions
- KMeansOptions() - Constructor for class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- KMeansTrainer - Class in org.tribuo.clustering.kmeans
-
A K-Means trainer, which generates a K-means clustering of the supplied data.
- KMeansTrainer(int, int, KMeansTrainer.Distance, int, long) - Constructor for class org.tribuo.clustering.kmeans.KMeansTrainer
-
Constructs a K-Means trainer using the supplied parameters.
- KMeansTrainer.Distance - Enum in org.tribuo.clustering.kmeans
-
Possible distance functions.
- KNN - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- knnBackend - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
- KNNClassifierOptions - Class in org.tribuo.common.nearest
-
CLI Options for training a k-nearest neighbour predictor.
- KNNClassifierOptions() - Constructor for class org.tribuo.common.nearest.KNNClassifierOptions
- KNNClassifierOptions.EnsembleCombinerType - Enum in org.tribuo.common.nearest
-
The type of combination function.
- knnDistance - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
- knnEnsembleCombiner - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
- knnK - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
- KNNModel<T> - Class in org.tribuo.common.nearest
-
A k-nearest neighbours model.
- KNNModel.Backend - Enum in org.tribuo.common.nearest
-
The parallel backend for batch predictions.
- knnNumThreads - Variable in class org.tribuo.common.nearest.KNNClassifierOptions
- knnOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- KNNTrainer<T> - Class in org.tribuo.common.nearest
-
A
Trainer
for k-nearest neighbour models. - KNNTrainer(int, KNNTrainer.Distance, int, EnsembleCombiner<T>, KNNModel.Backend) - Constructor for class org.tribuo.common.nearest.KNNTrainer
-
Creates a K-NN trainer using the supplied parameters.
- KNNTrainer.Distance - Enum in org.tribuo.common.nearest
-
The available distance functions.
L
- L1 - Enum constant in enum org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
L1 (or Manhattan) distance.
- L1 - Enum constant in enum org.tribuo.common.nearest.KNNTrainer.Distance
-
L1 (or Manhattan) distance.
- l1Distance(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
The l1 or Manhattan distance between this vector and the other vector.
- l1Distance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
The l1 or Manhattan distance between this vector and the other vector.
- l1Distance(SGDVector) - Method in class org.tribuo.math.la.SparseVector
- L1R_L2LOSS_SVC - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L1-regularized L2-loss support vector classification
- L1R_LR - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L1-regularized logistic regression
- l1Ratio - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- L2 - Enum constant in enum org.tribuo.common.nearest.KNNTrainer.Distance
-
L2 (or Euclidean) distance.
- l2Distance(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Synonym for euclideanDistance.
- L2R_L1LOSS_SVC_DUAL - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L1-loss support vector classification (dual)
- L2R_L1LOSS_SVR_DUAL - Enum constant in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L1-loss support vector regression (dual)
- L2R_L2LOSS_SVC - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L2-loss support vector classification (primal)
- L2R_L2LOSS_SVC_DUAL - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized L2-loss support vector classification (dual)
- L2R_L2LOSS_SVR - Enum constant in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L2-loss support vector regression (primal)
- L2R_L2LOSS_SVR_DUAL - Enum constant in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
L2-regularized L2-loss support vector regression (dual)
- L2R_LR - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized logistic regression (primal)
- L2R_LR_DUAL - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
L2-regularized logistic regression (dual)
- label - Variable in class org.tribuo.classification.Label
-
The name of the label.
- Label - Class in org.tribuo.classification
-
An immutable multi-class classification label.
- Label(String) - Constructor for class org.tribuo.classification.Label
-
Builds a label with the sentinel score of Double.NaN.
- Label(String, double) - Constructor for class org.tribuo.classification.Label
-
Builds a label with the supplied string and score.
- LabelConfusionMatrix - Class in org.tribuo.classification.evaluation
-
A confusion matrix for
Label
s. - LabelConfusionMatrix(ImmutableOutputInfo<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Creates a confusion matrix from the supplied predictions and label info.
- LabelConfusionMatrix(Model<Label>, List<Prediction<Label>>) - Constructor for class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Creates a confusion matrix from the supplied predictions, using the label info from the supplied model.
- labelCounts - Variable in class org.tribuo.classification.LabelInfo
-
The occurrence counts of each label.
- labelCounts - Variable in class org.tribuo.multilabel.MultiLabelInfo
- LabelEvaluation - Interface in org.tribuo.classification.evaluation
-
Adds multi-class classification specific metrics to
ClassifierEvaluation
. - LabelEvaluationUtil - Class in org.tribuo.classification.evaluation
-
Static utility functions for calculating performance metrics on
Label
s. - LabelEvaluationUtil.PRCurve - Class in org.tribuo.classification.evaluation
-
Stores the Precision-Recall curve as three arrays: the precisions, the recalls, and the thresholds associated with those values.
- LabelEvaluationUtil.ROC - Class in org.tribuo.classification.evaluation
-
Stores the ROC curve as three arrays: the false positive rate, the true positive rate, and the thresholds associated with those rates.
- LabelEvaluator - Class in org.tribuo.classification.evaluation
- LabelEvaluator() - Constructor for class org.tribuo.classification.evaluation.LabelEvaluator
- LabelFactory - Class in org.tribuo.classification
-
A factory for making Label related classes.
- LabelFactory() - Constructor for class org.tribuo.classification.LabelFactory
-
Constructs a label factory.
- LabelFactory.LabelFactoryProvenance - Class in org.tribuo.classification
-
Provenance for
LabelFactory
. - LabelFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
-
Constructor used by the provenance serialization system.
- LabelFeatureExtractor - Interface in org.tribuo.classification.sequence.viterbi
-
A class for featurising labels from previous steps in Viterbi.
- LabelImpurity - Interface in org.tribuo.classification.dtree.impurity
-
Calculates a tree impurity score based on label counts, weighted label counts or a probability distribution.
- LabelInfo - Class in org.tribuo.classification
-
The base class for information about multi-class classification Labels.
- LabelledDataGenerator - Class in org.tribuo.classification.example
-
Generates three example train and test datasets, used for unit testing.
- LabelMetric - Class in org.tribuo.classification.evaluation
- LabelMetric(MetricTarget<Label>, String, ToDoubleBiFunction<MetricTarget<Label>, LabelMetric.Context>) - Constructor for class org.tribuo.classification.evaluation.LabelMetric
-
Construct a new
LabelMetric
for the supplied metric target, using the supplied function. - LabelMetric.Context - Class in org.tribuo.classification.evaluation
-
The context for a
LabelMetric
is aConfusionMatrix
. - LabelMetrics - Enum in org.tribuo.classification.evaluation
-
An enum of the default
LabelMetric
s supported by the multi-class classification evaluation package. - LabelObjective - Interface in org.tribuo.classification.sgd
-
An interface for single label prediction objectives.
- labels - Variable in class org.tribuo.classification.LabelInfo
-
The label domain.
- labels - Variable in class org.tribuo.classification.sgd.crf.Chunk
- labels - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
- labels - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
- labels - Variable in class org.tribuo.multilabel.MultiLabelInfo
- LabelSequenceEvaluation - Class in org.tribuo.classification.sequence
-
A class that can be used to evaluate a sequence label classification model element wise on a given set of data.
- LabelSequenceEvaluation(Map<MetricID<Label>, Double>, LabelMetric.Context, EvaluationProvenance) - Constructor for class org.tribuo.classification.sequence.LabelSequenceEvaluation
- LabelSequenceEvaluator - Class in org.tribuo.classification.sequence
-
A sequence evaluator for labels.
- LabelSequenceEvaluator() - Constructor for class org.tribuo.classification.sequence.LabelSequenceEvaluator
- LabelTransformer - Class in org.tribuo.interop.onnx
- LabelTransformer - Class in org.tribuo.interop.tensorflow
-
Can convert a
Label
into aTensor
containing a 32-bit integer and can convert a vector of 32-bit floats into aPrediction
or aLabel
. - LabelTransformer() - Constructor for class org.tribuo.interop.onnx.LabelTransformer
- LabelTransformer() - Constructor for class org.tribuo.interop.tensorflow.LabelTransformer
- lambda - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- lambda - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- lambda - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- languageTag - Variable in class org.tribuo.util.tokens.options.BreakIteratorTokenizerOptions
- LARS - Enum constant in enum org.tribuo.regression.slm.TrainTest.SLMType
- LARSLASSO - Enum constant in enum org.tribuo.regression.slm.TrainTest.SLMType
- LARSLassoTrainer - Class in org.tribuo.regression.slm
-
A trainer for a lasso linear regression model which uses LARS to construct the model.
- LARSLassoTrainer() - Constructor for class org.tribuo.regression.slm.LARSLassoTrainer
-
Constructs a lasso LARS trainer that selects all the features.
- LARSLassoTrainer(int) - Constructor for class org.tribuo.regression.slm.LARSLassoTrainer
-
Constructs a lasso LARS trainer for a linear model.
- LARSOptions() - Constructor for class org.tribuo.regression.slm.TrainTest.LARSOptions
- LARSTrainer - Class in org.tribuo.regression.slm
-
A trainer for a linear regression model which uses least angle regression.
- LARSTrainer() - Constructor for class org.tribuo.regression.slm.LARSTrainer
-
Constructs a least angle regression trainer that selects all the features.
- LARSTrainer(int) - Constructor for class org.tribuo.regression.slm.LARSTrainer
-
Constructs a least angle regression trainer for a linear model.
- LAST - Enum constant in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the last feature value in the list.
- lastIndexOf(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
- LeafNode<T> - Class in org.tribuo.common.tree
-
An immutable leaf
Node
that can create a prediction. - LeafNode(double, T, Map<String, T>, boolean) - Constructor for class org.tribuo.common.tree.LeafNode
-
Constructs a leaf node.
- learningRate - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- learningRate() - Method in class org.tribuo.math.optimisers.SGD
-
Override to provide a function which calculates the learning rate.
- leftMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseMatrix
- leftMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
- leftMultiply(SGDVector) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by a
SGDVector
returning a vector of the appropriate size. - leftMultiply(SGDVector) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- len - Variable in class org.tribuo.util.tokens.universal.Range
- length() - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
Returns the number of elements in this subsequence.
- length() - Method in class org.tribuo.util.tokens.Token
-
The number of characters in this token.
- length() - Method in class org.tribuo.util.tokens.universal.Range
- lessThanOrEqual - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- LIBLINEAR - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- LibLinearClassificationModel - Class in org.tribuo.classification.liblinear
-
A
Model
which wraps a LibLinear-java classification model. - LibLinearClassificationTrainer - Class in org.tribuo.classification.liblinear
-
A
Trainer
which wraps a liblinear-java classifier trainer. - LibLinearClassificationTrainer() - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer using the default values (L2R_L2LOSS_SVC_DUAL, 1, 0.1).
- LibLinearClassificationTrainer(LinearClassificationType, double, double) - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer for a LibLinearClassificationModel.
- LibLinearClassificationTrainer(LinearClassificationType, double, int, double) - Constructor for class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Creates a trainer for a LibLinear model
- LibLinearModel<T> - Class in org.tribuo.common.liblinear
-
A
Model
which wraps a LibLinear-java model. - LibLinearModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, List<Model>) - Constructor for class org.tribuo.common.liblinear.LibLinearModel
-
Constructs a LibLinear model from the supplied arguments.
- liblinearOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- libLinearOptions - Variable in class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- LibLinearOptions - Class in org.tribuo.classification.liblinear
-
Command line options for working with a classification liblinear model.
- LibLinearOptions() - Constructor for class org.tribuo.classification.liblinear.LibLinearOptions
- LibLinearOptions() - Constructor for class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- LibLinearOptions() - Constructor for class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- libLinearParams - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- LibLinearRegressionModel - Class in org.tribuo.regression.liblinear
-
A
Model
which wraps a LibLinear-java model. - LibLinearRegressionTrainer - Class in org.tribuo.regression.liblinear
-
A
Trainer
which wraps a liblinear-java regression trainer. - LibLinearRegressionTrainer() - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Creates a trainer using the default values (L2R_L2LOSS_SVR, 1, 1000, 0.1, 0.1).
- LibLinearRegressionTrainer(LinearRegressionType) - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- LibLinearRegressionTrainer(LinearRegressionType, double, int, double, double) - Constructor for class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Creates a trainer for a LibLinear model
- LibLinearTrainer<T> - Class in org.tribuo.common.liblinear
-
A
Trainer
which wraps a liblinear-java trainer. - LibLinearTrainer() - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
- LibLinearTrainer(LibLinearType<T>, double, int, double) - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
-
Creates a trainer for a LibLinear model
- LibLinearTrainer(LibLinearType<T>, double, int, double, double) - Constructor for class org.tribuo.common.liblinear.LibLinearTrainer
-
Creates a trainer for a LibLinear model
- LibLinearType<T> - Interface in org.tribuo.common.liblinear
-
A carrier type for the liblinear algorithm type.
- LIBSVM - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- LIBSVM - Enum constant in enum org.tribuo.data.DataOptions.InputFormat
- LibSVMAnomalyModel - Class in org.tribuo.anomaly.libsvm
-
A anomaly detection model that uses an underlying libSVM model to make the predictions.
- LibSVMAnomalyTrainer - Class in org.tribuo.anomaly.libsvm
-
A trainer for anomaly models that uses LibSVM.
- LibSVMAnomalyTrainer() - Constructor for class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
For OLCUT.
- LibSVMAnomalyTrainer(SVMParameters<Event>) - Constructor for class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Creates a one-class LibSVM trainer using the supplied parameters.
- LibSVMClassificationModel - Class in org.tribuo.classification.libsvm
-
A classification model that uses an underlying LibSVM model to make the predictions.
- LibSVMClassificationTrainer - Class in org.tribuo.classification.libsvm
-
A trainer for classification models that uses LibSVM.
- LibSVMClassificationTrainer() - Constructor for class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- LibSVMClassificationTrainer(SVMParameters<Label>) - Constructor for class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- LibSVMDataSource<T> - Class in org.tribuo.datasource
-
A DataSource which can read LibSVM formatted data.
- LibSVMDataSource(URL, OutputFactory<T>) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied URL and output factory.
- LibSVMDataSource(URL, OutputFactory<T>, boolean, int) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied URL and output factory.
- LibSVMDataSource(Path, OutputFactory<T>) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied path and output factory.
- LibSVMDataSource(Path, OutputFactory<T>, boolean, int) - Constructor for class org.tribuo.datasource.LibSVMDataSource
-
Constructs a LibSVMDataSource from the supplied path and output factory.
- LibSVMDataSource.LibSVMDataSourceProvenance - Class in org.tribuo.datasource
-
The provenance for a
LibSVMDataSource
. - LibSVMDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.datasource.LibSVMDataSource.LibSVMDataSourceProvenance
-
Constructs a provenance during unmarshalling.
- LibSVMModel<T> - Class in org.tribuo.common.libsvm
-
A model that uses an underlying libSVM model to make the predictions.
- LibSVMModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, List<svm_model>) - Constructor for class org.tribuo.common.libsvm.LibSVMModel
-
Constructs a LibSVMModel from the supplied arguments.
- libsvmOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- libsvmOptions - Variable in class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- LibSVMOptions - Class in org.tribuo.classification.libsvm
-
CLI options for training a LibSVM classification model.
- LibSVMOptions() - Constructor for class org.tribuo.classification.libsvm.LibSVMOptions
- LibSVMRegressionModel - Class in org.tribuo.regression.libsvm
-
A regression model that uses an underlying libSVM model to make the predictions.
- LibSVMRegressionTrainer - Class in org.tribuo.regression.libsvm
-
A trainer for regression models that uses LibSVM.
- LibSVMRegressionTrainer() - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
For olcut.
- LibSVMRegressionTrainer(SVMParameters<Regressor>) - Constructor for class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- LibSVMTrainer<T> - Class in org.tribuo.common.libsvm
-
A trainer that will train using libsvm's Java implementation.
- LibSVMTrainer() - Constructor for class org.tribuo.common.libsvm.LibSVMTrainer
-
For olcut.
- LibSVMTrainer(SVMParameters<T>) - Constructor for class org.tribuo.common.libsvm.LibSVMTrainer
-
Constructs a LibSVMTrainer from the parameters.
- LIMEBase - Class in org.tribuo.classification.explanations.lime
-
LIMEBase merges the lime_base.py and lime_tabular.py implementations, and deals with simple matrices of numerical or categorical data.
- LIMEBase(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int) - Constructor for class org.tribuo.classification.explanations.lime.LIMEBase
-
Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).
- LIMEColumnar - Class in org.tribuo.classification.explanations.lime
-
Uses the columnar data processing infrastructure to mix text and tabular data.
- LIMEColumnar(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int, RowProcessor<Label>, Tokenizer) - Constructor for class org.tribuo.classification.explanations.lime.LIMEColumnar
-
Constructs a LIME explainer for a model which uses the columnar data processing system.
- LIMEExplanation - Class in org.tribuo.classification.explanations.lime
-
An
Explanation
using LIME. - LIMEExplanation(SparseModel<Regressor>, Prediction<Label>, RegressionEvaluation) - Constructor for class org.tribuo.classification.explanations.lime.LIMEExplanation
- LIMEText - Class in org.tribuo.classification.explanations.lime
-
Uses a Tribuo
TextFeatureExtractor
to explain the prediction for a given piece of text. - LIMEText(SplittableRandom, Model<Label>, SparseTrainer<Regressor>, int, TextFeatureExtractor<Label>, Tokenizer) - Constructor for class org.tribuo.classification.explanations.lime.LIMEText
-
Constructs a LIME explainer for a model which uses text data.
- LIMETextCLI - Class in org.tribuo.classification.explanations.lime
-
A CLI for interacting with
LIMEText
. - LIMETextCLI() - Constructor for class org.tribuo.classification.explanations.lime.LIMETextCLI
- LIMETextCLI.LIMETextCLIOptions - Class in org.tribuo.classification.explanations.lime
- LIMETextCLIOptions() - Constructor for class org.tribuo.classification.explanations.lime.LIMETextCLI.LIMETextCLIOptions
- Linear - Class in org.tribuo.math.kernel
-
A linear kernel, u.dot(v).
- Linear() - Constructor for class org.tribuo.math.kernel.Linear
-
A linear kernel, u.dot(v).
- LINEAR - Enum constant in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
- LINEAR - Enum constant in enum org.tribuo.common.libsvm.KernelType
-
A linear kernel function (i.e., a dot product).
- LINEAR - Enum constant in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
A boosted linear model.
- LINEAR - Enum constant in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Squared error loss function.
- LinearClassificationType - Class in org.tribuo.classification.liblinear
-
The carrier type for liblinear classification modes.
- LinearClassificationType(LinearClassificationType.LinearType) - Constructor for class org.tribuo.classification.liblinear.LinearClassificationType
- LinearClassificationType.LinearType - Enum in org.tribuo.classification.liblinear
-
The different model types available for classification.
- LinearParameters - Class in org.tribuo.math
-
A Parameters for producing single label linear models.
- LinearParameters(int, int) - Constructor for class org.tribuo.math.LinearParameters
-
Constructor.
- LinearRegressionType - Class in org.tribuo.regression.liblinear
-
The carrier type for liblinear linear regression modes.
- LinearRegressionType(LinearRegressionType.LinearType) - Constructor for class org.tribuo.regression.liblinear.LinearRegressionType
- LinearRegressionType.LinearType - Enum in org.tribuo.regression.liblinear
-
The type of linear regression algorithm.
- LinearScalingTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which takes an observed distribution and rescales it so all values are between the desired min and max.
- LinearScalingTransformation() - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation
-
Defaults to zero - one.
- LinearScalingTransformation(double, double) - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation
- LinearScalingTransformation.LinearScalingTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
LinearScalingTransformation
. - LinearScalingTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.LinearScalingTransformation.LinearScalingTransformationProvenance
- LINEARSGD - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- LinearSGDModel - Class in org.tribuo.classification.sgd.linear
-
The inference time version of a linear model trained using SGD.
- LinearSGDModel - Class in org.tribuo.regression.sgd.linear
-
The inference time version of a linear model trained using SGD.
- linearSGDOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- LinearSGDOptions - Class in org.tribuo.classification.sgd.linear
-
CLI options for training a linear classifier.
- LinearSGDOptions() - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDOptions
- LinearSGDOptions.LossEnum - Enum in org.tribuo.classification.sgd.linear
-
Available loss types.
- LinearSGDTrainer - Class in org.tribuo.classification.sgd.linear
-
A trainer for a linear model which uses SGD.
- LinearSGDTrainer - Class in org.tribuo.regression.sgd.linear
-
A trainer for a linear regression model which uses SGD.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Sets the minibatch size to 1.
- LinearSGDTrainer(LabelObjective, StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Sets the minibatch size to 1 and the logging interval to 1000.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Constructs an SGD trainer for a linear model.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Sets the minibatch size to 1.
- LinearSGDTrainer(RegressionObjective, StochasticGradientOptimiser, int, long) - Constructor for class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Sets the minibatch size to 1 and the logging interval to 1000.
- list - Variable in class org.tribuo.transform.TransformationMap.TransformationList
- ListDataSource<T> - Class in org.tribuo.datasource
-
A data source which wraps up a list of
Example
s along with theirDataSourceProvenance
and anOutputFactory
. - ListDataSource(List<Example<T>>, OutputFactory<T>, DataSourceProvenance) - Constructor for class org.tribuo.datasource.ListDataSource
- ListExample<T> - Class in org.tribuo.impl
-
This class will not be performant until value types are available in Java.
- ListExample(Example<T>) - Constructor for class org.tribuo.impl.ListExample
- ListExample(T) - Constructor for class org.tribuo.impl.ListExample
- ListExample(T, float) - Constructor for class org.tribuo.impl.ListExample
- ListExample(T, String[], double[]) - Constructor for class org.tribuo.impl.ListExample
- ListExample(T, List<? extends Feature>) - Constructor for class org.tribuo.impl.ListExample
- listIterator() - Method in class org.tribuo.util.infotheory.impl.RowList
- listIterator(int) - Method in class org.tribuo.util.infotheory.impl.RowList
- load(Path, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, Path, OutputFactory<Label>) - Static method in class org.tribuo.interop.tensorflow.TrainTest
- load(Path, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Path, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv file then wraps it in a dataset.
- load(Test.ConfigurableTestOptions) - Static method in class org.tribuo.classification.experiments.Test
- load(OutputFactory<T>) - Method in class org.tribuo.data.DataOptions
- loadDataset(CommandInterpreter, File) - Method in class org.tribuo.data.DatasetExplorer
- loadDataSource(URL, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(URL, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, String) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, String, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, Set<String>) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadDataSource(Path, Set<String>, String[]) - Method in class org.tribuo.data.csv.CSVLoader
-
Loads a DataSource from the specified csv path.
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.ModelExplorer
-
Loads a model.
- loadModel(CommandInterpreter, File) - Method in class org.tribuo.sequence.SequenceModelExplorer
- localValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainCliqueValues
- log - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Logs the inputs (base_e)
- log() - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that applies
Math.log(double)
. - LOG - Enum constant in enum org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
- LOG_2 - Static variable in class org.tribuo.util.infotheory.InformationTheory
- LOG_2 - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
- LOG_BASE - Static variable in class org.tribuo.util.infotheory.InformationTheory
-
Sets the base of the logarithm used in the information theoretic calculations.
- LOG_BASE - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Sets the base of the logarithm used in the information theoretic calculations.
- LOG_E - Static variable in class org.tribuo.util.infotheory.InformationTheory
- LOG_E - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
- loggingInterval - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- loggingInterval - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- loggingInterval - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- LogisticRegressionTrainer - Class in org.tribuo.classification.sgd.linear
-
A logistic regression trainer that uses a reasonable objective, optimiser, number of epochs and minibatch size.
- LogisticRegressionTrainer() - Constructor for class org.tribuo.classification.sgd.linear.LogisticRegressionTrainer
- logModel - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- LogMulticlass - Class in org.tribuo.classification.sgd.objectives
-
A multiclass version of the log loss.
- LogMulticlass() - Constructor for class org.tribuo.classification.sgd.objectives.LogMulticlass
- logVector(Logger, Level, double[]) - Static method in class org.tribuo.util.Util
- logVector(Logger, Level, float[]) - Static method in class org.tribuo.util.Util
- logZ - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
- LongPair() - Constructor for class org.tribuo.util.MurmurHash3.LongPair
- lookup(String) - Method in class org.tribuo.Example
-
Returns the Feature in this Example which has the supplied name, if it's present.
- lookup(String) - Method in class org.tribuo.impl.ArrayExample
- lookup(String) - Method in class org.tribuo.impl.BinaryFeaturesExample
- lookup(String) - Method in class org.tribuo.impl.ListExample
- loss - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.Huber
- loss(DenseVector, SGDVector) - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- loss(DenseVector, SGDVector) - Method in interface org.tribuo.regression.sgd.RegressionObjective
-
Scores a prediction, returning the loss.
M
- m - Variable in class org.tribuo.FeatureMap
-
Map from the feature names to their info.
- MACRO - Enum constant in enum org.tribuo.evaluation.metrics.EvaluationMetric.Average
- macroAveragedF1() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged F_1 across all the labels.
- macroAveragedF1() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroAveragedF1() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAveragedPrecision() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged precision.
- macroAveragedPrecision() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroAveragedPrecision() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAveragedRecall() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged recall.
- macroAveragedRecall() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroAveragedRecall() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroAverageTarget() - Static method in class org.tribuo.evaluation.metrics.MetricTarget
-
Get the singleton
MetricTarget
which contains theEvaluationMetric.Average.MACRO
. - macroFN() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of false negatives.
- macroFN() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroFN() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroFP() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of false positives, averaged across the labels.
- macroFP() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroFP() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroTN() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of true negatives.
- macroTN() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroTN() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- macroTP() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the macro averaged number of true positives, averaged across the labels.
- macroTP() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- macroTP() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- mae() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Mean Absolute Error for all dimensions.
- mae(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error based on the supplied statistics.
- mae(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Mean Absolute Error for that dimension.
- mae(Regressor, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error based on the supplied statistics for a single dimension.
- MAE - Enum constant in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Mean Absolute Error of the predictions.
- MAE - Enum constant in enum org.tribuo.regression.rtree.TrainTest.ImpurityType
- main(String[]) - Static method in class org.tribuo.classification.dtree.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.experiments.ConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.classification.experiments.RunAll
- main(String[]) - Static method in class org.tribuo.classification.experiments.Test
- main(String[]) - Static method in class org.tribuo.classification.experiments.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- main(String[]) - Static method in class org.tribuo.classification.liblinear.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.libsvm.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.mnb.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.crf.SeqTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.kernel.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.sgd.TrainTest
- main(String[]) - Static method in class org.tribuo.classification.xgboost.TrainTest
- main(String[]) - Static method in class org.tribuo.clustering.kmeans.TrainTest
- main(String[]) - Static method in class org.tribuo.data.CompletelyConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.data.ConfigurableTrainTest
- main(String[]) - Static method in class org.tribuo.data.DatasetExplorer
- main(String[]) - Static method in class org.tribuo.data.PreprocessAndSerialize
- main(String[]) - Static method in class org.tribuo.data.sql.SQLToCSV
-
Reads an SQL query from the standard input and writes the results of the query to the standard output.
- main(String[]) - Static method in class org.tribuo.data.text.SplitTextData
- main(String[]) - Static method in class org.tribuo.interop.tensorflow.TrainTest
- main(String[]) - Static method in class org.tribuo.json.StripProvenance
- main(String[]) - Static method in class org.tribuo.ModelExplorer
-
Entry point.
- main(String[]) - Static method in class org.tribuo.regression.liblinear.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.libsvm.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.rtree.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.sgd.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.slm.TrainTest
- main(String[]) - Static method in class org.tribuo.regression.xgboost.TrainTest
- main(String[]) - Static method in class org.tribuo.sequence.SequenceModelExplorer
- main(String[]) - Static method in class org.tribuo.util.infotheory.example.InformationTheoryDemo
- MAJOR_VERSION - Static variable in class org.tribuo.Tribuo
-
The major version number.
- makeIDInfo(int) - Method in class org.tribuo.CategoricalIDInfo
- makeIDInfo(int) - Method in class org.tribuo.CategoricalInfo
- makeIDInfo(int) - Method in class org.tribuo.RealIDInfo
- makeIDInfo(int) - Method in class org.tribuo.RealInfo
- makeIDInfo(int) - Method in interface org.tribuo.VariableInfo
-
Generates a VariableIDInfo subclass which represents the same feature.
- makeTokens() - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Make one or more tokens from our current collected characters.
- map(String, List<Feature>) - Method in interface org.tribuo.data.text.FeatureTransformer
-
Transforms features into a new list of features
- map(String, List<Feature>) - Method in class org.tribuo.data.text.impl.FeatureHasher
- mapScore - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
- mapValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
- MATCH_ALL - Enum constant in enum org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
- MATCH_CONTAINS - Enum constant in enum org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
- Matrix - Interface in org.tribuo.math.la
-
Interface for 2 dimensional
Tensor
s. - MatrixHeapMerger - Class in org.tribuo.math.util
- MatrixHeapMerger() - Constructor for class org.tribuo.math.util.MatrixHeapMerger
- MatrixIterator - Interface in org.tribuo.math.la
- matrixMultiply(Matrix) - Method in class org.tribuo.math.la.DenseMatrix
- matrixMultiply(Matrix) - Method in class org.tribuo.math.la.DenseSparseMatrix
- matrixMultiply(Matrix) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by another
Matrix
returning a matrix of the appropriate size. - matrixMultiply(Matrix, boolean, boolean) - Method in class org.tribuo.math.la.DenseMatrix
- matrixMultiply(Matrix, boolean, boolean) - Method in class org.tribuo.math.la.DenseSparseMatrix
- matrixMultiply(Matrix, boolean, boolean) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by another
Matrix
returning a matrix of the appropriate size. - MatrixTuple - Class in org.tribuo.math.la
-
A mutable tuple used to avoid allocation when iterating a matrix.
- MatrixTuple() - Constructor for class org.tribuo.math.la.MatrixTuple
- MatrixTuple(int, int, int) - Constructor for class org.tribuo.math.la.MatrixTuple
- max - Variable in class org.tribuo.RealInfo
-
The maximum observed feature value.
- max() - Static method in interface org.tribuo.util.Merger
-
A merger which takes the maximum element.
- MAX - Enum constant in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the maximum feature value in the list.
- maxDepth - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Maximum tree depth.
- maxIterations - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- maxIterations - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- maxMap - Variable in class org.tribuo.regression.RegressionInfo
- maxNumFeatures - Variable in class org.tribuo.regression.slm.SLMTrainer
- maxNumFeatures - Variable in class org.tribuo.regression.slm.TrainTest.LARSOptions
- maxTokenLength - Variable in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
The length of the longest token that we will generate.
- maxValue() - Method in class org.tribuo.math.la.DenseVector
- maxValue() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the maximum value.
- maxValue() - Method in class org.tribuo.math.la.SparseVector
- maxValue() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- MCSVM_CS - Enum constant in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
multi-class support vector classification by Crammer and Singer
- mean - Variable in class org.tribuo.RealInfo
-
The feature mean.
- mean(double[]) - Static method in class org.tribuo.util.Util
-
Returns the mean of the input array.
- mean(double[], int) - Static method in class org.tribuo.util.Util
- mean(Collection<V>) - Static method in class org.tribuo.util.Util
- MEAN - Enum constant in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the mean of the training data outputs.
- MeanAbsoluteError - Class in org.tribuo.regression.rtree.impurity
-
Measures the mean absolute error over a set of inputs.
- MeanAbsoluteError() - Constructor for class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- meanAndVariance(double[]) - Static method in class org.tribuo.util.Util
-
Returns the mean and variance of the input.
- meanAndVariance(double[], int) - Static method in class org.tribuo.util.Util
-
Returns the mean and variance of the input's first length elements.
- meanMap - Variable in class org.tribuo.regression.RegressionInfo
- MeanSquaredError - Class in org.tribuo.regression.rtree.impurity
-
Measures the mean squared error over a set of inputs.
- MeanSquaredError() - Constructor for class org.tribuo.regression.rtree.impurity.MeanSquaredError
- MeanStdDevTransformation - Class in org.tribuo.transform.transformations
-
A Transformation which takes an observed distribution and rescales it so it has the desired mean and standard deviation.
- MeanStdDevTransformation() - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation
-
Defaults to zero mean, one std dev.
- MeanStdDevTransformation(double, double) - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation
- MeanStdDevTransformation.MeanStdDevTransformationProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
MeanStdDevTransformation
. - MeanStdDevTransformationProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.MeanStdDevTransformation.MeanStdDevTransformationProvenance
- measureDistance(ImmutableFeatureMap, long, SparseVector, SparseVector) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Measures the distance between an input point and a sampled point.
- MEDIAN - Enum constant in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the median of the training data outputs.
- MEMBERS - Static variable in class org.tribuo.provenance.EnsembleModelProvenance
- merge(double, double) - Method in interface org.tribuo.util.Merger
-
Merges first and second.
- merge(List<int[]>, IntArrayContainer, IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Merges the list of int arrays into a single int array, using the two supplied buffers.
- merge(List<SparseVector>, int, int[], double[]) - Static method in class org.tribuo.math.util.HeapMerger
-
Merges a list of sparse vectors into a single sparse vector, summing the values.
- merge(IntArrayContainer, int[], IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Merges input and otherArray writing to output.
- merge(DenseSparseMatrix[]) - Method in class org.tribuo.math.util.HeapMerger
- merge(DenseSparseMatrix[]) - Method in class org.tribuo.math.util.MatrixHeapMerger
- merge(DenseSparseMatrix[]) - Method in interface org.tribuo.math.util.Merger
-
Merges an array of DenseSparseMatrix into a single DenseSparseMatrix.
- merge(SparseVector[]) - Method in class org.tribuo.math.util.HeapMerger
- merge(SparseVector[]) - Method in class org.tribuo.math.util.MatrixHeapMerger
- merge(SparseVector[]) - Method in interface org.tribuo.math.util.Merger
-
Merges an array of SparseVector into a single SparseVector.
- merge(Tensor[][], int) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- merge(Tensor[][], int) - Method in class org.tribuo.math.LinearParameters
- merge(Tensor[][], int) - Method in interface org.tribuo.math.Parameters
-
Merge together an array of gradient arrays.
- Merger - Interface in org.tribuo.math.util
-
An interface for merging an array of
DenseSparseMatrix
into a singleDenseSparseMatrix
. - Merger - Interface in org.tribuo.util
-
An interface which can merge double values.
- MessageDigestHasher - Class in org.tribuo.hash
-
Hashes Strings using the supplied MessageDigest type.
- MessageDigestHasher(String, String) - Constructor for class org.tribuo.hash.MessageDigestHasher
- MessageDigestHasher.MessageDigestHasherProvenance - Class in org.tribuo.hash
-
Provenance for
MessageDigestHasher
. - MessageDigestHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- metadata - Variable in class org.tribuo.Example
-
The example metadata.
- metadataName - Variable in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- MetricContext<T> - Class in org.tribuo.evaluation.metrics
-
The context for a metric or set of metrics.
- MetricContext(Model<T>, List<Prediction<T>>) - Constructor for class org.tribuo.evaluation.metrics.MetricContext
- MetricContext(SequenceModel<T>, List<Prediction<T>>) - Constructor for class org.tribuo.evaluation.metrics.MetricContext
- MetricID<T> - Class in org.tribuo.evaluation.metrics
-
Just an easier-to-read alias for
Pair<MetricTarget<T>, String>
. - MetricID(MetricTarget<T>, String) - Constructor for class org.tribuo.evaluation.metrics.MetricID
- MetricTarget<T> - Class in org.tribuo.evaluation.metrics
-
Used by a given
EvaluationMetric
to determine whether it should compute its value for a specificOutput
value or whether it should average them. - MetricTarget(EvaluationMetric.Average) - Constructor for class org.tribuo.evaluation.metrics.MetricTarget
-
Builds a metric target for an average.
- MetricTarget(T) - Constructor for class org.tribuo.evaluation.metrics.MetricTarget
-
Builds a metric target for an output.
- mi(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete weighted mutual information, using histogram probability estimators.
- mi(List<T1>, List<T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon mutual information, using histogram probability estimators.
- mi(Set<List<T1>>, Set<List<T2>>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the mutual information between the two sets of random variables.
- mi(PairDistribution<T1, T2>) - Static method in class org.tribuo.util.infotheory.InformationTheory
-
Calculates the discrete Shannon mutual information, using histogram probability estimators.
- mi(PairDistribution<T1, T2>, Map<?, Double>, WeightedInformationTheory.VariableSelector) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- mi(WeightedPairDistribution<T1, T2>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
- MICRO - Enum constant in enum org.tribuo.evaluation.metrics.EvaluationMetric.Average
- microAveragedF1() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged F_1 across all labels.
- microAveragedF1() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- microAveragedF1() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAveragedPrecision() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged precision.
- microAveragedPrecision() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- microAveragedPrecision() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAveragedRecall() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro averaged recall.
- microAveragedRecall() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- microAveragedRecall() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- microAverageTarget() - Static method in class org.tribuo.evaluation.metrics.MetricTarget
-
Get the singleton
MetricTarget
which contains theEvaluationMetric.Average.MICRO
. - min - Variable in class org.tribuo.RealInfo
-
The minimum observed feature value.
- min() - Static method in interface org.tribuo.util.Merger
-
A merger which takes the minimum element.
- MIN - Enum constant in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Select the minimum feature value in the list.
- MIN_EXAMPLES - Static variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Default minimum weight of examples allowed in a leaf node.
- MIN_LENGTH - Static variable in class org.tribuo.hash.Hasher
-
The minimum length of the salt.
- minChildWeight - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
-
Minimum weight of examples allowed in a leaf.
- minChildWeight - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- minCount - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- minCount - Variable in class org.tribuo.data.DataOptions
- minCount(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- minCount(CommandInterpreter, int) - Method in class org.tribuo.data.DatasetExplorer
- minCount(CommandInterpreter, int) - Method in class org.tribuo.ModelExplorer
-
Shows the number of features which occurred more than min count times.
- minCount(CommandInterpreter, int) - Method in class org.tribuo.sequence.SequenceModelExplorer
- minibatchSize - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- minibatchSize - Variable in class org.tribuo.regression.sgd.TrainTest.SGDOptions
- MinimumCardinalityDataset<T> - Class in org.tribuo.dataset
-
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.
- MinimumCardinalityDataset(Dataset<T>, int) - Constructor for class org.tribuo.dataset.MinimumCardinalityDataset
- MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance - Class in org.tribuo.dataset
-
Provenance for
MinimumCardinalityDataset
. - MinimumCardinalityDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.dataset.MinimumCardinalityDataset.MinimumCardinalityDatasetProvenance
- MinimumCardinalitySequenceDataset<T> - Class in org.tribuo.sequence
-
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.
- MinimumCardinalitySequenceDataset(SequenceDataset<T>, int) - Constructor for class org.tribuo.sequence.MinimumCardinalitySequenceDataset
- MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance - Class in org.tribuo.sequence
-
Provenance for
MinimumCardinalitySequenceDataset
. - MinimumCardinalitySequenceDatasetProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.sequence.MinimumCardinalitySequenceDataset.MinimumCardinalitySequenceDatasetProvenance
- minMap - Variable in class org.tribuo.regression.RegressionInfo
- MINOR_VERSION - Static variable in class org.tribuo.Tribuo
-
The minor version number.
- minValue() - Method in class org.tribuo.math.la.DenseVector
- minValue() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the minimum value.
- minValue() - Method in class org.tribuo.math.la.SparseVector
- minValue() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- minWeight - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- minWeight - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- mkTrainingNode(Dataset<Label>) - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- mkTrainingNode(Dataset<Regressor>) - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- mkTrainingNode(Dataset<Regressor>) - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- mkTrainingNode(Dataset<T>) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- MNB - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- mnbAlpha - Variable in class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
- mnbOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- mnbOptions - Variable in class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- MOD - Enum constant in enum org.tribuo.hash.HashingOptions.ModelHashingType
- model - Variable in class org.tribuo.common.xgboost.XGBoostExternalModel
-
Transient as we rely upon the native serialisation mechanism to bytes rather than Java serializing the Booster.
- Model<T> - Class in org.tribuo
-
A prediction model, which is used to predict outputs for unseen instances.
- Model(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean) - Constructor for class org.tribuo.Model
-
Constructs a new model, storing the supplied fields.
- MODEL_FILENAME - Static variable in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
- modelDescription(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- modelDescription(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
- ModelExplorer - Class in org.tribuo
-
A command line interface for loading in models and inspecting their feature and output spaces.
- ModelExplorer() - Constructor for class org.tribuo.ModelExplorer
-
Builds a new model explorer shell.
- ModelExplorer.ModelExplorerOptions - Class in org.tribuo
-
CLI options for
ModelExplorer
. - ModelExplorerOptions() - Constructor for class org.tribuo.ModelExplorer.ModelExplorerOptions
- modelFilename - Variable in class org.tribuo.classification.explanations.lime.LIMETextCLI.LIMETextCLIOptions
- modelFilename - Variable in class org.tribuo.data.DatasetExplorer.DatasetExplorerOptions
- modelFilename - Variable in class org.tribuo.ModelExplorer.ModelExplorerOptions
-
Model file to load.
- modelFilename - Variable in class org.tribuo.sequence.SequenceModelExplorer.SequenceModelExplorerOptions
- modelHashingAlgorithm - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- modelHashingAlgorithm - Variable in class org.tribuo.hash.HashingOptions
- modelHashingSalt - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- modelHashingSalt - Variable in class org.tribuo.hash.HashingOptions
- modelPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- modelProvenance(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the model provenance.
- ModelProvenance - Class in org.tribuo.provenance
-
Contains provenance information for an instance of a
Model
. - ModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance) - Constructor for class org.tribuo.provenance.ModelProvenance
- ModelProvenance(String, OffsetDateTime, DatasetProvenance, TrainerProvenance, Map<String, Provenance>) - Constructor for class org.tribuo.provenance.ModelProvenance
- ModelProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.ModelProvenance
- models - Variable in class org.tribuo.common.liblinear.LibLinearModel
-
The list of LibLinear models.
- models - Variable in class org.tribuo.common.libsvm.LibSVMModel
-
The LibSVM models.
- models - Variable in class org.tribuo.common.xgboost.XGBoostModel
-
The XGBoost4J Boosters.
- models - Variable in class org.tribuo.ensemble.EnsembleModel
- ModHashCodeHasher - Class in org.tribuo.hash
-
Hashes names using String.hashCode(), then reduces the dimension.
- ModHashCodeHasher(int, String) - Constructor for class org.tribuo.hash.ModHashCodeHasher
- ModHashCodeHasher(String) - Constructor for class org.tribuo.hash.ModHashCodeHasher
- ModHashCodeHasher.ModHashCodeHasherProvenance - Class in org.tribuo.hash
-
Provenance for the
ModHashCodeHasher
. - ModHashCodeHasherProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- momentum - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- MOST_FREQUENT - Enum constant in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the most frequent training label.
- MSE - Enum constant in enum org.tribuo.regression.rtree.TrainTest.ImpurityType
- mStep(ForkJoinPool, DenseVector[], Map<Integer, List<Integer>>, SparseVector[], double[]) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- mul - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Multiplies by the specified constant.
- mul(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that multiplies each value by the operand.
- multiDimDenseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
- multiDimDenseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.
- multiDimSparseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
- multiDimSparseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- MultiLabel - Class in org.tribuo.multilabel
-
A class for multi-label classification.
- MultiLabel(String) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel with a single String label.
- MultiLabel(Set<Label>) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel object from a Set of Labels.
- MultiLabel(Set<Label>, double) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel object from a Set of Labels, when the whole set has a score as well as (optionally) the individual labels.
- MultiLabel(Label) - Constructor for class org.tribuo.multilabel.MultiLabel
-
Builds a MultiLabel from a single Label.
- MultiLabelConfusionMatrix - Class in org.tribuo.multilabel.evaluation
-
A
ConfusionMatrix
which acceptsMultiLabel
s. - MultiLabelConfusionMatrix(Model<MultiLabel>, List<Prediction<MultiLabel>>) - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- MultiLabelDataGenerator - Class in org.tribuo.multilabel.example
-
Generates three example train and test datasets, used for unit testing.
- MultiLabelEvaluation - Interface in org.tribuo.multilabel.evaluation
-
A
MultiLabel
specificClassifierEvaluation
. - MultiLabelEvaluationImpl - Class in org.tribuo.multilabel.evaluation
-
The implementation of a
MultiLabelEvaluation
using the default metrics. - MultiLabelEvaluator - Class in org.tribuo.multilabel.evaluation
-
An
Evaluator
forMultiLabel
problems. - MultiLabelEvaluator() - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelEvaluator
- MultiLabelFactory - Class in org.tribuo.multilabel
-
A factory for generating MultiLabel objects and their associated OutputInfo and Evaluator objects.
- MultiLabelFactory() - Constructor for class org.tribuo.multilabel.MultiLabelFactory
-
Construct a MultiLabelFactory.
- MultiLabelFactory.MultiLabelFactoryProvenance - Class in org.tribuo.multilabel
-
Provenance for
MultiLabelFactory
. - MultiLabelFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
-
Constructs a multi-label factory provenance from the empty marshalled form.
- MultiLabelInfo - Class in org.tribuo.multilabel
-
The base class for information about
MultiLabel
outputs. - MultiLabelMetric - Class in org.tribuo.multilabel.evaluation
-
A
EvaluationMetric
for evaluatingMultiLabel
problems. - MultiLabelMetric(MetricTarget<MultiLabel>, String, BiFunction<MetricTarget<MultiLabel>, MultiLabelMetric.Context, Double>) - Constructor for class org.tribuo.multilabel.evaluation.MultiLabelMetric
- MultiLabelMetrics - Enum in org.tribuo.multilabel.evaluation
-
An enum of the default
MultiLabelMetric
s supported by the multi-label classification evaluation package. - MultinomialNaiveBayesModel - Class in org.tribuo.classification.mnb
-
A
Model
for multinomial Naive Bayes with Laplace smoothing. - MultinomialNaiveBayesOptions - Class in org.tribuo.classification.mnb
-
CLI options for a multinomial naive bayes model.
- MultinomialNaiveBayesOptions() - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesOptions
- MultinomialNaiveBayesTrainer - Class in org.tribuo.classification.mnb
-
A
Trainer
which trains a multinomial Naive Bayes model with Laplace smoothing. - MultinomialNaiveBayesTrainer() - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- MultinomialNaiveBayesTrainer(double) - Constructor for class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- MULTIPLY - Enum constant in enum org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
- MULTIPLY - Enum constant in enum org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Belief Propagation
- multiplyWeights(List<Prediction<Label>>, List<SUB>) - Static method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
-
A scoring method which multiplies together the per prediction scores.
- MurmurHash3 - Class in org.tribuo.util
-
The MurmurHash3 algorithm was created by Austin Appleby and placed in the public domain.
- MurmurHash3() - Constructor for class org.tribuo.util.MurmurHash3
- murmurhash3_x64_128(byte[], int, int, int, MurmurHash3.LongPair) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x64_128 hash, placing the result in "out".
- murmurhash3_x86_32(byte[], int, int, int) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x86_32 hash.
- murmurhash3_x86_32(CharSequence, int, int, int) - Static method in class org.tribuo.util.MurmurHash3
-
Returns the MurmurHash3_x86_32 hash of the UTF-8 bytes of the String without actually encoding the string to a temporary buffer.
- MurmurHash3.LongPair - Class in org.tribuo.util
-
128 bits of state
- MutableAnomalyInfo - Class in org.tribuo.anomaly
-
An
MutableOutputInfo
object forEvent
s. - MutableClusteringInfo - Class in org.tribuo.clustering
-
A mutable
ClusteringInfo
. - MutableDataset<T> - Class in org.tribuo
-
A MutableDataset is a
Dataset
with aMutableFeatureMap
which grows over time. - MutableDataset(Iterable<Example<T>>, DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates a dataset from a data source.
- MutableDataset(DataSource<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates a dataset from a data source.
- MutableDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.MutableDataset
-
Creates an empty dataset.
- MutableFeatureMap - Class in org.tribuo
-
A feature map that can record new feature value observations.
- MutableFeatureMap() - Constructor for class org.tribuo.MutableFeatureMap
-
Creates an empty feature map which converts high cardinality categorical variable infos into reals.
- MutableFeatureMap(boolean) - Constructor for class org.tribuo.MutableFeatureMap
-
Creates an empty feature map which can optionally convert high cardinality categorical variable infos into reals.
- MutableLabelInfo - Class in org.tribuo.classification
-
A mutable
LabelInfo
. - MutableLabelInfo(LabelInfo) - Constructor for class org.tribuo.classification.MutableLabelInfo
-
Constructs a mutable deep copy of the supplied label info.
- MutableMultiLabelInfo - Class in org.tribuo.multilabel
-
A MutableOutputInfo for working with multi-label tasks.
- MutableMultiLabelInfo(MultiLabelInfo) - Constructor for class org.tribuo.multilabel.MutableMultiLabelInfo
-
Construct a MutableMultiLabelInfo with it's state copied from another MultiLabelInfo.
- MutableOutputInfo<T> - Interface in org.tribuo
-
A mutable OutputInfo that can record observed output values.
- MutableRegressionInfo - Class in org.tribuo.regression
-
A
MutableOutputInfo
forRegressor
s. - MutableRegressionInfo(RegressionInfo) - Constructor for class org.tribuo.regression.MutableRegressionInfo
- MutableSequenceDataset<T> - Class in org.tribuo.sequence
-
A MutableSequenceDataset is a
SequenceDataset
with aMutableFeatureMap
which grows over time. - MutableSequenceDataset(Iterable<SequenceExample<T>>, DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Creates a dataset from a data source.
- MutableSequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
-
Creates an empty sequence dataset.
- MutableSequenceDataset(ImmutableSequenceDataset<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
- MutableSequenceDataset(SequenceDataSource<T>) - Constructor for class org.tribuo.sequence.MutableSequenceDataset
N
- name - Variable in class org.tribuo.Feature
-
The feature name.
- name - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
- name - Variable in class org.tribuo.Model
-
The model's name.
- name - Variable in class org.tribuo.sequence.SequenceModel
- name - Variable in class org.tribuo.SkeletalVariableInfo
-
The name of the feature.
- NAME - Static variable in class org.tribuo.Example
-
By convention the example name is stored using this metadata key.
- nameFeature(String, int) - Method in class org.tribuo.classification.explanations.lime.LIMEText
-
Generate the feature name by combining the word and index.
- nameFeature(String, String, int) - Method in class org.tribuo.classification.explanations.lime.LIMEColumnar
-
Generate the feature name by combining the word and index.
- NAMESPACE - Static variable in interface org.tribuo.data.columnar.FieldProcessor
-
The namespacing separator.
- NEGATIVE_LABEL - Static variable in class org.tribuo.multilabel.MultiLabel
-
A Label representing the binary negative label.
- NEGATIVE_LABEL_STRING - Static variable in class org.tribuo.multilabel.MultiLabel
- NESTEROV - Enum constant in enum org.tribuo.math.optimisers.SGD.Momentum
-
Nesterov momentum.
- newBooleanArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive boolean array of up to 8 dimensions, using the supplied shape.
- newByteArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive byte array of up to 8 dimensions, using the supplied shape.
- newCapacity(int) - Method in class org.tribuo.impl.ArrayExample
-
Returns a capacity at least as large as the given minimum capacity.
- newCapacity(int) - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Returns a capacity at least as large as the given minimum capacity.
- newDoubleArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive double array of up to 8 dimensions, using the supplied shape.
- newFloatArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive float array of up to 8 dimensions, using the supplied shape.
- newIntArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive int array of up to 8 dimensions, using the supplied shape.
- newLongArray(long[]) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Creates a new primitive long array of up to 8 dimensions, using the supplied shape.
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.LARSLassoTrainer
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.LARSTrainer
- newWeights(SLMTrainer.SLMState) - Method in class org.tribuo.regression.slm.SLMTrainer
- next() - Method in class org.tribuo.data.columnar.ColumnarIterator
- ngram - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- ngram - Variable in class org.tribuo.data.DataOptions
- NGRAM - Enum constant in enum org.tribuo.util.tokens.Token.TokenType
- NgramProcessor - Class in org.tribuo.data.text.impl
-
A text processor that will generate token ngrams of a particular size.
- NgramProcessor(Tokenizer, int, double) - Constructor for class org.tribuo.data.text.impl.NgramProcessor
-
Creates a processor that will generate token ngrams of size
n
. - Node<T> - Interface in org.tribuo.common.tree
-
A node in a decision tree.
- NON - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- NONE - Enum constant in enum org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
- NONE - Enum constant in enum org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
No confidence predction.
- NONE - Enum constant in enum org.tribuo.hash.HashingOptions.ModelHashingType
- NONE - Enum constant in enum org.tribuo.math.optimisers.SGD.Momentum
-
No momentum.
- NonTokenizer - Class in org.tribuo.util.tokens.impl
-
A convenience class for when you are required to provide a tokenizer but you don't actually want to split up the text into tokens.
- NonTokenizer() - Constructor for class org.tribuo.util.tokens.impl.NonTokenizer
- NoopFeatureExtractor - Class in org.tribuo.classification.sequence.viterbi
-
A label feature extractor that doesn't produce any label based features.
- NoopFeatureExtractor() - Constructor for class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- NoopNormalizer - Class in org.tribuo.math.util
-
NoopNormalizer returns a copy of the input, without normalizing it.
- NoopNormalizer() - Constructor for class org.tribuo.math.util.NoopNormalizer
- normaliseWeights(Map<T, WeightCountTuple>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Normalizes the weights in the map, i.e., divides each weight by it's count.
- normalize - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- normalize - Variable in class org.tribuo.regression.slm.SLMTrainer
- normalize(double[]) - Method in class org.tribuo.math.util.ExpNormalizer
- normalize(double[]) - Method in class org.tribuo.math.util.NoopNormalizer
- normalize(double[]) - Method in class org.tribuo.math.util.Normalizer
- normalize(double[]) - Method in interface org.tribuo.math.util.VectorNormalizer
-
Normalizes the input array in some fashion specified by the class.
- normalize(VectorNormalizer) - Method in class org.tribuo.math.la.DenseVector
- normalize(VectorNormalizer) - Method in interface org.tribuo.math.la.SGDVector
-
Normalizes the vector using the supplied vector normalizer.
- normalize(VectorNormalizer) - Method in class org.tribuo.math.la.SparseVector
- NORMALIZED_MI - Enum constant in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
The normalized mutual information between the two clusterings
- normalizedMI() - Method in interface org.tribuo.clustering.evaluation.ClusteringEvaluation
-
Calculates the normalized MI between the ground truth clustering ids and the predicted ones.
- normalizedMI(ClusteringMetric.Context) - Static method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
Calculates the normalized mutual information between two clusterings.
- Normalizer - Class in org.tribuo.math.util
-
Normalizes, but first subtracts the minimum value (to ensure positivity).
- Normalizer() - Constructor for class org.tribuo.math.util.Normalizer
- normalizeRows(VectorNormalizer) - Method in class org.tribuo.math.la.DenseMatrix
- normalizeToDistribution(double[]) - Static method in class org.tribuo.util.Util
- normalizeToDistribution(float[]) - Static method in class org.tribuo.util.Util
- nsplits - Variable in class org.tribuo.evaluation.KFoldSplitter
- NU_SVC - Enum constant in enum org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Classification SVM, optimization in dual space.
- NU_SVR - Enum constant in enum org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
optimization in dual space.
- numActiveElements() - Method in class org.tribuo.math.la.DenseVector
- numActiveElements() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the number of non-zero elements (on construction, an element could be set to zero and it would still remain active).
- numActiveElements() - Method in class org.tribuo.math.la.SparseVector
- numActiveElements(int) - Method in class org.tribuo.math.la.DenseMatrix
- numActiveElements(int) - Method in class org.tribuo.math.la.DenseSparseMatrix
- numActiveElements(int) - Method in interface org.tribuo.math.la.Matrix
-
The number of non-zero elements in that row.
- numExamples - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- numExamples(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
- numFeatures(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- numFeatures(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
- numFeatures(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the number of features.
- numFeatures(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
- numFolds - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- numMembers - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- numMembers - Variable in class org.tribuo.ensemble.BaggingTrainer
- numSamples - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- numStates - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
- numThreads - Variable in class org.tribuo.clustering.kmeans.KMeansOptions
- numThreads - Variable in class org.tribuo.clustering.kmeans.TrainTest.KMeansOptions
- numThreads - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- numThreads - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- numTrainingExamples - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- numTrees - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- numValidFeatures - Variable in class org.tribuo.common.xgboost.XGBoostTrainer.DMatrixTuple
O
- observe(double) - Method in class org.tribuo.CategoricalInfo
- observe(double) - Method in class org.tribuo.RealInfo
- observe(double) - Method in class org.tribuo.SkeletalVariableInfo
-
Records the value.
- observe(List<Prediction<T>>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Records all the supplied predictions.
- observe(Event) - Method in class org.tribuo.anomaly.MutableAnomalyInfo
- observe(Label) - Method in class org.tribuo.classification.MutableLabelInfo
- observe(ClusterID) - Method in class org.tribuo.clustering.MutableClusteringInfo
- observe(MultiLabel) - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
-
Throws IllegalStateException if the MultiLabel contains a Label which has a "," in it.
- observe(Prediction<T>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Records the supplied prediction.
- observe(Regressor) - Method in class org.tribuo.regression.MutableRegressionInfo
- observe(T) - Method in interface org.tribuo.MutableOutputInfo
-
Records an output value or statistics thereof.
- observedCount - Variable in class org.tribuo.CategoricalInfo
-
The count of the observed value if it's only seen a single one.
- observedValue - Variable in class org.tribuo.CategoricalInfo
-
The observed value if it's only seen a single one.
- observeSparse() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
No-op on this TransformStatistics.
- observeSparse() - Method in interface org.tribuo.transform.TransformStatistics
-
Observes a sparse (i.e., zero) value.
- observeSparse(int) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
No-op on this TransformStatistics.
- observeSparse(int) - Method in interface org.tribuo.transform.TransformStatistics
-
Observes
count
sparse values. - observeValue(double) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
No-op on this TransformStatistics.
- observeValue(double) - Method in interface org.tribuo.transform.TransformStatistics
-
Observes a value and updates the statistics.
- observeValue(double, int) - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Observes a value for this feature.
- ONE_CLASS - Enum constant in enum org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Anomaly detection SVM.
- oneNorm() - Method in class org.tribuo.math.la.DenseVector
- oneNorm() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the Manhattan norm for this vector.
- oneNorm() - Method in class org.tribuo.math.la.SparseVector
- OnlineEvaluator<T,
E> - Class in org.tribuo.evaluation -
An evaluator which aggregates predictions and produces
Evaluation
s covering all thePrediction
s it has seen or created. - OnlineEvaluator(Evaluator<T, E>, Model<T>, DataProvenance) - Constructor for class org.tribuo.evaluation.OnlineEvaluator
-
Constructs an
OnlineEvaluator
which accumulates predictions. - ONNXExternalModel<T> - Class in org.tribuo.interop.onnx
-
A Tribuo wrapper around a ONNX model.
- org.tribuo - package org.tribuo
-
Provides the core interfaces and classes for using Tribuo.
- org.tribuo.anomaly - package org.tribuo.anomaly
-
Provides classes and infrastructure for anomaly detection problems.
- org.tribuo.anomaly.evaluation - package org.tribuo.anomaly.evaluation
-
Evaluation classes for anomaly detection.
- org.tribuo.anomaly.example - package org.tribuo.anomaly.example
-
Provides a anomaly data generator used for testing implementations.
- org.tribuo.anomaly.libsvm - package org.tribuo.anomaly.libsvm
-
Provides an interface to LibSVM for anomaly detection problems.
- org.tribuo.classification - package org.tribuo.classification
-
Provides classes and infrastructure for multiclass classification problems.
- org.tribuo.classification.baseline - package org.tribuo.classification.baseline
-
Provides simple baseline multiclass classifiers.
- org.tribuo.classification.dtree - package org.tribuo.classification.dtree
-
Provides implementations of decision trees for classification problems.
- org.tribuo.classification.dtree.impl - package org.tribuo.classification.dtree.impl
-
Provides internal implementation classes for classification decision trees.
- org.tribuo.classification.dtree.impurity - package org.tribuo.classification.dtree.impurity
-
Provides classification impurity metrics for decision trees.
- org.tribuo.classification.ensemble - package org.tribuo.classification.ensemble
-
Provides majority vote ensemble combiners for classification along with an implementation of multiclass Adaboost.
- org.tribuo.classification.evaluation - package org.tribuo.classification.evaluation
-
Evaluation classes for multi-class classification.
- org.tribuo.classification.example - package org.tribuo.classification.example
-
Provides a multiclass data generator used for testing implementations.
- org.tribuo.classification.experiments - package org.tribuo.classification.experiments
-
Provides a set of main methods for interacting with classification tasks.
- org.tribuo.classification.explanations - package org.tribuo.classification.explanations
-
Provides core infrastructure for local model based explanations.
- org.tribuo.classification.explanations.lime - package org.tribuo.classification.explanations.lime
-
Provides an implementation of LIME (Locally Interpretable Model Explanations).
- org.tribuo.classification.liblinear - package org.tribuo.classification.liblinear
-
Provides an interface to LibLinear-java for classification problems.
- org.tribuo.classification.libsvm - package org.tribuo.classification.libsvm
-
Provides an interface to LibSVM for classification problems.
- org.tribuo.classification.mnb - package org.tribuo.classification.mnb
-
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
- org.tribuo.classification.sequence - package org.tribuo.classification.sequence
-
Provides infrastructure for
SequenceModel
s which emitLabel
s at each step of the sequence. - org.tribuo.classification.sequence.example - package org.tribuo.classification.sequence.example
-
Provides a classification sequence data generator for smoke testing implementations.
- org.tribuo.classification.sequence.viterbi - package org.tribuo.classification.sequence.viterbi
-
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label
based classification model. - org.tribuo.classification.sgd - package org.tribuo.classification.sgd
-
Provides infrastructure for Stochastic Gradient Descent for classification problems.
- org.tribuo.classification.sgd.crf - package org.tribuo.classification.sgd.crf
-
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
- org.tribuo.classification.sgd.kernel - package org.tribuo.classification.sgd.kernel
-
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
- org.tribuo.classification.sgd.linear - package org.tribuo.classification.sgd.linear
-
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
- org.tribuo.classification.sgd.objectives - package org.tribuo.classification.sgd.objectives
-
Provides classification loss functions for Stochastic Gradient Descent.
- org.tribuo.classification.xgboost - package org.tribuo.classification.xgboost
-
Provides an interface to XGBoost for classification problems.
- org.tribuo.clustering - package org.tribuo.clustering
-
Provides classes and infrastructure for working with clustering problems.
- org.tribuo.clustering.evaluation - package org.tribuo.clustering.evaluation
-
Evaluation classes for clustering.
- org.tribuo.clustering.example - package org.tribuo.clustering.example
-
Provides a clustering data generator used for testing implementations.
- org.tribuo.clustering.kmeans - package org.tribuo.clustering.kmeans
-
Provides a multithreaded implementation of K-Means, with a configurable distance function.
- org.tribuo.common.liblinear - package org.tribuo.common.liblinear
-
Provides base classes for using liblinear from Tribuo.
- org.tribuo.common.libsvm - package org.tribuo.common.libsvm
-
The base interface to LibSVM.
- org.tribuo.common.nearest - package org.tribuo.common.nearest
-
Provides a K-Nearest Neighbours implementation which works across all Tribuo
Output
types. - org.tribuo.common.tree - package org.tribuo.common.tree
-
Provides common functionality for building decision trees, irrespective of the predicted
Output
. - org.tribuo.common.tree.impl - package org.tribuo.common.tree.impl
-
Provides internal implementation classes for building decision trees.
- org.tribuo.common.xgboost - package org.tribuo.common.xgboost
-
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. - org.tribuo.data - package org.tribuo.data
-
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for things like cross-validation and train-test splits.
- org.tribuo.data.columnar - package org.tribuo.data.columnar
-
Provides classes for processing columnar data and generating
Example
s. - org.tribuo.data.columnar.extractors - package org.tribuo.data.columnar.extractors
-
Provides implementations of
FieldExtractor
. - org.tribuo.data.columnar.processors.feature - package org.tribuo.data.columnar.processors.feature
-
Provides implementations of
FeatureProcessor
. - org.tribuo.data.columnar.processors.field - package org.tribuo.data.columnar.processors.field
-
Provides implementations of
FieldProcessor
. - org.tribuo.data.columnar.processors.response - package org.tribuo.data.columnar.processors.response
-
Provides implementations of
ResponseProcessor
. - org.tribuo.data.csv - package org.tribuo.data.csv
-
Provides classes which can load columnar data (using a
RowProcessor
) from a CSV (or other character delimited format) file. - org.tribuo.data.sql - package org.tribuo.data.sql
-
Provides classes which can load columnar data (using a
RowProcessor
) from a SQL source. - org.tribuo.data.text - package org.tribuo.data.text
- org.tribuo.data.text.impl - package org.tribuo.data.text.impl
-
Provides implementations of text data processors.
- org.tribuo.dataset - package org.tribuo.dataset
-
Provides utility datasets which subsample or otherwise transform the wrapped dataset.
- org.tribuo.datasource - package org.tribuo.datasource
-
Simple data sources for ingesting or aggregating data.
- org.tribuo.ensemble - package org.tribuo.ensemble
-
Provides an interface for model prediction combinations, two base classes for ensemble models, a base class for ensemble excuses, and a Bagging implementation.
- org.tribuo.evaluation - package org.tribuo.evaluation
-
Evaluation base classes, along with code for train/test splits and cross validation.
- org.tribuo.evaluation.metrics - package org.tribuo.evaluation.metrics
-
This package contains the infrastructure classes for building evaluation metrics.
- org.tribuo.hash - package org.tribuo.hash
-
Provides the base interface and implementations of the
Model
hashing which obscures the feature names stored in a model. - org.tribuo.impl - package org.tribuo.impl
-
Provides implementations of base classes and interfaces from
org.tribuo
. - org.tribuo.interop - package org.tribuo.interop
-
This package contains the abstract implementation of an external model trained by something outside of Tribuo.
- org.tribuo.interop.onnx - package org.tribuo.interop.onnx
-
This package contains a Tribuo wrapper around the ONNX Runtime.
- org.tribuo.interop.tensorflow - package org.tribuo.interop.tensorflow
-
Provides an interface to Tensorflow, allowing the training of non-sequential models using any supported Tribuo output type.
- org.tribuo.interop.tensorflow.sequence - package org.tribuo.interop.tensorflow.sequence
-
Provides an interface for working with Tensorflow sequence models, using Tribuo's
SequenceModel
abstraction. - org.tribuo.json - package org.tribuo.json
-
Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
- org.tribuo.math - package org.tribuo.math
-
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of math related utils.
- org.tribuo.math.kernel - package org.tribuo.math.kernel
-
Provides a
Kernel
interface for Mercer kernels, along with implementations of standard kernels. - org.tribuo.math.la - package org.tribuo.math.la
-
Provides a linear algebra system used for numerical operations in Tribuo.
- org.tribuo.math.optimisers - package org.tribuo.math.optimisers
-
Provides implementations of
StochasticGradientOptimiser
. - org.tribuo.math.optimisers.util - package org.tribuo.math.optimisers.util
-
Provides some utility tensors for use in gradient optimisers.
- org.tribuo.math.util - package org.tribuo.math.util
-
Provides math related util classes.
- org.tribuo.multilabel - package org.tribuo.multilabel
-
Provides classes and infrastructure for working with multi-label classification problems.
- org.tribuo.multilabel.baseline - package org.tribuo.multilabel.baseline
- org.tribuo.multilabel.evaluation - package org.tribuo.multilabel.evaluation
-
Evaluation classes for multi-label classification using
MultiLabel
. - org.tribuo.multilabel.example - package org.tribuo.multilabel.example
-
Provides a multi-label data generator for testing implementations.
- org.tribuo.provenance - package org.tribuo.provenance
-
Provides Tribuo specific infrastructure for the
Provenance
system which tracks models and datasets. - org.tribuo.provenance.impl - package org.tribuo.provenance.impl
-
Provides internal implementations for empty provenance classes and TrainerProvenance.
- org.tribuo.regression - package org.tribuo.regression
-
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
- org.tribuo.regression.baseline - package org.tribuo.regression.baseline
-
Provides simple baseline regression predictors.
- org.tribuo.regression.ensemble - package org.tribuo.regression.ensemble
-
Provides
EnsembleCombiner
implementations for working with multi-output regression problems. - org.tribuo.regression.evaluation - package org.tribuo.regression.evaluation
-
Evaluation classes for single or multi-dimensional regression.
- org.tribuo.regression.example - package org.tribuo.regression.example
-
Provides some example regression data generators for testing implementations.
- org.tribuo.regression.impl - package org.tribuo.regression.impl
- org.tribuo.regression.liblinear - package org.tribuo.regression.liblinear
-
Provides an interface to liblinear for regression problems.
- org.tribuo.regression.libsvm - package org.tribuo.regression.libsvm
-
Provides an interface to LibSVM for regression problems.
- org.tribuo.regression.rtree - package org.tribuo.regression.rtree
-
Provides an implementation of decision trees for regression problems.
- org.tribuo.regression.rtree.impl - package org.tribuo.regression.rtree.impl
-
Provides internal implementation classes for the regression trees.
- org.tribuo.regression.rtree.impurity - package org.tribuo.regression.rtree.impurity
-
Provides implementations of regression tree impurity metrics.
- org.tribuo.regression.sgd - package org.tribuo.regression.sgd
-
Provides infrastructure for Stochastic Gradient Descent based regression models.
- org.tribuo.regression.sgd.linear - package org.tribuo.regression.sgd.linear
-
Provides an implementation of linear regression using Stochastic Gradient Descent.
- org.tribuo.regression.sgd.objectives - package org.tribuo.regression.sgd.objectives
-
Provides regression loss functions for Stochastic Gradient Descent.
- org.tribuo.regression.slm - package org.tribuo.regression.slm
-
Provides implementations of sparse linear regression using various forms of regularisation penalty.
- org.tribuo.regression.xgboost - package org.tribuo.regression.xgboost
-
Provides an interface to XGBoost for regression problems.
- org.tribuo.sequence - package org.tribuo.sequence
-
Provides core classes for working with sequences of
Example
s. - org.tribuo.tests - package org.tribuo.tests
-
This package provides helper classes for Tribuo's unit tests.
- org.tribuo.transform - package org.tribuo.transform
-
Provides infrastructure for applying transformations to a
Dataset
. - org.tribuo.transform.transformations - package org.tribuo.transform.transformations
-
Provides implementations of standard transformations like binning, scaling, taking logs and exponents.
- org.tribuo.util - package org.tribuo.util
-
Provides utilities which don't have other Tribuo dependencies.
- org.tribuo.util.infotheory - package org.tribuo.util.infotheory
-
This package provides static classes of information theoretic functions.
- org.tribuo.util.infotheory.example - package org.tribuo.util.infotheory.example
-
This package provides demos for the information theoretic function classes in
org.tribuo.util.infotheory
. - org.tribuo.util.infotheory.impl - package org.tribuo.util.infotheory.impl
-
This package provides the implementations and helper classes for the information theoretic functions in
org.tribuo.util.infotheory
. - org.tribuo.util.tokens - package org.tribuo.util.tokens
-
Core definitions for tokenization.
- org.tribuo.util.tokens.impl - package org.tribuo.util.tokens.impl
-
Simple fixed rule tokenizers.
- org.tribuo.util.tokens.options - package org.tribuo.util.tokens.options
-
OLCUT
Options
implementations which can constructTokenizer
s of various types. - org.tribuo.util.tokens.universal - package org.tribuo.util.tokens.universal
- outer(SGDVector) - Method in class org.tribuo.math.la.DenseVector
- outer(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Generates the matrix representing the outer product between the two vectors.
- outer(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
This generates the outer product when dotted with another
SparseVector
. - output - Variable in class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
- output - Variable in class org.tribuo.Example
-
The output associated with this example.
- Output<T> - Interface in org.tribuo
-
Output is the root interface for the supported prediction types.
- OUTPUT_FACTORY - Static variable in interface org.tribuo.provenance.DataSourceProvenance
- OUTPUT_FILE_MODIFIED_TIME - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- OUTPUT_NAME - Static variable in class org.tribuo.interop.tensorflow.TensorflowModel
- OUTPUT_RESOURCE_HASH - Static variable in class org.tribuo.datasource.IDXDataSource.IDXDataSourceProvenance
- outputCountsIterable() - Method in class org.tribuo.anomaly.AnomalyInfo
- outputCountsIterable() - Method in class org.tribuo.classification.LabelInfo
- outputCountsIterable() - Method in class org.tribuo.clustering.ClusteringInfo
- outputCountsIterable() - Method in class org.tribuo.multilabel.MultiLabelInfo
- outputCountsIterable() - Method in interface org.tribuo.OutputInfo
-
An Iterable over the possible outputs and the number of times they were observed.
- outputCountsIterable() - Method in class org.tribuo.regression.RegressionInfo
- outputFactory - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- outputFactory - Variable in class org.tribuo.data.text.DirectoryFileSource
-
The factory that converts a String into an
Output
. - outputFactory - Variable in class org.tribuo.data.text.TextDataSource
-
The factory that converts a String into an
Output
. - outputFactory - Variable in class org.tribuo.Dataset
-
A factory for making
OutputInfo
andOutput
of the appropriate type. - outputFactory - Variable in class org.tribuo.sequence.SequenceDataset
-
A factory for making
OutputInfo
andOutput
of the appropriate type. - OutputFactory<T> - Interface in org.tribuo
-
An interface associated with a specific
Output
, which can generate the appropriate Output subclass, andOutputInfo
subclass. - OutputFactoryProvenance - Interface in org.tribuo.provenance
-
A tag provenance for an output factory.
- outputID - Variable in class org.tribuo.impl.IndexedArrayExample
- outputIDInfo - Variable in class org.tribuo.ImmutableDataset
-
Output information, and id numbers for outputs found in this dataset.
- outputIDInfo - Variable in class org.tribuo.Model
-
The outputs this model predicts.
- outputIDInfo - Variable in class org.tribuo.sequence.ImmutableSequenceDataset
-
A map from labels to IDs for the labels found in this dataset.
- outputIDMap - Variable in class org.tribuo.sequence.SequenceModel
- outputInfo - Variable in class org.tribuo.sequence.MutableSequenceDataset
-
A map from labels to IDs for the labels found in this dataset.
- outputInfo(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- outputInfo(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
- outputInfo(CommandInterpreter) - Method in class org.tribuo.ModelExplorer
-
Displays the output info.
- outputInfo(CommandInterpreter) - Method in class org.tribuo.sequence.SequenceModelExplorer
- OutputInfo<T> - Interface in org.tribuo
-
Tracks relevant properties of the appropriate
Output
subclass. - outputMap - Variable in class org.tribuo.MutableDataset
-
Information about the outputs in this dataset.
- outputModel - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- outputPath - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- outputPath - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- outputPath - Variable in class org.tribuo.data.DataOptions
- outputPath - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- outputPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- outputRequired - Variable in class org.tribuo.data.columnar.ColumnarDataSource
- outputTransformer - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
- outputTransformer - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- OutputTransformer<T> - Interface in org.tribuo.interop.onnx
- OutputTransformer<T> - Interface in org.tribuo.interop.tensorflow
-
TensorFlow support is experimental, and may change without a major version bump.
- overallCount - Variable in class org.tribuo.regression.RegressionInfo
P
- pairDescendingValueComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by value.
- PairDistribution<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
A count distribution over
CachedPair
objects. - PairDistribution(long, LinkedHashMap<CachedPair<T1, T2>, MutableLong>, LinkedHashMap<T1, MutableLong>, LinkedHashMap<T2, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.PairDistribution
- PairDistribution(long, Map<CachedPair<T1, T2>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.PairDistribution
- pairIndexComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by index.
- pairValueComparator() - Static method in class org.tribuo.util.IntDoublePair
-
Compare pairs by value.
- paramAve - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- ParameterAveraging - Class in org.tribuo.math.optimisers
-
Averages the parameters across a gradient run.
- ParameterAveraging(StochasticGradientOptimiser) - Constructor for class org.tribuo.math.optimisers.ParameterAveraging
-
Adds parameter averaging around a gradient optimiser.
- parameters - Variable in class org.tribuo.common.libsvm.LibSVMTrainer
-
The SVM parameters suitable for use by LibSVM.
- parameters - Variable in class org.tribuo.common.libsvm.SVMParameters
- parameters - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- Parameters - Interface in org.tribuo.math
-
An interface to a
Tensor
[] array which accepts updates to the parameters. - paramName - Variable in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
- paramName - Variable in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
- parseElement(int, String) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- parseElement(String) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form:
- parseLine(String, int) - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- parseString(String) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form: dimension-name=output,...,dimension-name=output where output must be readable by
Boolean.parseBoolean(String)
. - parseString(String) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- parseString(String, char) - Static method in class org.tribuo.multilabel.MultiLabel
-
Parses a string of the form:
- parseString(String, char) - Static method in class org.tribuo.regression.Regressor
-
Parses a string of the form:
- partialExpandRegexMapping(Collection<String>) - Method in class org.tribuo.data.columnar.RowProcessor
-
Caveat Implementor! This method contains the logic of
RowProcessor.expandRegexMapping(org.tribuo.Model<T>)
without any of the checks that ensure the RowProcessor is in a valid state. - password - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- path - Variable in class org.tribuo.data.text.TextDataSource
-
The path that data was read from.
- Pegasos - Class in org.tribuo.math.optimisers
-
An implementation of the Pegasos gradient optimiser used primarily for solving the SVM problem.
- Pegasos(double, double) - Constructor for class org.tribuo.math.optimisers.Pegasos
- PEGASOS - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- PLACEHOLDER - Static variable in class org.tribuo.interop.tensorflow.TensorflowUtil
- POINT_VERSION - Static variable in class org.tribuo.Tribuo
-
The patch release number.
- POLY - Enum constant in enum org.tribuo.common.libsvm.KernelType
-
A polynomial kernel of the form (gamma*u'*v + coef0)^degree
- Polynomial - Class in org.tribuo.math.kernel
-
A polynomial kernel, (gamma*u.dot(v) + intercept)^degree.
- Polynomial(double, double, double) - Constructor for class org.tribuo.math.kernel.Polynomial
-
A polynomial kernel, (gamma*u.dot(v) + intercept)^degree.
- POLYNOMIAL - Enum constant in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
- postConfig() - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- postConfig() - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- postConfig() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- postConfig() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- postConfig() - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- postConfig() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.nearest.KNNTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- postConfig() - Method in class org.tribuo.common.tree.RandomForestTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.columnar.RowProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.csv.CSVDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.sql.SQLDBConfig
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.BasicPipeline
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.NgramProcessor
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.data.text.impl.TokenPipeline
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.datasource.IDXDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.datasource.LibSVMDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.ensemble.BaggingTrainer
- postConfig() - Method in class org.tribuo.hash.MessageDigestHasher
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.hash.ModHashCodeHasher
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.onnx.ImageTransformer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.ImageTransformer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- postConfig() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.json.JsonDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.math.optimisers.RMSProp
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.example.GaussianDataSource
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- postConfig() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- postConfig() - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.RegressionFactory
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- postConfig() - Method in class org.tribuo.regression.sgd.objectives.Huber
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- postConfig() - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.TransformationMap
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.BinningTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
-
Used by the OLCUT configuration system, and should not be called by external code.
- postConfig() - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Used by the OLCUT configuration system, and should not be called by external code.
- PRCurve(double[], double[], double[]) - Constructor for class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
- precision - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
- precision(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the precision based upon the supplied statistics.
- precision(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- precision(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the precision for this metric target.
- precision(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- precision(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the precision of this label, i.e., the number of true positives divided by the number of true positives plus false positives.
- PRECISION - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The precision, i.e., the true positives divided by the predicted positives.
- PRECISION - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The precision, i.e., the number of true positives divided by the number of predicted positives.
- PRECISION - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The precision, i.e., the number of true positives divided by the number of predicted positives.
- precisionRecallCurve(Label) - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Calculates the Precision Recall curve for a single label.
- precisionRecallCurve(Label, List<Prediction<Label>>) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
- predict(CommandInterpreter, String[]) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- predict(Iterable<Example<T>>) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Uses the model to predict the label for multiple examples.
- predict(Iterable<Example<T>>) - Method in class org.tribuo.Model
-
Uses the model to predict the output for multiple examples.
- predict(Iterable<SequenceExample<T>>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the output for multiple examples.
- predict(Dataset<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Uses the model to predict the labels for multiple examples contained in a data set.
- predict(Dataset<T>) - Method in class org.tribuo.Model
-
Uses the model to predict the outputs for multiple examples contained in a data set.
- predict(Dataset<T>) - Method in class org.tribuo.transform.TransformedModel
- predict(Example<Event>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyModel
- predict(Example<Label>) - Method in class org.tribuo.classification.baseline.DummyClassifierModel
- predict(Example<Label>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationModel
- predict(Example<Label>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationModel
- predict(Example<Label>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesModel
- predict(Example<Label>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMModel
- predict(Example<Label>) - Method in class org.tribuo.classification.sgd.linear.LinearSGDModel
- predict(Example<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansModel
- predict(Example<MultiLabel>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.baseline.DummyRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- predict(Example<Regressor>) - Method in class org.tribuo.regression.sgd.linear.LinearSGDModel
- predict(Example<T>) - Method in class org.tribuo.common.nearest.KNNModel
- predict(Example<T>) - Method in class org.tribuo.common.tree.TreeModel
- predict(Example<T>) - Method in class org.tribuo.common.xgboost.XGBoostModel
- predict(Example<T>) - Method in class org.tribuo.ensemble.WeightedEnsembleModel
- predict(Example<T>) - Method in class org.tribuo.interop.ExternalModel
- predict(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointModel
- predict(Example<T>) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
- predict(Example<T>) - Method in class org.tribuo.Model
-
Uses the model to predict the output for a single example.
- predict(Example<T>) - Method in class org.tribuo.transform.TransformedModel
- predict(SparseVector) - Method in class org.tribuo.math.LinearParameters
-
Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features.
- predict(SparseVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate a prediction using Viterbi.
- predict(SequenceDataset<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- predict(SequenceDataset<T>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the labels for multiple examples contained in a data set.
- predict(SequenceExample<Label>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiModel
- predict(SequenceExample<Label>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- predict(SequenceExample<T>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
- predict(SequenceExample<T>) - Method in class org.tribuo.sequence.SequenceModel
-
Uses the model to predict the output for a single example.
- predictAndObserve(Iterable<Example<T>>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Feeds the examples to the model, records the predictions and returns them.
- predictAndObserve(Example<T>) - Method in class org.tribuo.evaluation.OnlineEvaluator
-
Feeds the example to the model, records the prediction and returns it.
- predictConfidenceUsingCBP(SparseVector[], List<Chunk>) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
This predicts per chunk confidence using the constrained forward backward algorithm from Culotta and McCallum 2004.
- Prediction<T> - Class in org.tribuo
-
A prediction made by a
Model
. - Prediction(Prediction<T>, int, Example<T>) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- Prediction(T, int, Example<T>) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- Prediction(T, Map<String, T>, int, Example<T>, boolean) - Constructor for class org.tribuo.Prediction
-
Constructs a prediction from the supplied arguments.
- predictionPath - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- predictionPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- predictMarginals(SparseVector[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generate a prediction using Belief Propagation.
- predictOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceModel
- predictOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- PreprocessAndSerialize - Class in org.tribuo.data
-
Reads in a Datasource, processes all the data, and writes it out as a serialized dataset.
- PreprocessAndSerialize.PreprocessAndSerializeOptions - Class in org.tribuo.data
- PreprocessAndSerializeOptions() - Constructor for class org.tribuo.data.PreprocessAndSerialize.PreprocessAndSerializeOptions
- preprocessors - Variable in class org.tribuo.data.text.DirectoryFileSource
-
Document preprocessors that should be run on the documents that make up this data set.
- preprocessors - Variable in class org.tribuo.data.text.TextDataSource
-
Document preprocessors that should be run on the documents that make up this data set.
- preTrainingHook(Session, SequenceDataset<T>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- printFeatureMap(Map<String, List<Pair<String, Double>>>, List<String>, PrintStream) - Static method in class org.tribuo.util.HTMLOutput
- printTree - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- probability - Variable in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
- process(String) - Method in interface org.tribuo.data.columnar.FieldProcessor
-
Processes the field value and generates a (possibly empty) list of
ColumnarFeature
s. - process(String) - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- process(String) - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- process(String) - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Returns Optional.empty() if it failed to process out a response.
- process(String) - Method in class org.tribuo.data.text.impl.NgramProcessor
- process(String) - Method in interface org.tribuo.data.text.TextProcessor
-
Extracts features from the supplied text.
- process(String, String) - Method in class org.tribuo.data.text.impl.BasicPipeline
- process(String, String) - Method in class org.tribuo.data.text.impl.NgramProcessor
- process(String, String) - Method in class org.tribuo.data.text.impl.TokenPipeline
- process(String, String) - Method in interface org.tribuo.data.text.TextPipeline
-
Extracts a list of features from the supplied text, using the tag to prepend the feature names.
- process(String, String) - Method in interface org.tribuo.data.text.TextProcessor
-
Extracts features from the supplied text.
- process(List<ColumnarFeature>) - Method in interface org.tribuo.data.columnar.FeatureProcessor
-
Processes a list of
ColumnarFeature
s, transforming it by adding conjunctions or removing unnecessary features. - process(List<ColumnarFeature>) - Method in class org.tribuo.data.columnar.processors.feature.UniqueProcessor
- processDoc(String) - Method in interface org.tribuo.data.text.DocumentPreprocessor
-
Processes the content of part of a document stored as a string, returning a new string.
- processWeights(List<String>) - Static method in class org.tribuo.classification.experiments.ConfigurableTrainTest
-
Converts the weight text input format into an object suitable for use in a Trainer.
- protobufPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- provenance - Variable in class org.tribuo.data.text.impl.SimpleTextDataSource
- provenance - Variable in class org.tribuo.Model
-
The model provenance.
- provenanceFile - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- provenanceOutput - Variable in class org.tribuo.Model
-
The cached toString of the model provenance.
- provenanceOutput - Variable in class org.tribuo.sequence.SequenceModel
- punct(char, int) - Method in class org.tribuo.util.tokens.universal.Range
- PUNCTUATION - Enum constant in enum org.tribuo.util.tokens.Token.TokenType
- put(VariableInfo) - Method in class org.tribuo.MutableFeatureMap
-
Adds a variable info into the feature map.
Q
- Quartile - Class in org.tribuo.data.columnar.processors.response
-
A quartile to split data into 4 chunks.
- Quartile(double, double, double) - Constructor for class org.tribuo.data.columnar.processors.response.Quartile
-
Constructs a quartile with the specified values.
- QUARTILE - Enum constant in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the training data output at the specified fraction of the sorted output.
- QuartileResponseProcessor<T> - Class in org.tribuo.data.columnar.processors.response
-
Processes the response into quartiles and emits them as classification outputs.
- QuartileResponseProcessor(String, String, Quartile, OutputFactory<T>) - Constructor for class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Constructs a repsonse processor which emits 4 distinct bins for the output factory to process.
- quiet - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- quiet - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- QUOTE - Static variable in class org.tribuo.data.csv.CSVIterator
-
Default quote character.
R
- r2() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates R2 for all dimensions.
- r2(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates R^2 based on the supplied statistics.
- r2(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates R2 for the supplied dimension.
- r2(Regressor, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates R^2 based on the supplied statistics for a single dimension.
- R2 - Enum constant in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the R^2 of the predictions.
- RANDOM - Enum constant in enum org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
- RandomForestTrainer<T> - Class in org.tribuo.common.tree
-
A trainer which produces a random forest.
- RandomForestTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int) - Constructor for class org.tribuo.common.tree.RandomForestTrainer
-
Constructs a RandomForestTrainer with the default seed
Trainer.DEFAULT_SEED
. - RandomForestTrainer(DecisionTreeTrainer<T>, EnsembleCombiner<T>, int, long) - Constructor for class org.tribuo.common.tree.RandomForestTrainer
-
Constructs a RandomForestTrainer with the supplied seed, trainer, combining function and number of members.
- randperm(int, Random) - Static method in class org.tribuo.util.Util
-
Shuffles the indices in the range [0,size).
- randperm(int, SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles the indices in the range [0,size).
- randpermInPlace(int[], Random) - Static method in class org.tribuo.util.Util
-
Shuffles the input.
- randpermInPlace(int[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Shuffles the input.
- Range - Class in org.tribuo.util.tokens.universal
-
A range currently being segmented.
- rawLines - Variable in class org.tribuo.data.text.impl.SimpleStringDataSource
-
Used because OLCUT doesn't support generic Iterables.
- RBF - Class in org.tribuo.math.kernel
-
A Radial Basis Function (RBF) kernel, exp(-gamma*|u-v|^2).
- RBF - Enum constant in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
- RBF - Enum constant in enum org.tribuo.common.libsvm.KernelType
-
An RBF kernel of the form exp(-gamma*|u-v|^2)
- RBF(double) - Constructor for class org.tribuo.math.kernel.RBF
-
A Radial Basis Function (RBF) kernel, exp(-gamma*|u-v|^2).
- read() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- read() - Method in class org.tribuo.data.text.impl.SimpleTextDataSource
- read() - Method in class org.tribuo.data.text.TextDataSource
-
Reads the data from the Path.
- REAL - Enum constant in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Real valued features.
- RealIDInfo - Class in org.tribuo
-
Same as a
RealInfo
, but with an additional int id field. - RealIDInfo(String, int, double, double, double, double, int) - Constructor for class org.tribuo.RealIDInfo
-
Constructs a real id info from the supplied arguments.
- RealIDInfo(RealInfo, int) - Constructor for class org.tribuo.RealIDInfo
-
Constructs a deep copy of the supplied real info and id.
- RealInfo - Class in org.tribuo
-
Stores information about real valued features.
- RealInfo(String) - Constructor for class org.tribuo.RealInfo
-
Creates an empty real info with the supplied name.
- RealInfo(String, int) - Constructor for class org.tribuo.RealInfo
-
Creates a real info with the supplied starting conditions.
- RealInfo(String, int, double, double, double, double) - Constructor for class org.tribuo.RealInfo
-
Creates a real info with the supplied starting conditions.
- RealInfo(RealInfo) - Constructor for class org.tribuo.RealInfo
-
Copy constructor.
- RealInfo(RealInfo, String) - Constructor for class org.tribuo.RealInfo
-
Copy constructor which renames the feature.
- rebuild(OrtSession.SessionOptions) - Method in class org.tribuo.interop.onnx.ONNXExternalModel
-
Closes the session and rebuilds it using the supplied options.
- recall - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
- recall(double, double, double, double) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the recall based upon the supplied statistics.
- recall(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- recall(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Calculates the recall for this metric target.
- recall(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- recall(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the recall of this label, i.e., the number of true positives divided by the number of true positives plus false negatives.
- RECALL - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The recall, i.e., the true positives divided by the ground truth positives.
- RECALL - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The recall, i.e., the number of true positives divided by the number of ground truth positives.
- RECALL - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The recall, i.e., the number of true positives divided by the number of ground truth positives.
- reduce(double, DoubleUnaryOperator, DoubleBinaryOperator) - Method in class org.tribuo.math.la.DenseVector
-
Performs a reduction from left to right of this vector.
- reduceByName(Merger) - Method in class org.tribuo.Example
-
Merges features with the same name using the supplied
Merger
. - reduceByName(Merger) - Method in class org.tribuo.impl.ArrayExample
- reduceByName(Merger) - Method in class org.tribuo.impl.BinaryFeaturesExample
- reduceByName(Merger) - Method in class org.tribuo.impl.IndexedArrayExample
- reduceByName(Merger) - Method in class org.tribuo.impl.ListExample
- reduceByName(Merger) - Method in class org.tribuo.sequence.SequenceExample
-
Reduces the features in each example using the supplied
Merger
. - RegexFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which applies a regex to a field and generatesColumnarFeature
s based on the matches. - RegexFieldProcessor(String, String, EnumSet<RegexFieldProcessor.Mode>) - Constructor for class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Constructs a field processor which emits features when the field value matches the supplied regex.
- RegexFieldProcessor(String, Pattern, EnumSet<RegexFieldProcessor.Mode>) - Constructor for class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
-
Constructs a field processor which emits features when the field value matches the supplied regex.
- RegexFieldProcessor.Mode - Enum in org.tribuo.data.columnar.processors.field
-
Matching mode.
- regexMappingProcessors - Variable in class org.tribuo.data.columnar.RowProcessor
- RegressionDataGenerator - Class in org.tribuo.regression.example
-
Generates two example train and test datasets, used for unit testing.
- RegressionDataGenerator() - Constructor for class org.tribuo.regression.example.RegressionDataGenerator
- RegressionEvaluation - Interface in org.tribuo.regression.evaluation
-
Defines methods that calculate regression performance.
- RegressionEvaluator - Class in org.tribuo.regression.evaluation
- RegressionEvaluator() - Constructor for class org.tribuo.regression.evaluation.RegressionEvaluator
-
By default, don't use example weights.
- RegressionEvaluator(boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionEvaluator
-
Construct an evaluator.
- regressionFactory - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- RegressionFactory - Class in org.tribuo.regression
-
A factory for creating
Regressor
s andRegressionInfo
s. - RegressionFactory() - Constructor for class org.tribuo.regression.RegressionFactory
-
Builds a regression factory using the default split character
RegressionFactory.DEFAULT_SPLIT_CHAR
. - RegressionFactory(char) - Constructor for class org.tribuo.regression.RegressionFactory
-
Sets the split character used to parse
Regressor
instances from Strings. - RegressionFactory.RegressionFactoryProvenance - Class in org.tribuo.regression
-
Provenance for
RegressionFactory
. - RegressionFactoryProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
-
Constructs a provenance from it's marshalled form.
- RegressionInfo - Class in org.tribuo.regression
-
The base class for regression information using
Regressor
s. - RegressionMetric - Class in org.tribuo.regression.evaluation
-
A
EvaluationMetric
forRegressor
s which calculates the metric based on a the true values and the predicted values. - RegressionMetric(MetricTarget<Regressor>, String, ToDoubleBiFunction<MetricTarget<Regressor>, RegressionMetric.Context>) - Constructor for class org.tribuo.regression.evaluation.RegressionMetric
-
Construct a new
RegressionMetric
for the supplied metric target, using the supplied function. - RegressionMetric(MetricTarget<Regressor>, String, ToDoubleBiFunction<MetricTarget<Regressor>, RegressionMetric.Context>, boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionMetric
-
Construct a new
RegressionMetric
for the supplied metric target, using the supplied function. - RegressionMetrics - Enum in org.tribuo.regression.evaluation
-
An enum of the default
RegressionMetric
s supported by the multi-dimensional regression evaluation package. - RegressionObjective - Interface in org.tribuo.regression.sgd
-
An interface for regression objectives.
- RegressionSufficientStatistics - Class in org.tribuo.regression.evaluation
-
The sufficient statistics for regression metrics (i.e., each prediction and each true value).
- RegressionSufficientStatistics(ImmutableOutputInfo<Regressor>, List<Prediction<Regressor>>, boolean) - Constructor for class org.tribuo.regression.evaluation.RegressionSufficientStatistics
- Regressor - Class in org.tribuo.regression
-
An
Output
for n-dimensional real valued regression. - Regressor(String[], double[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied named values.
- Regressor(String[], double[], double[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied named values.
- Regressor(String, double) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor containing a single dimension, using
Double.NaN
as the variance. - Regressor(String, double, double) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor containing a single dimension.
- Regressor(Regressor.DimensionTuple[]) - Constructor for class org.tribuo.regression.Regressor
-
Constructs a regressor from the supplied dimension tuples.
- Regressor.DimensionTuple - Class in org.tribuo.regression
-
A
Regressor
which contains a single dimension, used internally when the model implementation doesn't natively support multi-dimensional regression outputs. - RegressorImpurity - Interface in org.tribuo.regression.rtree.impurity
-
Calculates a tree impurity score based on the regression targets.
- RegressorImpurity.ImpurityTuple - Class in org.tribuo.regression.rtree.impurity
-
Tuple class for the impurity and summed weight.
- RegressorTrainingNode - Class in org.tribuo.regression.rtree.impl
-
A decision tree node used at training time.
- RegressorTrainingNode(RegressorImpurity, RegressorTrainingNode.InvertedData, int, String, int, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Constructor for class org.tribuo.regression.rtree.impl.RegressorTrainingNode
- RegressorTrainingNode.InvertedData - Class in org.tribuo.regression.rtree.impl
-
Tuple containing an inverted dataset (i.e., feature-wise not exmaple-wise).
- RegressorTransformer - Class in org.tribuo.interop.onnx
- RegressorTransformer - Class in org.tribuo.interop.tensorflow
-
Can convert a
Regressor
to aTensor
containing a 32-bit float and a Tensor into aPrediction
or Regressor. - RegressorTransformer() - Constructor for class org.tribuo.interop.onnx.RegressorTransformer
- RegressorTransformer() - Constructor for class org.tribuo.interop.tensorflow.RegressorTransformer
- remove(int) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- remove(Object) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- removeAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- removeFeatures(List<Feature>) - Method in class org.tribuo.Example
-
Removes all features in this list from the Example.
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.ArrayExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.BinaryFeaturesExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.IndexedArrayExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.impl.ListExample
- removeFeatures(List<Feature>) - Method in class org.tribuo.sequence.SequenceExample
-
Removes the features in the supplied list from each example contained in this sequence.
- removeOther(IntArrayContainer, int[], IntArrayContainer) - Static method in class org.tribuo.common.tree.impl.IntArrayContainer
-
Copies from input to output excluding the values in otherArray.
- removeProvenances - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- rename(String) - Method in class org.tribuo.CategoricalIDInfo
- rename(String) - Method in class org.tribuo.CategoricalInfo
- rename(String) - Method in class org.tribuo.RealIDInfo
- rename(String) - Method in class org.tribuo.RealInfo
- rename(String) - Method in interface org.tribuo.VariableInfo
-
Rename generates a fresh VariableInfo with the new name.
- reset() - Method in class org.tribuo.math.optimisers.AdaDelta
- reset() - Method in class org.tribuo.math.optimisers.AdaGrad
- reset() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- reset() - Method in class org.tribuo.math.optimisers.Adam
- reset() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- reset() - Method in class org.tribuo.math.optimisers.Pegasos
- reset() - Method in class org.tribuo.math.optimisers.RMSProp
- reset() - Method in class org.tribuo.math.optimisers.SGD
- reset() - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Resets the optimiser so it's ready to optimise a new
Parameters
. - reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.BreakIteratorTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.NonTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.ShapeTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- reset(CharSequence) - Method in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
- reset(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Resets the tokenizer so that it operates on a new sequence of characters.
- reset(CharSequence) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Reset state of tokenizer to clean slate.
- reshape(int[]) - Method in class org.tribuo.math.la.DenseMatrix
- reshape(int[]) - Method in class org.tribuo.math.la.DenseSparseMatrix
- reshape(int[]) - Method in class org.tribuo.math.la.DenseVector
- reshape(int[]) - Method in class org.tribuo.math.la.SparseVector
- reshape(int[]) - Method in interface org.tribuo.math.la.Tensor
-
Reshapes the Tensor to the supplied shape.
- RESOURCE_HASH - Static variable in interface org.tribuo.provenance.DataSourceProvenance
- Resources - Class in org.tribuo.tests
-
Utils for working with classpath resources at test time.
- responseProcessor - Variable in class org.tribuo.data.columnar.RowProcessor
- ResponseProcessor<T> - Interface in org.tribuo.data.columnar
-
An interface that will take the response field and produce an
Output
. - ResultSetIterator - Class in org.tribuo.data.sql
-
An iterator over a ResultSet returned from JDBC.
- ResultSetIterator(ResultSet) - Constructor for class org.tribuo.data.sql.ResultSetIterator
- ResultSetIterator(ResultSet, int) - Constructor for class org.tribuo.data.sql.ResultSetIterator
- retainAll(Collection<?>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- RF - Enum constant in enum org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
- rho - Variable in class org.tribuo.math.optimisers.GradientOptimiserOptions
- rho - Variable in class org.tribuo.math.optimisers.SGD
- rightMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseMatrix
- rightMultiply(SGDVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
-
rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.
- rightMultiply(SGDVector) - Method in interface org.tribuo.math.la.Matrix
-
Multiplies this Matrix by a
SGDVector
returning a vector of the appropriate size. - rmse() - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the RMSE for all dimensions.
- rmse(MetricTarget<Regressor>, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the RMSE based on the supplied statistics.
- rmse(Regressor) - Method in interface org.tribuo.regression.evaluation.RegressionEvaluation
-
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.
- rmse(Regressor, RegressionSufficientStatistics) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the RMSE based on the supplied statistics for a single dimension.
- RMSE - Enum constant in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Calculates the Root Mean Squared Error of the predictions.
- RMSProp - Class in org.tribuo.math.optimisers
-
An implementation of the RMSProp gradient optimiser.
- RMSProp(double, double) - Constructor for class org.tribuo.math.optimisers.RMSProp
- RMSProp(double, double, double, double) - Constructor for class org.tribuo.math.optimisers.RMSProp
- RMSPROP - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- rng - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- rng - Variable in class org.tribuo.classification.explanations.lime.LIMEBase
- rng - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- rng - Variable in class org.tribuo.ensemble.BaggingTrainer
- rng - Variable in class org.tribuo.evaluation.KFoldSplitter
- rng - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- ROC(double[], double[], double[]) - Constructor for class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
- Row<T> - Class in org.tribuo.util.infotheory.impl
-
A row of values from a
RowList
. - Row(long, List<String>, Map<String, String>) - Constructor for class org.tribuo.data.columnar.ColumnarIterator.Row
- rowIterator() - Method in class org.tribuo.data.columnar.ColumnarDataSource
-
The iterator that emits
ColumnarIterator.Row
objects from the underlying data source. - rowIterator() - Method in class org.tribuo.data.csv.CSVDataSource
- rowIterator() - Method in class org.tribuo.data.sql.SQLDataSource
- rowIterator() - Method in class org.tribuo.json.JsonDataSource
- RowList<T> - Class in org.tribuo.util.infotheory.impl
-
An implementation of a List which wraps a set of lists.
- RowList(Set<List<T>>) - Constructor for class org.tribuo.util.infotheory.impl.RowList
- rowProcessor - Variable in class org.tribuo.data.columnar.ColumnarDataSource
- rowProcessor - Variable in class org.tribuo.data.DataOptions
- RowProcessor<T> - Class in org.tribuo.data.columnar
-
A processor which takes a Map of String to String and returns an
Example
. - RowProcessor() - Constructor for class org.tribuo.data.columnar.RowProcessor
-
For olcut.
- RowProcessor(List<FieldExtractor<?>>, FieldExtractor<Float>, ResponseProcessor<T>, Map<String, FieldProcessor>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(List<FieldExtractor<?>>, FieldExtractor<Float>, ResponseProcessor<T>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(ResponseProcessor<T>, Map<String, FieldProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- RowProcessor(ResponseProcessor<T>, Map<String, FieldProcessor>, Set<FeatureProcessor>) - Constructor for class org.tribuo.data.columnar.RowProcessor
-
Constructs a RowProcessor using the supplied responseProcessor to extract the response variable, and the supplied fieldProcessorMap to control which fields are parsed and how they are parsed.
- rowScaleInPlace(DenseVector) - Method in class org.tribuo.math.la.DenseMatrix
- rowScaleInPlace(DenseVector) - Method in class org.tribuo.math.la.DenseSparseMatrix
- rowScaleInPlace(DenseVector) - Method in interface org.tribuo.math.la.Matrix
-
Scales each row by the appropriate value in the
DenseVector
. - rowSum() - Method in class org.tribuo.math.la.DenseMatrix
- rowSum() - Method in class org.tribuo.math.la.DenseSparseMatrix
- rowSum() - Method in interface org.tribuo.math.la.Matrix
-
Generates a
DenseVector
representing the sum of each row. - rowSum(int) - Method in class org.tribuo.math.la.DenseMatrix
- rType - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- rType - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- run(ConfigurationManager, DataOptions, Trainer<Label>) - Static method in class org.tribuo.classification.TrainTestHelper
-
This method trains a model on the specified training data, and evaluates it on the specified test data.
- RunAll - Class in org.tribuo.classification.experiments
-
Trains and tests a model using the supplied data, for each trainer inside a configuration file.
- RunAll() - Constructor for class org.tribuo.classification.experiments.RunAll
- RunAll.RunAllOptions - Class in org.tribuo.classification.experiments
- RunAllOptions() - Constructor for class org.tribuo.classification.experiments.RunAll.RunAllOptions
S
- sampleData(String, List<Token>) - Method in class org.tribuo.classification.explanations.lime.LIMEText
-
Samples a new dataset from the input text.
- sampleFromCDF(double[], Random) - Static method in class org.tribuo.util.Util
-
Samples an index from the supplied cdf.
- sampleFromCDF(double[], SplittableRandom) - Static method in class org.tribuo.util.Util
-
Samples an index from the supplied cdf.
- sampleInts(Random, int, int) - Static method in class org.tribuo.util.Util
- samplePoint(Random, ImmutableFeatureMap, long, SparseVector) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Samples a single example from the supplied feature map and input vector.
- SAMPLES_RATIO - Static variable in class org.tribuo.util.infotheory.InformationTheory
- SAMPLES_RATIO - Static variable in class org.tribuo.util.infotheory.WeightedInformationTheory
- sampleStandardDeviation(Collection<V>) - Static method in class org.tribuo.util.Util
- sampleVariance(Collection<V>) - Static method in class org.tribuo.util.Util
- save(Path, boolean) - Method in class org.tribuo.datasource.IDXDataSource.IDXData
-
Writes out this IDXData to the specified path.
- save(Path, Dataset<T>, String) - Method in class org.tribuo.data.csv.CSVSaver
-
Saves the dataset to the specified path.
- save(Path, Dataset<T>, Set<String>) - Method in class org.tribuo.data.csv.CSVSaver
-
Saves the dataset to the specified path.
- saveCSV(CommandInterpreter, String) - Method in class org.tribuo.data.DatasetExplorer
- saveModel(Path, Model<Label>) - Static method in class org.tribuo.interop.tensorflow.TrainTest
- saveModel(Model<T>) - Method in class org.tribuo.data.DataOptions
- scalarAddInPlace(double) - Method in interface org.tribuo.math.la.Tensor
-
Adds
scalar
to each element of thisTensor
. - scale(double) - Method in class org.tribuo.math.la.DenseVector
- scale(double) - Method in interface org.tribuo.math.la.SGDVector
-
Generates a new vector with each element scaled by
coefficient
. - scale(double) - Method in class org.tribuo.math.la.SparseVector
- scaleInPlace(double) - Method in interface org.tribuo.math.la.Tensor
-
Scales each element of this
Tensor
bycoefficient
. - scaleInPlace(double) - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- scaleInPlace(double) - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- score - Variable in class org.tribuo.classification.Label
-
The score of the label.
- scoreChunks(SequenceExample<Label>, List<Chunk>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Scores the chunks using constrained belief propagation.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
Makes a prediction for a single dimension.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
Makes a prediction for a single dimension.
- scoreDimension(int, SparseVector) - Method in class org.tribuo.regression.slm.SparseLinearModel
- scores - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainBPResults
- scores - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainViterbiResults
- scoreSubsequences(SequenceExample<Label>, List<Prediction<Label>>, List<SUB>) - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel
-
The scoring function for the subsequences.
- scoreSubsequences(SequenceExample<Label>, List<Prediction<Label>>, List<SUB>) - Method in class org.tribuo.classification.sgd.crf.CRFModel
- SECOND - Enum constant in enum org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
- secondCount - Variable in class org.tribuo.util.infotheory.impl.PairDistribution
- secondDimensionName - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
- seed - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- seed - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- seed - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- seed - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- seed - Variable in class org.tribuo.data.DataOptions
- seed - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- seed - Variable in class org.tribuo.ensemble.BaggingTrainer
- seed - Variable in class org.tribuo.evaluation.KFoldSplitter
- seed - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- SEMICOLON - Enum constant in enum org.tribuo.data.DataOptions.Delimiter
- SEPARATOR - Static variable in class org.tribuo.data.csv.CSVIterator
-
Default separator character.
- SeqTest - Class in org.tribuo.classification.sgd.crf
-
Build and run a sequence classifier on a generated dataset.
- SeqTest() - Constructor for class org.tribuo.classification.sgd.crf.SeqTest
- SeqTest.CRFOptions - Class in org.tribuo.classification.sgd.crf
- SequenceDataGenerator - Class in org.tribuo.classification.sequence.example
-
A data generator for smoke testing sequence label models.
- SequenceDataset<T> - Class in org.tribuo.sequence
-
A class for sets of data, which are used to train and evaluate classifiers.
- SequenceDataset(DataProvenance, OutputFactory<T>) - Constructor for class org.tribuo.sequence.SequenceDataset
- SequenceDataSource<T> - Interface in org.tribuo.sequence
-
A interface for things that can be given to a SequenceDataset's constructor.
- SequenceEvaluation<T> - Interface in org.tribuo.sequence
-
An immutable evaluation of a specific sequence model and dataset.
- SequenceEvaluator<T,
E> - Interface in org.tribuo.sequence -
An evaluation factory which produces immutable
SequenceEvaluation
s of a givenSequenceDataset
using the givenSequenceModel
. - SequenceExample<T> - Class in org.tribuo.sequence
-
A sequence of examples, used for sequence classification.
- SequenceExample() - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates an empty sequence example.
- SequenceExample(List<Example<T>>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the list of examples.
- SequenceExample(List<Example<T>>, float) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the list of examples, setting the weight.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied outputs and list of list of features.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, boolean) - Constructor for class org.tribuo.sequence.SequenceExample
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, float) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a sequence example from the supplied weight, outputs and list of list of features.
- SequenceExample(List<T>, List<? extends List<? extends Feature>>, float, boolean) - Constructor for class org.tribuo.sequence.SequenceExample
- SequenceExample(SequenceExample<T>) - Constructor for class org.tribuo.sequence.SequenceExample
-
Creates a deep copy of the supplied sequence example.
- SequenceExampleArray(SparseVector[][], int[][], double[]) - Constructor for class org.tribuo.classification.sgd.Util.SequenceExampleArray
- SequenceExampleTransformer<T> - Interface in org.tribuo.interop.tensorflow.sequence
-
Converts a sequence example into a feed dict suitable for Tensorflow.
- SequenceModel<T> - Class in org.tribuo.sequence
-
A prediction model, which is used to predict outputs for unseen instances.
- SequenceModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>) - Constructor for class org.tribuo.sequence.SequenceModel
- SequenceModelExplorer - Class in org.tribuo.sequence
-
A CLI for interacting with a
SequenceModel
. - SequenceModelExplorer() - Constructor for class org.tribuo.sequence.SequenceModelExplorer
- SequenceModelExplorer.SequenceModelExplorerOptions - Class in org.tribuo.sequence
- SequenceModelExplorerOptions() - Constructor for class org.tribuo.sequence.SequenceModelExplorer.SequenceModelExplorerOptions
- SequenceOutputTransformer<T> - Interface in org.tribuo.interop.tensorflow.sequence
-
Converts a Tensorflow output tensor into a list of predictions, and a Tribuo sequence example into a Tensorflow tensor suitable for training.
- SequenceTrainer<T> - Interface in org.tribuo.sequence
-
An interface for things that can train sequence prediction models.
- serialise(Graph, Session) - Static method in class org.tribuo.interop.tensorflow.TensorflowUtil
-
Extracts a Map containing the name of each Tensorflow VariableV2 and the associated parameter array.
- SERIALIZED - Enum constant in enum org.tribuo.data.DataOptions.InputFormat
- set(char[], int, int) - Method in class org.tribuo.util.tokens.universal.Range
- set(char, char, int) - Method in class org.tribuo.util.tokens.universal.Range
- set(char, int) - Method in class org.tribuo.util.tokens.universal.Range
- set(int, double) - Method in class org.tribuo.math.la.DenseVector
- set(int, double) - Method in interface org.tribuo.math.la.SGDVector
-
Sets the
index
to thevalue
. - set(int, double) - Method in class org.tribuo.math.la.SparseVector
- set(int, int, double) - Method in class org.tribuo.math.la.DenseMatrix
- set(int, int, double) - Method in class org.tribuo.math.la.DenseSparseMatrix
- set(int, int, double) - Method in interface org.tribuo.math.la.Matrix
-
Sets an element at the supplied location.
- set(int, Row<T>) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- set(Feature) - Method in class org.tribuo.Example
-
Overwrites the feature with the matching name.
- set(Feature) - Method in class org.tribuo.impl.ArrayExample
- set(Feature) - Method in class org.tribuo.impl.BinaryFeaturesExample
- set(Feature) - Method in class org.tribuo.impl.ListExample
- set(Tensor[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- set(Tensor[]) - Method in class org.tribuo.math.LinearParameters
- set(Tensor[]) - Method in interface org.tribuo.math.Parameters
-
Set the underlying
Tensor
array to newWeights. - setBatchSize(int) - Method in class org.tribuo.interop.ExternalModel
-
Sets a new batch size.
- setBatchSize(int) - Method in class org.tribuo.interop.tensorflow.TensorflowModel
-
Sets a new batch size.
- setCacheSize(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setCoeff(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setConfidenceType(CRFModel.ConfidenceType) - Method in class org.tribuo.classification.sgd.crf.CRFModel
-
Sets the inference method used for confidence prediction.
- setCost(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setDegree(int) - Method in class org.tribuo.common.libsvm.SVMParameters
- setElements(DenseVector) - Method in class org.tribuo.math.la.DenseVector
-
Sets all the elements of this vector to be the same as
other
. - setEpsilon(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
-
Deprecated.
- setFieldName(String) - Method in interface org.tribuo.data.columnar.ResponseProcessor
-
Deprecated.Response processors should be immutable; downstream objects assume that they are Set the field name this ResponseProcessor uses.
- setGamma(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setGenerateNgrams(boolean) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- setGenerateUnigrams(boolean) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- setLabelOrder(List<Label>) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Sets the label order used in
LabelConfusionMatrix.toString()
. - setLabelWeights(Map<Label, Float>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- setLabelWeights(Map<Label, Float>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- setLabelWeights(Map<Label, Float>) - Method in interface org.tribuo.classification.WeightedLabels
-
Sets the label weights used by this trainer.
- setMaxTokenLength(int) - Method in class org.tribuo.util.tokens.universal.UniversalTokenizer
- setMetadataValue(String, Object) - Method in class org.tribuo.Example
-
Puts the specified key, value pair into the metadata.
- setName(String) - Method in class org.tribuo.Model
-
Sets the model name.
- setName(String) - Method in class org.tribuo.sequence.SequenceModel
-
Sets the model name.
- setNu(double) - Method in class org.tribuo.common.libsvm.SVMParameters
- setNumFeatures(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- setNumSamples(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- setNumThreads(int) - Method in class org.tribuo.common.xgboost.XGBoostModel
-
Sets the number of threads to use at prediction time.
- setProbability() - Method in class org.tribuo.common.libsvm.SVMParameters
-
Makes the model that is built provide probability estimates.
- setSalt(String) - Method in class org.tribuo.hash.HashCodeHasher
- setSalt(String) - Method in class org.tribuo.hash.HashedFeatureMap
-
The salt is not serialised with the
Model
. - setSalt(String) - Method in class org.tribuo.hash.Hasher
-
The salt is transient, it must be set **to the same value as it was trained with** after the
Model
is deserialized. - setSalt(String) - Method in class org.tribuo.hash.MessageDigestHasher
- setSalt(String) - Method in class org.tribuo.hash.ModHashCodeHasher
- setShuffle(boolean) - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
-
Turn on or off shuffling of examples.
- setShuffle(boolean) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
-
Turn on or off shuffling of examples.
- setShuffle(boolean) - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
-
Turn on or off shuffling of examples.
- setShuffle(boolean) - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
-
Turn on or off shuffling of examples.
- setStoreIndices(boolean) - Method in class org.tribuo.dataset.DatasetView
-
Set to true to store the indices in the provenance system.
- setType(Token.TokenType) - Method in class org.tribuo.util.tokens.universal.Range
- setupParameters(ImmutableOutputInfo<Label>) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- setupParameters(ImmutableOutputInfo<Label>) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- setupParameters(ImmutableOutputInfo<T>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Constructs the parameters.
- setupParameters(ImmutableOutputInfo<T>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Constructs the svm_parameter.
- setWeight(float) - Method in class org.tribuo.Example
-
Sets the example's weight.
- setWeight(float) - Method in class org.tribuo.sequence.SequenceExample
-
Sets the weight of this sequence.
- setWeights(Map<T, Float>) - Method in class org.tribuo.MutableDataset
-
Sets the weights in each example according to their output.
- SFS - Enum constant in enum org.tribuo.regression.slm.TrainTest.SLMType
- SFSN - Enum constant in enum org.tribuo.regression.slm.TrainTest.SLMType
- SGD - Class in org.tribuo.math.optimisers
-
An implementation of single learning rate SGD and optionally momentum.
- SGD() - Constructor for class org.tribuo.math.optimisers.SGD
-
For olcut.
- SGD_KERNEL - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- SGD_LINEAR - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- SGD.Momentum - Enum in org.tribuo.math.optimisers
-
Momentum types.
- sgdEpochs - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- sgdLoggingInterval - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- sgdMinibatchSize - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- sgdObjective - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- SGDOptions() - Constructor for class org.tribuo.regression.sgd.TrainTest.SGDOptions
- sgdType() - Method in class org.tribuo.math.optimisers.SGD
-
Override to specify the kind of SGD.
- SGDVector - Interface in org.tribuo.math.la
-
Interface for 1 dimensional
Tensor
s. - sgoOptions - Variable in class org.tribuo.classification.sgd.crf.CRFOptions
- sgoOptions - Variable in class org.tribuo.classification.sgd.linear.LinearSGDOptions
- SHA1 - Enum constant in enum org.tribuo.hash.HashingOptions.ModelHashingType
- SHA256 - Enum constant in enum org.tribuo.hash.HashingOptions.ModelHashingType
- SHAPE - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- shapeCheck(Tensor, Tensor) - Static method in interface org.tribuo.math.la.Tensor
- shapeSum(int[]) - Static method in interface org.tribuo.math.la.Tensor
- ShapeTokenizer - Class in org.tribuo.util.tokens.impl
-
This tokenizer is loosely based on the notion of word shape which is a common feature used in NLP.
- ShapeTokenizer() - Constructor for class org.tribuo.util.tokens.impl.ShapeTokenizer
- shell - Variable in class org.tribuo.classification.explanations.lime.LIMETextCLI
- shell - Variable in class org.tribuo.data.DatasetExplorer
- shell - Variable in class org.tribuo.ModelExplorer
-
The command shell instance.
- shell - Variable in class org.tribuo.sequence.SequenceModelExplorer
- SHORT - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
- showLabelStats(CommandInterpreter) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- showLabelStats(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
- showProvenance(CommandInterpreter) - Method in class org.tribuo.data.DatasetExplorer
- ShrinkingMatrix - Class in org.tribuo.math.optimisers.util
-
A subclass of
DenseMatrix
which shrinks the value every time a new value is added. - ShrinkingMatrix(DenseMatrix, double, boolean) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingMatrix
- ShrinkingMatrix(DenseMatrix, double, double) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingMatrix
- ShrinkingTensor - Interface in org.tribuo.math.optimisers.util
-
An interface which tags a
Tensor
with a convertToDense method. - ShrinkingVector - Class in org.tribuo.math.optimisers.util
-
A subclass of
DenseVector
which shrinks the value every time a new value is added. - ShrinkingVector(DenseVector, double, boolean) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingVector
- ShrinkingVector(DenseVector, double, double) - Constructor for class org.tribuo.math.optimisers.util.ShrinkingVector
- shuffle - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- shuffle(boolean) - Method in class org.tribuo.Dataset
-
Shuffles the indices, or stops shuffling them.
- shuffle(SparseVector[][], int[][], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
Shuffles a sequence of features, labels and weights, returning a tuple of the shuffled values.
- shuffle(SparseVector[], int[], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
Shuffles the features, labels and weights returning a tuple of the shuffled inputs.
- shuffleInPlace(SparseVector[][], int[][], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
In place shuffle used for sequence problems.
- shuffleInPlace(SparseVector[], int[], double[], int[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
In place shuffle of the features, labels, weights and indices.
- shuffleInPlace(SparseVector[], int[], double[], SplittableRandom) - Static method in class org.tribuo.classification.sgd.Util
-
In place shuffle of the features, labels and weights.
- shuffleInPlace(SparseVector[], DenseVector[], double[], int[], SplittableRandom) - Static method in class org.tribuo.regression.sgd.Util
-
In place shuffle of the features, labels and weights.
- shuffleInPlace(SparseVector[], DenseVector[], double[], SplittableRandom) - Static method in class org.tribuo.regression.sgd.Util
-
In place shuffle of the features, labels and weights.
- Sigmoid - Class in org.tribuo.math.kernel
-
A sigmoid kernel, tanh(gamma*u.dot(v) + intercept).
- Sigmoid(double, double) - Constructor for class org.tribuo.math.kernel.Sigmoid
-
A sigmoid kernel, tanh(gamma*u.dot(v) + intercept).
- SIGMOID - Enum constant in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
- SIGMOID - Enum constant in enum org.tribuo.common.libsvm.KernelType
-
A sigmoid kernel of the form tanh(gamma*u'*v + coef0)
- similarity(SparseVector, SparseVector) - Method in interface org.tribuo.math.kernel.Kernel
-
Calculates the similarity between two
SparseVector
s. - similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Linear
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Polynomial
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.RBF
- similarity(SparseVector, SparseVector) - Method in class org.tribuo.math.kernel.Sigmoid
- SIMPLE_DEFAULT_PATTERN - Static variable in class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
The default split pattern, which is [\.,]?\s+.
- SimpleDataSourceProvenance - Class in org.tribuo.provenance
-
This class stores a String describing the data source, along with a timestamp.
- SimpleDataSourceProvenance(String, OffsetDateTime, OutputFactory<T>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
This constructor initialises the provenance using the supplied description, time and output factory.
- SimpleDataSourceProvenance(String, OutputFactory<T>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
This constructor initialises the provenance using the current time in the system timezone.
- SimpleDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.SimpleDataSourceProvenance
-
Used for provenance deserialization.
- SimpleFieldExtractor<T> - Class in org.tribuo.data.columnar.extractors
-
Extracts a value from a single field to be placed in an
Example
's metadata field. - SimpleFieldExtractor() - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
For olcut.
- SimpleFieldExtractor(String) - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Constructs a simple field extractor which reads from the supplied field name and writes out to a metadata field with the same name.
- SimpleFieldExtractor(String, String) - Constructor for class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
-
Constructs a simple field extractor with the supplied field name and metadata field name.
- SimpleStringDataSource<T> - Class in org.tribuo.data.text.impl
-
A version of
SimpleTextDataSource
that accepts anIterable
of Strings. - SimpleStringDataSource(List<String>, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleStringDataSource
- SimpleStringDataSource.SimpleStringDataSourceProvenance - Class in org.tribuo.data.text.impl
-
Provenance for
SimpleStringDataSource
. - SimpleStringDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.impl.SimpleStringDataSource.SimpleStringDataSourceProvenance
- SimpleTextDataSource<T> - Class in org.tribuo.data.text.impl
-
A dataset for a simple data format for text classification experiments.
- SimpleTextDataSource() - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
-
for olcut
- SimpleTextDataSource(File, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
- SimpleTextDataSource(Path, OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
- SimpleTextDataSource(OutputFactory<T>, TextFeatureExtractor<T>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource
- SimpleTextDataSource.SimpleTextDataSourceProvenance - Class in org.tribuo.data.text.impl
-
Provenance for
SimpleTextDataSource
. - SimpleTextDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.text.impl.SimpleTextDataSource.SimpleTextDataSourceProvenance
- SimpleTransform - Class in org.tribuo.transform.transformations
-
This is used for stateless functions such as exp, log, addition or multiplication by a constant.
- SimpleTransform.Operation - Enum in org.tribuo.transform.transformations
-
Operations understood by this Transformation.
- SimpleTransform.SimpleTransformProvenance - Class in org.tribuo.transform.transformations
-
Provenance for
SimpleTransform
. - SimpleTransformProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.transformations.SimpleTransform.SimpleTransformProvenance
- SINGLE_DIM_NAME - Static variable in class org.tribuo.regression.example.RegressionDataGenerator
- size - Variable in class org.tribuo.common.tree.impl.IntArrayContainer
- size - Variable in class org.tribuo.ImmutableFeatureMap
-
The number of features.
- size - Variable in class org.tribuo.impl.ArrayExample
- size - Variable in class org.tribuo.impl.BinaryFeaturesExample
- size() - Method in class org.tribuo.anomaly.AnomalyInfo
-
The number of possible event types (i.e., 2).
- size() - Method in class org.tribuo.classification.LabelInfo
-
The number of unique
Label
s this LabelInfo has seen. - size() - Method in class org.tribuo.clustering.ClusteringInfo
- size() - Method in class org.tribuo.dataset.DatasetView
-
Gets the size of the data set.
- size() - Method in class org.tribuo.Dataset
-
Gets the size of the data set.
- size() - Method in class org.tribuo.datasource.IDXDataSource
-
The number of examples loaded.
- size() - Method in class org.tribuo.datasource.LibSVMDataSource
-
The number of examples.
- size() - Method in class org.tribuo.datasource.ListDataSource
-
Number of examples.
- size() - Method in class org.tribuo.Example
-
Return how many features are in this example.
- size() - Method in class org.tribuo.FeatureMap
-
Returns the number of features in the domain.
- size() - Method in class org.tribuo.ImmutableFeatureMap
- size() - Method in class org.tribuo.impl.ArrayExample
- size() - Method in class org.tribuo.impl.BinaryFeaturesExample
- size() - Method in class org.tribuo.impl.ListExample
- size() - Method in class org.tribuo.math.la.DenseVector
- size() - Method in interface org.tribuo.math.la.SGDVector
-
Returns the dimensionality of this vector.
- size() - Method in class org.tribuo.math.la.SparseVector
- size() - Method in class org.tribuo.multilabel.MultiLabelInfo
- size() - Method in interface org.tribuo.OutputInfo
-
Returns the number of possible values this OutputInfo knows about.
- size() - Method in class org.tribuo.regression.RegressionInfo
-
The number of dimensions this OutputInfo has seen.
- size() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- size() - Method in class org.tribuo.regression.Regressor
-
Returns the number of dimensions in this regressor.
- size() - Method in class org.tribuo.sequence.SequenceDataset
-
Gets the size of the data set.
- size() - Method in class org.tribuo.sequence.SequenceExample
-
Return how many examples are in this sequence.
- size() - Method in class org.tribuo.util.infotheory.impl.RowList
- SkeletalIndependentRegressionModel - Class in org.tribuo.regression.impl
-
A
Model
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. - SkeletalIndependentRegressionModel(String, String[], ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>) - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionModel
-
models.size() must equal labelInfo.getDomain().size()
- SkeletalIndependentRegressionSparseModel - Class in org.tribuo.regression.impl
-
A
SparseModel
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. - SkeletalIndependentRegressionSparseModel(String, String[], ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<Regressor>, Map<String, List<String>>) - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
-
models.size() must equal labelInfo.getDomain().size()
- SkeletalIndependentRegressionSparseTrainer<T> - Class in org.tribuo.regression.impl
-
Base class for training n independent sparse models, one per dimension.
- SkeletalIndependentRegressionSparseTrainer() - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
for olcut.
- SkeletalIndependentRegressionTrainer<T> - Class in org.tribuo.regression.impl
- SkeletalIndependentRegressionTrainer() - Constructor for class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
for olcut.
- SkeletalTrainerProvenance - Class in org.tribuo.provenance
-
The skeleton of a TrainerProvenance that extracts the configured parameters.
- SkeletalTrainerProvenance(SkeletalConfiguredObjectProvenance.ExtractedInfo) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(SequenceTrainer<T>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalTrainerProvenance(Trainer<T>) - Constructor for class org.tribuo.provenance.SkeletalTrainerProvenance
- SkeletalVariableInfo - Class in org.tribuo
-
Contains information about a feature and can be stored in the feature map in a
Dataset
. - SkeletalVariableInfo(String) - Constructor for class org.tribuo.SkeletalVariableInfo
-
Constructs a variable info with the supplied name.
- SkeletalVariableInfo(String, int) - Constructor for class org.tribuo.SkeletalVariableInfo
-
Constructs a variable info with the supplied name and initial count.
- SLMTrainer - Class in org.tribuo.regression.slm
-
A trainer for a sparse linear regression model.
- SLMTrainer() - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
For OLCUT.
- SLMTrainer(boolean) - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
Constructs a trainer for a sparse linear model using sequential forward selection.
- SLMTrainer(boolean, int) - Constructor for class org.tribuo.regression.slm.SLMTrainer
-
Constructs a trainer for a sparse linear model using sequential forward selection.
- sort() - Method in class org.tribuo.Example
-
Sorts the example by the string comparator.
- sort() - Method in class org.tribuo.impl.ArrayExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.impl.BinaryFeaturesExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.impl.IndexedArrayExample
- sort() - Method in class org.tribuo.impl.ListExample
-
Sorts the feature list to maintain the lexicographic order invariant.
- sort() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Sort the list using InvertedFeature's natural ordering.
- sortedDifference(int[], int[]) - Static method in class org.tribuo.util.Util
-
Expects sorted input arrays.
- sourceProvenance - Variable in class org.tribuo.Dataset
-
The provenance of the data source, extracted on construction.
- sourceProvenance - Variable in class org.tribuo.sequence.SequenceDataset
-
The provenance of the data source, extracted on construction.
- SparseLinearModel - Class in org.tribuo.regression.slm
-
The inference time version of a sparse linear regression model.
- SparseModel<T> - Class in org.tribuo
-
A model which uses a subset of the features it knows about to make predictions.
- SparseModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, List<String>>) - Constructor for class org.tribuo.SparseModel
-
Constructs a sparse model from the supplied arguments.
- SparseTrainer<T> - Interface in org.tribuo
-
Denotes this trainer emits a
SparseModel
. - sparseTrainTest() - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Makes a simple dataset for training and testing.
- sparseTrainTest() - Static method in class org.tribuo.classification.example.LabelledDataGenerator
- sparseTrainTest() - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
- sparseTrainTest() - Static method in class org.tribuo.regression.example.RegressionDataGenerator
- sparseTrainTest(double) - Static method in class org.tribuo.anomaly.example.AnomalyDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.classification.example.LabelledDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.clustering.example.ClusteringDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- sparseTrainTest(double) - Static method in class org.tribuo.regression.example.RegressionDataGenerator
-
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
- SparseVector - Class in org.tribuo.math.la
-
A sparse vector.
- SparseVector(int, int[], double) - Constructor for class org.tribuo.math.la.SparseVector
- sparsify() - Method in class org.tribuo.math.la.DenseVector
-
Generates a
SparseVector
representation from this dense vector, removing all values with absolute value belowVectorTuple.DELTA
. - sparsify(double) - Method in class org.tribuo.math.la.DenseVector
-
Generates a
SparseVector
representation from this dense vector, removing all values with absolute value below the supplied tolerance. - split - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- split(int[], int[], IntArrayContainer, IntArrayContainer) - Method in class org.tribuo.regression.rtree.impl.TreeFeature
-
Splits this tree feature into two.
- split(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Uses this tokenizer to split a string into it's component substrings.
- split(IntArrayContainer, IntArrayContainer) - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
-
Relies upon allLeftIndices being sorted in ascending order.
- split(Dataset<T>, boolean) - Method in class org.tribuo.evaluation.KFoldSplitter
-
Splits a dataset into k consecutive folds; for each fold, the remaining k-1 folds form the training set.
- SPLIT_CHARACTERS - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- SPLIT_PATTERN - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- splitChar - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- SplitCharactersTokenizer - Class in org.tribuo.util.tokens.impl
-
This implementation of
Tokenizer
is instantiated with an array of characters that are considered split characters. - SplitCharactersTokenizer() - Constructor for class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- SplitCharactersTokenizer(char[], char[]) - Constructor for class org.tribuo.util.tokens.impl.SplitCharactersTokenizer
- splitCharactersTokenizerOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- SplitCharactersTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
SplitCharactersTokenizer
. - SplitCharactersTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- splitChars - Variable in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- SplitDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- splitFraction - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- splitID - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- SplitNode<T> - Class in org.tribuo.common.tree
-
An immutable
Node
with a split and two child nodes. - SplitNode(double, int, double, Node<T>, Node<T>) - Constructor for class org.tribuo.common.tree.SplitNode
-
Constructs a split node with the specified split value, feature id, impurity and child nodes.
- SplitPatternTokenizer - Class in org.tribuo.util.tokens.impl
-
This implementation of
Tokenizer
is instantiated with a regular expression pattern which determines how to split a string into tokens. - SplitPatternTokenizer() - Constructor for class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Initializes a case insensitive tokenizer with the pattern [\.,]?\s+
- SplitPatternTokenizer(String) - Constructor for class org.tribuo.util.tokens.impl.SplitPatternTokenizer
-
Constructs a splitting tokenizer using the supplied regex.
- splitPatternTokenizerOptions - Variable in class org.tribuo.util.tokens.options.CoreTokenizerOptions
- SplitPatternTokenizerOptions - Class in org.tribuo.util.tokens.options
-
CLI options for a
SplitPatternTokenizer
. - SplitPatternTokenizerOptions() - Constructor for class org.tribuo.util.tokens.options.SplitPatternTokenizerOptions
- SplitTextData - Class in org.tribuo.data.text
-
Splits data in our standard text format into training and testing portions.
- SplitTextData() - Constructor for class org.tribuo.data.text.SplitTextData
- SplitTextData.TrainTestSplitOptions - Class in org.tribuo.data.text
- splitValue - Variable in class org.tribuo.common.tree.AbstractTrainingNode
- splitValue() - Method in class org.tribuo.common.tree.SplitNode
-
The threshold value.
- splitXDigitsChars - Variable in class org.tribuo.util.tokens.options.SplitCharactersTokenizerOptions
- SQLDataSource<T> - Class in org.tribuo.data.sql
-
A
DataSource
for loading columnar data from a database and applyingFieldProcessor
s to it. - SQLDataSource(String, SQLDBConfig, OutputFactory<T>, RowProcessor<T>, boolean) - Constructor for class org.tribuo.data.sql.SQLDataSource
- SQLDataSource.SQLDataSourceProvenance - Class in org.tribuo.data.sql
-
Provenance for
SQLDataSource
. - SQLDataSourceProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.data.sql.SQLDataSource.SQLDataSourceProvenance
- SQLDBConfig - Class in org.tribuo.data.sql
-
N.B.
- SQLDBConfig(String, String, String, String, String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
- SQLDBConfig(String, String, String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
- SQLDBConfig(String, Map<String, String>) - Constructor for class org.tribuo.data.sql.SQLDBConfig
- SQLToCSV - Class in org.tribuo.data.sql
-
Read an SQL query in on the standard input, write a CSV file containing the results to the standard output.
- SQLToCSV() - Constructor for class org.tribuo.data.sql.SQLToCSV
- SQLToCSV.SQLToCSVOptions - Class in org.tribuo.data.sql
- SQLToCSVOptions() - Constructor for class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- SQRTSGD - Enum constant in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
- SQUARED - Enum constant in enum org.tribuo.regression.sgd.TrainTest.LossEnum
- SquaredLoss - Class in org.tribuo.regression.sgd.objectives
-
Squared loss, i.e., l2.
- SquaredLoss() - Constructor for class org.tribuo.regression.sgd.objectives.SquaredLoss
- STANDARD - Enum constant in enum org.tribuo.math.optimisers.SGD.Momentum
-
Standard momentum.
- start - Variable in class org.tribuo.util.tokens.Token
- start - Variable in class org.tribuo.util.tokens.universal.Range
- startShell() - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
-
Start the command shell
- startShell() - Method in class org.tribuo.data.DatasetExplorer
-
Start the command shell
- startShell() - Method in class org.tribuo.ModelExplorer
-
Start the command shell
- startShell() - Method in class org.tribuo.sequence.SequenceModelExplorer
-
Start the command shell
- STD_DEVS - Enum constant in enum org.tribuo.transform.transformations.BinningTransformation.BinningType
- stdDevs(int) - Static method in class org.tribuo.transform.transformations.BinningTransformation
-
Returns a BinningTransformation which generates bins based on the observed standard deviation of the training data.
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaDelta
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaGrad
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.AdaGradRDA
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.Adam
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.ParameterAveraging
-
This passes the gradient update to the inner optimiser, then updates the average weight values.
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.Pegasos
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.RMSProp
- step(Tensor[], double) - Method in class org.tribuo.math.optimisers.SGD
- step(Tensor[], double) - Method in interface org.tribuo.math.StochasticGradientOptimiser
-
Take a
Tensor
array of gradients and transform them according to the current weight and learning rates. - StochasticGradientOptimiser - Interface in org.tribuo.math
-
Interface for gradient based optimisation methods.
- storeHash - Variable in class org.tribuo.json.StripProvenance.StripProvenanceOptions
- storeIndicesInProvenance() - Method in class org.tribuo.dataset.DatasetView
-
Are the indices stored in the provenance system.
- STRATIFIED - Enum constant in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Samples the label proprotional to the training label frequencies.
- STREAMS - Enum constant in enum org.tribuo.common.nearest.KNNModel.Backend
-
Uses the streams API for parallelism when scoring a batch of predictions.
- StripProvenance - Class in org.tribuo.json
-
A main class for stripping out and storing provenance from a model.
- StripProvenance.ProvenanceTypes - Enum in org.tribuo.json
-
Types of provenance that can be removed.
- StripProvenance.StripProvenanceOptions - Class in org.tribuo.json
- StripProvenanceOptions() - Constructor for class org.tribuo.json.StripProvenance.StripProvenanceOptions
- sub - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Subtracts the specified constant.
- sub(double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that subtracts the operand from each value.
- subList(int, int) - Method in class org.tribuo.util.infotheory.impl.RowList
-
Unsupported.
- subsample - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- subsample - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- subsampleFeatures - Variable in class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- subsampleFeatures - Variable in class org.tribuo.regression.xgboost.XGBoostOptions
- subSequence(int, int) - Method in class org.tribuo.util.tokens.universal.Range
- Subsequence(int, int) - Constructor for class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
-
Constructs a subsequence for the fixed range, exclusive of the end.
- subtract(SGDVector) - Method in class org.tribuo.math.la.DenseVector
-
Subtracts
other
from this vector, producing a newDenseVector
. - subtract(SGDVector) - Method in interface org.tribuo.math.la.SGDVector
-
Subtracts
other
from this vector, producing a newSGDVector
. - subtract(SGDVector) - Method in class org.tribuo.math.la.SparseVector
-
Subtracts
other
from this vector, producing a newSGDVector
. - sum() - Method in class org.tribuo.math.la.DenseVector
- sum() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the sum of this vector.
- sum() - Method in class org.tribuo.math.la.SparseVector
- sum() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- sum(double[]) - Static method in class org.tribuo.util.Util
- sum(double[], int) - Static method in class org.tribuo.util.Util
- sum(float[]) - Static method in class org.tribuo.util.Util
- sum(float[], int) - Static method in class org.tribuo.util.Util
- sum(int[], float[]) - Static method in class org.tribuo.util.Util
- sum(int[], int, float[]) - Static method in class org.tribuo.util.Util
- sum(DoubleUnaryOperator) - Method in class org.tribuo.math.la.DenseVector
- SUM - Enum constant in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Add together all the feature values.
- SumAggregator - Class in org.tribuo.data.text.impl
-
A feature aggregator that aggregates occurrence counts across a number of feature lists.
- SumAggregator() - Constructor for class org.tribuo.data.text.impl.SumAggregator
- sumLogProbs(double[]) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Sums the log probabilities.
- sumLogProbs(DenseVector) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Sums the log probabilities.
- summarize(List<? extends EvaluationMetric<T, C>>, Model<T>, List<Prediction<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize model performance on dataset across several metrics.
- summarize(List<? extends EvaluationMetric<T, C>>, Model<T>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize model performance on dataset across several metrics.
- summarize(List<R>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize all fields of a list of evaluations.
- summarize(List<R>, ToDoubleFunction<R>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize a single field of an evaluation across several evaluations.
- summarize(Evaluator<T, R>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance using the supplied evaluator across several models on one dataset.
- summarize(Evaluator<T, R>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance according to evaluator for a single model across several datasets.
- summarize(EvaluationMetric<T, C>, List<? extends Model<T>>, Dataset<T>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize performance w.r.t.
- summarize(EvaluationMetric<T, C>, Model<T>, List<? extends Dataset<T>>) - Static method in class org.tribuo.evaluation.EvaluationAggregator
-
Summarize a model's performance w.r.t.
- sumOverOutputs(ImmutableOutputInfo<T>, ToDoubleFunction<T>) - Static method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
Sums the supplied getter over the domain.
- sumSquares - Variable in class org.tribuo.RealInfo
-
The sum of the squared feature values (used to compute the variance).
- sumSquaresMap - Variable in class org.tribuo.regression.RegressionInfo
- support() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of examples this confusion matrix has seen.
- support() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- support() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- support(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- support(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- support(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of examples with this true label this confusion matrix has seen.
- SVMAnomalyType - Class in org.tribuo.anomaly.libsvm
-
The carrier type for LibSVM anomaly detection modes.
- SVMAnomalyType(SVMAnomalyType.SVMMode) - Constructor for class org.tribuo.anomaly.libsvm.SVMAnomalyType
-
Constructs an SVM anomaly type wrapping the SVM algorithm choice.
- SVMAnomalyType.SVMMode - Enum in org.tribuo.anomaly.libsvm
-
Valid SVM modes for anomaly detection.
- SVMClassificationType - Class in org.tribuo.classification.libsvm
-
The carrier type for LibSVM classification modes.
- SVMClassificationType(SVMClassificationType.SVMMode) - Constructor for class org.tribuo.classification.libsvm.SVMClassificationType
- SVMClassificationType.SVMMode - Enum in org.tribuo.classification.libsvm
-
The classification model types.
- svmCoefficient - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
- svmDegree - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
- svmGamma - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
- svmKernel - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
- SVMParameters<T> - Class in org.tribuo.common.libsvm
-
A container for SVM parameters and the kernel.
- SVMParameters(SVMType<T>, KernelType) - Constructor for class org.tribuo.common.libsvm.SVMParameters
- svmParamsToString(svm_parameter) - Static method in class org.tribuo.common.libsvm.SVMParameters
-
A sensible toString for svm_parameter.
- SVMRegressionType - Class in org.tribuo.regression.libsvm
-
The carrier type for LibSVM regression modes.
- SVMRegressionType(SVMRegressionType.SVMMode) - Constructor for class org.tribuo.regression.libsvm.SVMRegressionType
- SVMRegressionType.SVMMode - Enum in org.tribuo.regression.libsvm
-
Type of regression SVM.
- svmType - Variable in class org.tribuo.classification.libsvm.LibSVMOptions
- svmType - Variable in class org.tribuo.common.libsvm.LibSVMTrainer
-
The type of SVM algorithm.
- svmType - Variable in class org.tribuo.common.libsvm.SVMParameters
- svmType - Variable in class org.tribuo.regression.libsvm.TrainTest.LibLinearOptions
- SVMType<T> - Interface in org.tribuo.common.libsvm
-
A carrier type for the SVM type.
T
- TAB - Enum constant in enum org.tribuo.data.DataOptions.Delimiter
- TabularExplainer<T> - Interface in org.tribuo.classification.explanations
-
An explainer for tabular data.
- TAG_VERSION - Static variable in class org.tribuo.Tribuo
-
Any tag on the version number, e.g., SNAPSHOT, ALPHA, etc.
- TARGET - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- Tensor - Interface in org.tribuo.math.la
-
An interface for Tensors, currently Vectors and Matrices.
- TensorflowCheckpointModel<T> - Class in org.tribuo.interop.tensorflow
-
TensorFlow support is experimental, and may change without a major version bump.
- TensorflowCheckpointTrainer<T> - Class in org.tribuo.interop.tensorflow
-
Trainer for Tensorflow.
- TensorflowCheckpointTrainer(Path, Path, ExampleTransformer<T>, OutputTransformer<T>, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
-
Builds a trainer using the supplied graph and arguments.
- TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance - Class in org.tribuo.interop.tensorflow
- TensorflowCheckpointTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer.TensorflowCheckpointTrainerProvenance
- TensorflowExternalModel<T> - Class in org.tribuo.interop.tensorflow
-
A Tribuo wrapper around a Tensorflow frozen model.
- TensorflowModel<T> - Class in org.tribuo.interop.tensorflow
-
This model encapsulates a simple model with a single input tensor (labelled
TensorflowModel.INPUT_NAME
), and produces a single output tensor (labelledTensorflowModel.OUTPUT_NAME
). - TensorflowOptions() - Constructor for class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- TensorflowSequenceModel<T> - Class in org.tribuo.interop.tensorflow.sequence
-
A Tensorflow model which implements SequenceModel, suitable for use in sequential prediction tasks.
- TensorflowSequenceTrainer<T> - Class in org.tribuo.interop.tensorflow.sequence
-
A trainer for SequenceModels which use an underlying Tensorflow graph.
- TensorflowSequenceTrainer(Path, SequenceExampleTransformer<T>, SequenceOutputTransformer<T>, int, int, int, long, String, String, String, String) - Constructor for class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance - Class in org.tribuo.interop.tensorflow.sequence
- TensorflowSequenceTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer.TensorflowSequenceTrainerProvenance
- TensorflowTrainer<T> - Class in org.tribuo.interop.tensorflow
-
Trainer for Tensorflow.
- TensorflowTrainer(byte[], ExampleTransformer<T>, OutputTransformer<T>, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorflowTrainer
-
Constructs a Trainer for a tensorflow graph.
- TensorflowTrainer(Path, ExampleTransformer<T>, OutputTransformer<T>, int, int, int) - Constructor for class org.tribuo.interop.tensorflow.TensorflowTrainer
-
Constructs a Trainer for a tensorflow graph.
- TensorflowTrainer.TensorflowTrainerProvenance - Class in org.tribuo.interop.tensorflow
- TensorflowTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.interop.tensorflow.TensorflowTrainer.TensorflowTrainerProvenance
- TensorflowUtil - Class in org.tribuo.interop.tensorflow
-
Helper functions for working with Tensorflow.
- TensorflowUtil() - Constructor for class org.tribuo.interop.tensorflow.TensorflowUtil
- termCounting - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- termCounting - Variable in class org.tribuo.data.DataOptions
- terminationCriterion - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- terminationCriterion - Variable in class org.tribuo.regression.liblinear.TrainTest.LibLinearOptions
- test - Variable in class org.tribuo.evaluation.KFoldSplitter.TrainTestFold
- Test - Class in org.tribuo.classification.experiments
-
Test a classifier for a standard dataset.
- Test() - Constructor for class org.tribuo.classification.experiments.Test
- Test.ConfigurableTestOptions - Class in org.tribuo.classification.experiments
- testBatchSize - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- testDataset - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- testingPath - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- testingPath - Variable in class org.tribuo.data.DataOptions
- testingPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- testSource - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- text - Variable in class org.tribuo.util.tokens.Token
- TEXT - Enum constant in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Text features.
- TEXT - Enum constant in enum org.tribuo.data.DataOptions.InputFormat
- TextDataSource<T> - Class in org.tribuo.data.text
-
A base class for textual data sets.
- TextDataSource() - Constructor for class org.tribuo.data.text.TextDataSource
-
for olcut
- TextDataSource(File, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.TextDataSource
- TextDataSource(Path, OutputFactory<T>, TextFeatureExtractor<T>, DocumentPreprocessor...) - Constructor for class org.tribuo.data.text.TextDataSource
-
Creates a text data set by reading it from a path.
- TextExplainer<T> - Interface in org.tribuo.classification.explanations
-
An explainer for text data.
- TextFeatureExtractor<T> - Interface in org.tribuo.data.text
-
An interface for things that take text and turn them into examples that we can use to train or evaluate a classifier.
- TextFeatureExtractorImpl<T> - Class in org.tribuo.data.text.impl
- TextFeatureExtractorImpl(TextPipeline) - Constructor for class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- TextFieldProcessor - Class in org.tribuo.data.columnar.processors.field
-
A
FieldProcessor
which takes a text field and runs aTextPipeline
on it to generate features. - TextFieldProcessor(String, TextPipeline) - Constructor for class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Constructs a field processor which uses the supplied text pipeline to process the field value.
- TextPipeline - Interface in org.tribuo.data.text
-
A pipeline that takes a String and returns a List of
Feature
s. - TextProcessingException - Exception Class in org.tribuo.data.text
-
An exception thrown by the text processing system.
- TextProcessingException(String) - Constructor for exception class org.tribuo.data.text.TextProcessingException
- TextProcessingException(String, Throwable) - Constructor for exception class org.tribuo.data.text.TextProcessingException
- TextProcessingException(Throwable) - Constructor for exception class org.tribuo.data.text.TextProcessingException
- TextProcessor - Interface in org.tribuo.data.text
-
A TextProcessor takes some text and optionally a feature tag and generates a list of
Feature
s from that text. - THIRD - Enum constant in enum org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
- THREADPOOL - Enum constant in enum org.tribuo.common.nearest.KNNModel.Backend
-
Uses a thread pool at the outer level (i.e., one thread per prediction).
- threshold - Enum constant in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Min and max thresholds applied to the input.
- threshold(double, double) - Static method in class org.tribuo.transform.transformations.SimpleTransform
-
Generate a SimpleTransform that sets values below min to min, and values above max to max.
- THRESHOLD - Static variable in class org.tribuo.CategoricalInfo
-
The default threshold for converting a categorical info into a
RealInfo
. - THRESHOLD - Static variable in class org.tribuo.interop.onnx.DenseTransformer
-
Feature size beyond which a warning is generated (as ONNX requires dense features and large feature spaces are memory hungry).
- THRESHOLD - Static variable in class org.tribuo.interop.tensorflow.DenseTransformer
-
Feature size beyond which a warning is generated (as ONNX requires dense features and large feature spaces are memory hungry).
- thresholds - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.PRCurve
- thresholds - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
- time - Variable in class org.tribuo.provenance.ModelProvenance
- tn() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the total number of true negatives.
- tn() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of true negatives.
- tn() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- tn() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tn(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- tn(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- tn(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of true negatives, possibly averaged depending on the metric target.
- tn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- tn(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tn(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of true negatives for that label, i.e., the number of times it wasn't predicted, and was not the true label.
- tn(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of true negatives for the supplied label.
- TN - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of true negatives.
- TN - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The number of true negatives.
- TN - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of true negatives.
- toArray() - Method in class org.tribuo.math.la.DenseVector
-
Generates a copy of the values in this DenseVector.
- toArray() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- toArray() - Method in class org.tribuo.util.infotheory.impl.RowList
- toArray(U[]) - Method in class org.tribuo.util.infotheory.impl.RowList
- toDenseArray() - Method in class org.tribuo.math.la.SparseVector
- toDoubleArray(float[]) - Static method in class org.tribuo.util.Util
-
Convert an array of floats to an array of doubles.
- toFloatArray(double[]) - Static method in class org.tribuo.util.Util
-
Convert an array of doubles to an array of floats.
- toFormattedString(LabelEvaluation) - Static method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
This method produces a nicely formatted String output, with appropriate tabs and newlines, suitable for display on a terminal.
- toHTML() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
-
Emits a HTML table representation of the Confusion Matrix.
- toHTML() - Method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
Returns a HTML formatted String representing this evaluation.
- toHTML() - Method in class org.tribuo.Feature
-
Returns the feature name formatted as a table cell.
- toHTML(Pair<String, Double>) - Static method in class org.tribuo.util.HTMLOutput
- toHTML(LabelEvaluation) - Static method in interface org.tribuo.classification.evaluation.LabelEvaluation
-
This method produces a HTML formatted String output, with appropriate tabs and newlines, suitable for integation into a webpage.
- Token - Class in org.tribuo.util.tokens
-
A single token extracted from a String.
- Token(String, int, int) - Constructor for class org.tribuo.util.tokens.Token
-
Constructs a token.
- Token(String, int, int, Token.TokenType) - Constructor for class org.tribuo.util.tokens.Token
-
Constructs a token.
- Token.TokenType - Enum in org.tribuo.util.tokens
-
Tokenizers may product multiple kinds of tokens, depending on the application to which they're being put.
- TokenizationException - Exception Class in org.tribuo.util.tokens
-
Wraps exceptions thrown by tokenizers.
- TokenizationException(String) - Constructor for exception class org.tribuo.util.tokens.TokenizationException
- TokenizationException(String, Throwable) - Constructor for exception class org.tribuo.util.tokens.TokenizationException
- TokenizationException(Throwable) - Constructor for exception class org.tribuo.util.tokens.TokenizationException
- tokenize(CharSequence) - Method in interface org.tribuo.util.tokens.Tokenizer
-
Uses this tokenizer to tokenize a string and return the list of tokens that were generated.
- Tokenizer - Interface in org.tribuo.util.tokens
-
An interface for things that tokenize text: breaking it into words according to some set of rules.
- TokenizerOptions - Interface in org.tribuo.util.tokens.options
-
CLI Options for creating a tokenizer.
- TokenPipeline - Class in org.tribuo.data.text.impl
-
A pipeline for generating ngram features.
- TokenPipeline(Tokenizer, int, boolean) - Constructor for class org.tribuo.data.text.impl.TokenPipeline
-
Creates a new token pipeline.
- TokenPipeline(Tokenizer, int, boolean, int) - Constructor for class org.tribuo.data.text.impl.TokenPipeline
-
Creates a new token pipeline.
- tolerance - Static variable in interface org.tribuo.math.optimisers.util.ShrinkingTensor
- TOLERANCE - Static variable in class org.tribuo.regression.Regressor
- toMaxLabels(List<Prediction<T>>) - Static method in class org.tribuo.sequence.SequenceModel
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.classification.explanations.lime.LIMETextCLI
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.ModelExplorer
-
Displays the top n features.
- topFeatures(CommandInterpreter, int) - Method in class org.tribuo.sequence.SequenceModelExplorer
- toPrimitiveDouble(List<Double>) - Static method in class org.tribuo.util.Util
- toPrimitiveDoubleFromInteger(List<Integer>) - Static method in class org.tribuo.util.Util
- toPrimitiveFloat(List<Float>) - Static method in class org.tribuo.util.Util
- toPrimitiveInt(List<Integer>) - Static method in class org.tribuo.util.Util
- toPrimitiveLong(List<Long>) - Static method in class org.tribuo.util.Util
- toReadableString() - Method in class org.tribuo.anomaly.AnomalyInfo
- toReadableString() - Method in class org.tribuo.classification.ImmutableLabelInfo
- toReadableString() - Method in class org.tribuo.classification.MutableLabelInfo
- toReadableString() - Method in class org.tribuo.clustering.ClusteringInfo
- toReadableString() - Method in class org.tribuo.FeatureMap
-
Same as the toString, but ordered by name, and with newlines.
- toReadableString() - Method in class org.tribuo.multilabel.ImmutableMultiLabelInfo
- toReadableString() - Method in class org.tribuo.multilabel.MutableMultiLabelInfo
- toReadableString() - Method in interface org.tribuo.OutputInfo
-
Generates a String form of this OutputInfo.
- toReadableString() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- toReadableString() - Method in class org.tribuo.regression.MutableRegressionInfo
- toString() - Method in class org.tribuo.anomaly.AnomalyFactory.AnomalyFactoryProvenance
- toString() - Method in class org.tribuo.anomaly.Event
- toString() - Method in class org.tribuo.CategoricalIDInfo
- toString() - Method in class org.tribuo.CategoricalInfo
- toString() - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- toString() - Method in class org.tribuo.classification.dtree.CARTClassificationTrainer
- toString() - Method in class org.tribuo.classification.dtree.impurity.Entropy
- toString() - Method in class org.tribuo.classification.dtree.impurity.GiniIndex
- toString() - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
- toString() - Method in class org.tribuo.classification.ensemble.FullyWeightedVotingCombiner
- toString() - Method in class org.tribuo.classification.ensemble.VotingCombiner
- toString() - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- toString() - Method in class org.tribuo.classification.evaluation.LabelMetric
- toString() - Method in class org.tribuo.classification.explanations.lime.LIMEExplanation
- toString() - Method in class org.tribuo.classification.Label
- toString() - Method in class org.tribuo.classification.LabelFactory.LabelFactoryProvenance
- toString() - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- toString() - Method in class org.tribuo.classification.sequence.ConfidencePredictingSequenceModel.Subsequence
- toString() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- toString() - Method in class org.tribuo.classification.sequence.viterbi.DefaultFeatureExtractor
- toString() - Method in class org.tribuo.classification.sequence.viterbi.NoopFeatureExtractor
- toString() - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- toString() - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- toString() - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- toString() - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- toString() - Method in class org.tribuo.classification.sgd.objectives.Hinge
- toString() - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
- toString() - Method in class org.tribuo.clustering.ClusterID
- toString() - Method in class org.tribuo.clustering.ClusteringFactory.ClusteringFactoryProvenance
- toString() - Method in class org.tribuo.clustering.evaluation.ClusteringMetric
- toString() - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- toString() - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- toString() - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- toString() - Method in class org.tribuo.common.libsvm.SVMParameters
- toString() - Method in class org.tribuo.common.nearest.KNNTrainer
- toString() - Method in class org.tribuo.common.tree.LeafNode
- toString() - Method in class org.tribuo.common.tree.RandomForestTrainer
- toString() - Method in class org.tribuo.common.tree.SplitNode
- toString() - Method in class org.tribuo.common.tree.TreeModel
- toString() - Method in class org.tribuo.common.xgboost.XGBoostTrainer
- toString() - Method in class org.tribuo.data.columnar.ColumnarIterator.Row
- toString() - Method in class org.tribuo.data.columnar.extractors.DateExtractor
- toString() - Method in class org.tribuo.data.columnar.extractors.SimpleFieldExtractor
- toString() - Method in class org.tribuo.data.columnar.processors.field.DoubleFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.IdentityProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.RegexFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.BinaryResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.FieldResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.processors.response.Quartile
- toString() - Method in class org.tribuo.data.columnar.processors.response.QuartileResponseProcessor
- toString() - Method in class org.tribuo.data.columnar.RowProcessor
- toString() - Method in class org.tribuo.data.csv.CSVDataSource
- toString() - Method in class org.tribuo.data.csv.CSVLoader.CSVLoaderProvenance
- toString() - Method in class org.tribuo.data.sql.SQLDataSource
- toString() - Method in class org.tribuo.data.sql.SQLDBConfig
- toString() - Method in class org.tribuo.data.text.DirectoryFileSource
- toString() - Method in class org.tribuo.data.text.impl.BasicPipeline
- toString() - Method in class org.tribuo.data.text.impl.SimpleStringDataSource
- toString() - Method in class org.tribuo.data.text.impl.TextFeatureExtractorImpl
- toString() - Method in class org.tribuo.data.text.impl.TokenPipeline
- toString() - Method in class org.tribuo.data.text.TextDataSource
- toString() - Method in class org.tribuo.dataset.DatasetView.DatasetViewProvenance
-
This toString doesn't put the indices in the string, as it's likely to be huge.
- toString() - Method in class org.tribuo.dataset.DatasetView
- toString() - Method in class org.tribuo.Dataset
- toString() - Method in class org.tribuo.datasource.AggregateDataSource.AggregateDataSourceProvenance
- toString() - Method in class org.tribuo.datasource.AggregateDataSource
- toString() - Method in class org.tribuo.datasource.IDXDataSource
- toString() - Method in class org.tribuo.datasource.LibSVMDataSource
- toString() - Method in class org.tribuo.datasource.ListDataSource
- toString() - Method in class org.tribuo.ensemble.BaggingTrainer
- toString() - Method in class org.tribuo.evaluation.DescriptiveStats
- toString() - Method in class org.tribuo.evaluation.metrics.MetricID
- toString() - Method in class org.tribuo.evaluation.metrics.MetricTarget
- toString() - Method in class org.tribuo.evaluation.TrainTestSplitter.SplitDataSourceProvenance
- toString() - Method in class org.tribuo.Feature
- toString() - Method in class org.tribuo.FeatureMap
- toString() - Method in class org.tribuo.hash.HashCodeHasher.HashCodeHasherProvenance
- toString() - Method in class org.tribuo.hash.HashCodeHasher
- toString() - Method in class org.tribuo.hash.MessageDigestHasher.MessageDigestHasherProvenance
- toString() - Method in class org.tribuo.hash.MessageDigestHasher
- toString() - Method in class org.tribuo.hash.ModHashCodeHasher.ModHashCodeHasherProvenance
- toString() - Method in class org.tribuo.hash.ModHashCodeHasher
- toString() - Method in class org.tribuo.ImmutableDataset
- toString() - Method in class org.tribuo.impl.ArrayExample
- toString() - Method in class org.tribuo.impl.BinaryFeaturesExample
- toString() - Method in class org.tribuo.impl.ListExample
- toString() - Method in class org.tribuo.interop.ExternalTrainerProvenance
- toString() - Method in class org.tribuo.interop.onnx.DenseTransformer
- toString() - Method in class org.tribuo.interop.onnx.ImageTransformer
- toString() - Method in class org.tribuo.interop.onnx.LabelTransformer
- toString() - Method in class org.tribuo.interop.onnx.RegressorTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.ImageTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- toString() - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- toString() - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
- toString() - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer
- toString() - Method in class org.tribuo.json.JsonDataSource
- toString() - Method in class org.tribuo.math.kernel.Linear
- toString() - Method in class org.tribuo.math.kernel.Polynomial
- toString() - Method in class org.tribuo.math.kernel.RBF
- toString() - Method in class org.tribuo.math.kernel.Sigmoid
- toString() - Method in class org.tribuo.math.la.DenseMatrix
- toString() - Method in class org.tribuo.math.la.DenseSparseMatrix
- toString() - Method in class org.tribuo.math.la.DenseVector
- toString() - Method in class org.tribuo.math.la.MatrixTuple
- toString() - Method in class org.tribuo.math.la.SparseVector
- toString() - Method in class org.tribuo.math.la.VectorTuple
- toString() - Method in class org.tribuo.math.optimisers.AdaDelta
- toString() - Method in class org.tribuo.math.optimisers.AdaGrad
- toString() - Method in class org.tribuo.math.optimisers.AdaGradRDA
- toString() - Method in class org.tribuo.math.optimisers.Adam
- toString() - Method in class org.tribuo.math.optimisers.ParameterAveraging
- toString() - Method in class org.tribuo.math.optimisers.Pegasos
- toString() - Method in class org.tribuo.math.optimisers.RMSProp
- toString() - Method in class org.tribuo.math.optimisers.SGD
- toString() - Method in class org.tribuo.Model
- toString() - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- toString() - Method in class org.tribuo.multilabel.evaluation.MultiLabelMetric
- toString() - Method in class org.tribuo.multilabel.MultiLabel
- toString() - Method in class org.tribuo.multilabel.MultiLabelFactory.MultiLabelFactoryProvenance
- toString() - Method in class org.tribuo.MutableDataset
- toString() - Method in class org.tribuo.Prediction
- toString() - Method in class org.tribuo.provenance.DatasetProvenance
- toString() - Method in class org.tribuo.provenance.EnsembleModelProvenance
- toString() - Method in class org.tribuo.provenance.EvaluationProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyDatasetProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyDataSourceProvenance
- toString() - Method in class org.tribuo.provenance.impl.EmptyTrainerProvenance
- toString() - Method in class org.tribuo.provenance.ModelProvenance
- toString() - Method in class org.tribuo.provenance.SimpleDataSourceProvenance
- toString() - Method in class org.tribuo.RealIDInfo
- toString() - Method in class org.tribuo.RealInfo
- toString() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer.DummyRegressionTrainerProvenance
-
Deprecated.
- toString() - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- toString() - Method in class org.tribuo.regression.ensemble.AveragingCombiner
- toString() - Method in class org.tribuo.regression.ImmutableRegressionInfo
- toString() - Method in class org.tribuo.regression.MutableRegressionInfo
- toString() - Method in class org.tribuo.regression.RegressionFactory.RegressionFactoryProvenance
- toString() - Method in class org.tribuo.regression.Regressor.DimensionTuple
- toString() - Method in class org.tribuo.regression.Regressor
- toString() - Method in class org.tribuo.regression.rtree.CARTJointRegressionTrainer
- toString() - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- toString() - Method in class org.tribuo.regression.rtree.impl.InvertedFeature
- toString() - Method in class org.tribuo.regression.rtree.impl.TreeFeature
- toString() - Method in class org.tribuo.regression.rtree.impurity.MeanAbsoluteError
- toString() - Method in class org.tribuo.regression.rtree.impurity.MeanSquaredError
- toString() - Method in class org.tribuo.regression.rtree.IndependentRegressionTreeModel
- toString() - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- toString() - Method in class org.tribuo.regression.sgd.objectives.AbsoluteLoss
- toString() - Method in class org.tribuo.regression.sgd.objectives.Huber
- toString() - Method in class org.tribuo.regression.sgd.objectives.SquaredLoss
- toString() - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- toString() - Method in class org.tribuo.regression.slm.LARSLassoTrainer
- toString() - Method in class org.tribuo.regression.slm.LARSTrainer
- toString() - Method in class org.tribuo.regression.slm.SLMTrainer
- toString() - Method in class org.tribuo.sequence.HashingSequenceTrainer
- toString() - Method in class org.tribuo.sequence.ImmutableSequenceDataset
- toString() - Method in class org.tribuo.sequence.MutableSequenceDataset
- toString() - Method in class org.tribuo.sequence.SequenceDataset
- toString() - Method in class org.tribuo.sequence.SequenceModel
- toString() - Method in class org.tribuo.SkeletalVariableInfo
- toString() - Method in class org.tribuo.transform.TransformationMap
- toString() - Method in class org.tribuo.transform.transformations.BinningTransformation
- toString() - Method in class org.tribuo.transform.transformations.LinearScalingTransformation
- toString() - Method in class org.tribuo.transform.transformations.MeanStdDevTransformation
- toString() - Method in class org.tribuo.transform.transformations.SimpleTransform
- toString() - Method in class org.tribuo.transform.TransformerMap
- toString() - Method in class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- toString() - Method in class org.tribuo.util.infotheory.impl.CachedTriple
- toString() - Method in class org.tribuo.util.infotheory.impl.Row
- toString() - Method in class org.tribuo.util.infotheory.InformationTheory.GTestStatistics
- toString() - Method in class org.tribuo.util.IntDoublePair
- toString() - Method in class org.tribuo.util.tokens.Token
- toString() - Method in class org.tribuo.util.tokens.universal.Range
- totalCount - Variable in class org.tribuo.multilabel.MultiLabelInfo
- totalObservations - Variable in class org.tribuo.CategoricalInfo
-
The total number of observations (including zeros).
- totalSize() - Method in class org.tribuo.evaluation.TrainTestSplitter
-
The total amount of data in train and test combined.
- tp() - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the micro average of the number of true positives across all the labels, i.e., the total number of true positives.
- tp() - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The total number of true positives.
- tp() - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- tp() - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tp(Label) - Method in class org.tribuo.classification.evaluation.LabelConfusionMatrix
- tp(Label) - Method in class org.tribuo.classification.sequence.LabelSequenceEvaluation
- tp(MetricTarget<T>, ConfusionMatrix<T>) - Static method in class org.tribuo.classification.evaluation.ConfusionMetrics
-
Returns the number of true positives, possibly averaged depending on the metric target.
- tp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelConfusionMatrix
- tp(MultiLabel) - Method in class org.tribuo.multilabel.evaluation.MultiLabelEvaluationImpl
- tp(T) - Method in interface org.tribuo.classification.evaluation.ClassifierEvaluation
-
Returns the number of true positives, i.e., the number of times the label was correctly predicted.
- tp(T) - Method in interface org.tribuo.classification.evaluation.ConfusionMatrix
-
The number of true positives for the supplied label.
- TP - Enum constant in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
The number of true positives.
- TP - Enum constant in enum org.tribuo.classification.evaluation.LabelMetrics
-
The number of true positives.
- TP - Enum constant in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
The number of true positives.
- tpr - Variable in class org.tribuo.classification.evaluation.LabelEvaluationUtil.ROC
- train - Variable in class org.tribuo.evaluation.KFoldSplitter.TrainTestFold
- train(Dataset<Event>, Map<String, Provenance>) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.baseline.DummyClassifierTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.ensemble.AdaBoostTrainer
-
If the trainer implements
WeightedExamples
then do boosting by weighting, otherwise do boosting by sampling. - train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.mnb.MultinomialNaiveBayesTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sgd.kernel.KernelSVMTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sgd.linear.LinearSGDTrainer
- train(Dataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- train(Dataset<ClusterID>) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- train(Dataset<ClusterID>, Map<String, Provenance>) - Method in class org.tribuo.clustering.kmeans.KMeansTrainer
- train(Dataset<MultiLabel>, Map<String, Provenance>) - Method in class org.tribuo.multilabel.baseline.IndependentMultiLabelTrainer
- train(Dataset<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- train(Dataset<Regressor>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.baseline.DummyRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.rtree.CARTRegressionTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.sgd.linear.LinearSGDTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.slm.ElasticNetCDTrainer
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.slm.SLMTrainer
-
Trains a sparse linear model.
- train(Dataset<Regressor>, Map<String, Provenance>) - Method in class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- train(Dataset<T>) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- train(Dataset<T>) - Method in interface org.tribuo.SparseTrainer
-
Trains a sparse predictive model using the examples in the given data set.
- train(Dataset<T>) - Method in interface org.tribuo.Trainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.nearest.KNNTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.common.tree.AbstractCARTTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.ensemble.BaggingTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.hash.HashingTrainer
-
This clones the
Dataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer. - train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.interop.tensorflow.TensorflowCheckpointTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.interop.tensorflow.TensorflowTrainer
- train(Dataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.SparseTrainer
-
Trains a sparse predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.Trainer
-
Trains a predictive model using the examples in the given data set.
- train(Dataset<T>, Map<String, Provenance>) - Method in class org.tribuo.transform.TransformTrainer
- train(SequenceDataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
-
The viterbi train method is unique because it delegates to a regular
Model
train method, but before it does, it adds features derived from preceding labels. - train(SequenceDataset<Label>, Map<String, Provenance>) - Method in class org.tribuo.classification.sgd.crf.CRFTrainer
- train(SequenceDataset<T>) - Method in interface org.tribuo.sequence.SequenceTrainer
-
Trains a sequence prediction model using the examples in the given data set.
- train(SequenceDataset<T>, Map<String, Provenance>) - Method in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- train(SequenceDataset<T>, Map<String, Provenance>) - Method in class org.tribuo.sequence.HashingSequenceTrainer
-
This clones the
SequenceDataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer. - train(SequenceDataset<T>, Map<String, Provenance>) - Method in interface org.tribuo.sequence.SequenceTrainer
-
Trains a sequence prediction model using the examples in the given data set.
- TRAIN - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- TRAIN_INVOCATION_COUNT - Static variable in interface org.tribuo.provenance.TrainerProvenance
- trainDataset - Variable in class org.tribuo.classification.sgd.crf.SeqTest.CRFOptions
- trainDimension(double[], SparseVector[], float[], SplittableRandom) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Trains a single dimension of the possibly multiple dimensions.
- trainDimension(double[], SparseVector[], float[], SplittableRandom) - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Trains a single dimension of the possibly multiple dimensions.
- trainer - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- trainer - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- trainer - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- Trainer<T> - Interface in org.tribuo
-
An interface for things that can train predictive models.
- TRAINER - Enum constant in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Select the trainer provenance.
- TRAINER - Static variable in class org.tribuo.provenance.ModelProvenance
- trainerOptions - Variable in class org.tribuo.classification.experiments.TrainTest.AllClassificationOptions
- trainerOptions - Variable in class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- trainerOptions - Variable in class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- trainerProvenance - Variable in class org.tribuo.provenance.ModelProvenance
- TrainerProvenance - Interface in org.tribuo.provenance
-
A tag interface for trainer provenances.
- TrainerProvenanceImpl - Class in org.tribuo.provenance.impl
-
An implementation of
TrainerProvenance
that delegates everything toSkeletalTrainerProvenance
. - TrainerProvenanceImpl(Map<String, Provenance>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by extracting the necessary fields from the supplied map.
- TrainerProvenanceImpl(SequenceTrainer<T>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by reading all the configurable parameters along with the train call count.
- TrainerProvenanceImpl(Trainer<T>) - Constructor for class org.tribuo.provenance.impl.TrainerProvenanceImpl
-
Construct a TrainerProvenance by reading all the configurable parameters along with the train call count.
- trainerType - Variable in class org.tribuo.common.liblinear.LibLinearTrainer
- trainExplainer(Example<Regressor>, List<Example<Regressor>>) - Method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Trains the explanation model using the supplied sampled data and the input example.
- TRAINING_LOSS - Static variable in class org.tribuo.interop.tensorflow.TensorflowTrainer
- TRAINING_TIME - Static variable in class org.tribuo.provenance.ModelProvenance
- trainingPath - Variable in class org.tribuo.data.DataOptions
- trainingPath - Variable in class org.tribuo.interop.tensorflow.TrainTest.TensorflowOptions
- trainInvocationCounter - Variable in class org.tribuo.classification.ensemble.AdaBoostTrainer
- trainInvocationCounter - Variable in class org.tribuo.common.tree.AbstractCARTTrainer
- trainInvocationCounter - Variable in class org.tribuo.common.xgboost.XGBoostTrainer
- trainInvocationCounter - Variable in class org.tribuo.ensemble.BaggingTrainer
- trainInvocationCounter - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- trainInvocationCounter - Variable in class org.tribuo.regression.slm.SLMTrainer
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.classification.liblinear.LibLinearClassificationTrainer
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.common.liblinear.LibLinearTrainer
-
Train all the liblinear instances necessary for this dataset.
- trainModels(Parameter, int, FeatureNode[][], double[][]) - Method in class org.tribuo.regression.liblinear.LibLinearRegressionTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][]) - Method in class org.tribuo.anomaly.libsvm.LibSVMAnomalyTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][]) - Method in class org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- trainModels(svm_parameter, int, svm_node[][], double[][]) - Method in class org.tribuo.common.libsvm.LibSVMTrainer
-
Train all the liblinear instances necessary for this dataset.
- trainModels(svm_parameter, int, svm_node[][], double[][]) - Method in class org.tribuo.regression.libsvm.LibSVMRegressionTrainer
- trainOp - Variable in class org.tribuo.interop.tensorflow.sequence.TensorflowSequenceTrainer
- trainPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- trainSingleModel(Dataset<T>, ImmutableFeatureMap, ImmutableOutputInfo<T>, SplittableRandom, Map<String, Provenance>) - Method in class org.tribuo.ensemble.BaggingTrainer
- trainSource - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- TrainTest - Class in org.tribuo.classification.dtree
-
Build and run a decision tree classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.experiments
-
Build and run a classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.liblinear
-
Build and run a liblinear-java classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.libsvm
-
Build and run a LibSVM classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.mnb
-
Build and run a multinomial naive bayes classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.sgd.kernel
-
Build and run a kernel SVM classifier for a standard dataset.
- TrainTest - Class in org.tribuo.classification.sgd
-
Build and run a classifier for a standard dataset using LinearSGDTrainer.
- TrainTest - Class in org.tribuo.classification.xgboost
-
Build and run an XGBoost classifier for a standard dataset.
- TrainTest - Class in org.tribuo.clustering.kmeans
-
Build and run a k-means clustering model for a standard dataset.
- TrainTest - Class in org.tribuo.interop.tensorflow
-
Build and run a Tensorflow multi-class classifier for a standard dataset.
- TrainTest - Class in org.tribuo.regression.liblinear
-
Build and run a LibLinear regressor for a standard dataset.
- TrainTest - Class in org.tribuo.regression.libsvm
-
Build and run a LibSVM regressor for a standard dataset.
- TrainTest - Class in org.tribuo.regression.rtree
-
Build and run a regression tree for a standard dataset.
- TrainTest - Class in org.tribuo.regression.sgd
-
Build and run a linear regression for a standard dataset.
- TrainTest - Class in org.tribuo.regression.slm
-
Build and run a sparse linear regression model for a standard dataset.
- TrainTest - Class in org.tribuo.regression.xgboost
-
Build and run an XGBoost regressor for a standard dataset.
- TrainTest() - Constructor for class org.tribuo.classification.dtree.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.experiments.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.liblinear.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.libsvm.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.mnb.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.sgd.kernel.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.sgd.TrainTest
- TrainTest() - Constructor for class org.tribuo.classification.xgboost.TrainTest
- TrainTest() - Constructor for class org.tribuo.clustering.kmeans.TrainTest
- TrainTest() - Constructor for class org.tribuo.interop.tensorflow.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.liblinear.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.libsvm.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.rtree.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.sgd.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.slm.TrainTest
- TrainTest() - Constructor for class org.tribuo.regression.xgboost.TrainTest
- TrainTest.AllClassificationOptions - Class in org.tribuo.classification.experiments
- TrainTest.DecisionTreeOptions - Class in org.tribuo.regression.rtree
- TrainTest.ImpurityType - Enum in org.tribuo.regression.rtree
- TrainTest.InputType - Enum in org.tribuo.interop.tensorflow
- TrainTest.KMeansOptions - Class in org.tribuo.clustering.kmeans
-
Options for the K-Means CLI.
- TrainTest.LARSOptions - Class in org.tribuo.regression.slm
- TrainTest.LibLinearOptions - Class in org.tribuo.regression.liblinear
- TrainTest.LibLinearOptions - Class in org.tribuo.regression.libsvm
- TrainTest.LossEnum - Enum in org.tribuo.regression.sgd
- TrainTest.SGDOptions - Class in org.tribuo.regression.sgd
- TrainTest.SLMType - Enum in org.tribuo.regression.slm
- TrainTest.TensorflowOptions - Class in org.tribuo.interop.tensorflow
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.dtree
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.liblinear
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.libsvm
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.mnb
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.sgd.kernel
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.sgd
- TrainTest.TrainTestOptions - Class in org.tribuo.classification.xgboost
- TrainTest.TreeType - Enum in org.tribuo.regression.rtree
- TrainTest.XGBoostOptions - Class in org.tribuo.regression.xgboost
- TrainTestHelper - Class in org.tribuo.classification
-
This class provides static methods used by the demo classes in each classification backend.
- TrainTestOptions() - Constructor for class org.tribuo.classification.dtree.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.liblinear.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.libsvm.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.mnb.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.sgd.kernel.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.sgd.TrainTest.TrainTestOptions
- TrainTestOptions() - Constructor for class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- TrainTestSplitOptions() - Constructor for class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- TrainTestSplitter<T> - Class in org.tribuo.evaluation
-
Splits data into training and testing sets.
- TrainTestSplitter(DataSource<T>) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that splits a dataset 70/30 train and test using a default seed.
- TrainTestSplitter(DataSource<T>, double, long) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that will split the given data set into a training and testing set.
- TrainTestSplitter(DataSource<T>, long) - Constructor for class org.tribuo.evaluation.TrainTestSplitter
-
Creates a splitter that splits a dataset 70/30 train and test.
- TrainTestSplitter.SplitDataSourceProvenance - Class in org.tribuo.evaluation
-
Provenance for a split data source.
- transform(double) - Method in class org.tribuo.transform.transformations.SimpleTransform
-
Apply the operation to the input.
- transform(double) - Method in interface org.tribuo.transform.Transformer
-
Applies the transformation to the supplied input value.
- transform(OrtEnvironment, List<SparseVector>) - Method in class org.tribuo.interop.onnx.DenseTransformer
- transform(OrtEnvironment, List<SparseVector>) - Method in interface org.tribuo.interop.onnx.ExampleTransformer
-
Converts a list of
SparseVector
s representing a batch of features into aOnnxTensor
. - transform(OrtEnvironment, List<SparseVector>) - Method in class org.tribuo.interop.onnx.ImageTransformer
- transform(OrtEnvironment, SparseVector) - Method in class org.tribuo.interop.onnx.DenseTransformer
- transform(OrtEnvironment, SparseVector) - Method in interface org.tribuo.interop.onnx.ExampleTransformer
-
Converts a
SparseVector
representing the features into aOnnxTensor
. - transform(OrtEnvironment, SparseVector) - Method in class org.tribuo.interop.onnx.ImageTransformer
- transform(List<Example<Label>>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transform(List<Example<Regressor>>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transform(List<Example<T>>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- transform(List<Example<T>>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.ExampleTransformer
-
Converts a batch of
Example
s into a singleTensor
suitable for supplying as an input to a graph. - transform(List<Example<T>>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.ImageTransformer
-
Transform implicitly pads unseen values with zero.
- transform(List<Example<T>>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts a list of
Example
into aTensor
representing all the outputs in the list. - transform(List<SparseVector>) - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- transform(List<SparseVector>) - Method in interface org.tribuo.interop.tensorflow.ExampleTransformer
-
Converts a list of
SparseVector
s representing a batch of features into aTensor
. - transform(List<SparseVector>) - Method in class org.tribuo.interop.tensorflow.ImageTransformer
- transform(Label, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transform(Example<T>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- transform(Example<T>, ImmutableFeatureMap) - Method in interface org.tribuo.interop.tensorflow.ExampleTransformer
-
Converts an
Example
into aTensor
suitable for supplying as an input to a graph. - transform(Example<T>, ImmutableFeatureMap) - Method in class org.tribuo.interop.tensorflow.ImageTransformer
-
Transform implicitly pads unseen values with zero.
- transform(SparseVector) - Method in class org.tribuo.interop.tensorflow.DenseTransformer
- transform(SparseVector) - Method in interface org.tribuo.interop.tensorflow.ExampleTransformer
-
Converts a
SparseVector
representing the features into aTensor
. - transform(SparseVector) - Method in class org.tribuo.interop.tensorflow.ImageTransformer
- transform(Regressor, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transform(TransformerMap) - Method in class org.tribuo.Example
-
Transforms this example by applying the transformations from the supplied
TransformerMap
. - transform(TransformerMap) - Method in class org.tribuo.impl.ArrayExample
- transform(TransformerMap) - Method in class org.tribuo.impl.BinaryFeaturesExample
- transform(TransformerMap) - Method in class org.tribuo.impl.ListExample
- transform(TransformerMap) - Method in class org.tribuo.MutableDataset
-
Applies all the transformations from the
TransformerMap
to this dataset. - transform(T, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts an
Output
into aTensor
representing it's output. - Transformation - Interface in org.tribuo.transform
-
An interface representing a class of transformations which can be applied to a feature.
- TransformationList(List<Transformation>) - Constructor for class org.tribuo.transform.TransformationMap.TransformationList
- transformationMap - Variable in class org.tribuo.data.CompletelyConfigurableTrainTest.ConfigurableTrainTestOptions
- transformationMap - Variable in class org.tribuo.data.ConfigurableTrainTest.ConfigurableTrainTestOptions
- TransformationMap - Class in org.tribuo.transform
-
A carrier type for a set of transformations to be applied to a
Dataset
. - TransformationMap(List<Transformation>) - Constructor for class org.tribuo.transform.TransformationMap
- TransformationMap(List<Transformation>, Map<String, List<Transformation>>) - Constructor for class org.tribuo.transform.TransformationMap
- TransformationMap(Map<String, List<Transformation>>) - Constructor for class org.tribuo.transform.TransformationMap
- TransformationMap.TransformationList - Class in org.tribuo.transform
-
A carrier type as OLCUT does not support nested generics.
- TransformationProvenance - Interface in org.tribuo.transform
-
A tag interface for provenances in the transformation system.
- transformDataset(Dataset<T>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied dataset and applies the transformers to each example in it.
- transformDataset(Dataset<T>, boolean) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied dataset and applies the transformers to each example in it.
- TransformedModel<T> - Class in org.tribuo.transform
-
Wraps a
Model
with it'sTransformerMap
so allExample
s are transformed appropriately before the model makes predictions. - Transformer - Interface in org.tribuo.transform
-
A fitted
Transformation
which can apply a transform to the input value. - TransformerMap - Class in org.tribuo.transform
- TransformerMap(Map<String, List<Transformer>>, DatasetProvenance, ConfiguredObjectProvenance) - Constructor for class org.tribuo.transform.TransformerMap
-
Constructs a transformer map which encapsulates a set of transformers that can be applied to features.
- TransformerMap.TransformerMapProvenance - Class in org.tribuo.transform
-
Provenance for
TransformerMap
. - TransformerMapProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.transform.TransformerMap.TransformerMapProvenance
- transformExample(Example<T>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied example and applies the transformers to it.
- transformExample(Example<T>, List<String>) - Method in class org.tribuo.transform.TransformerMap
-
Copies the supplied example and applies the transformers to it.
- transformOutput(Prediction<Label>) - Static method in class org.tribuo.classification.explanations.lime.LIMEBase
-
Transforms a
Prediction
for a multiclass problem into aRegressor
output which represents the probability for each class. - transformProvenances - Variable in class org.tribuo.MutableDataset
-
The provenances of the transformations applied to this dataset.
- TransformStatistics - Interface in org.tribuo.transform
-
An interface for the statistics that need to be collected for a specific
Transformation
on a single feature. - transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToBatchOutput(List<OnnxValue>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
containing multiple outputs into a list ofOutput
s. - transformToBatchOutput(Tensor<?>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transformToBatchOutput(Tensor<?>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transformToBatchOutput(Tensor<?>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts a
Tensor
containing multiple outputs into a list ofOutput
s. - transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<Label>, int[], List<Example<Label>>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<Regressor>, int[], List<Example<Regressor>>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToBatchPrediction(List<OnnxValue>, ImmutableOutputInfo<T>, int[], List<Example<T>>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
containing multiple outputs into a list ofPrediction
s. - transformToBatchPrediction(Tensor<?>, ImmutableOutputInfo<Label>, int[], List<Example<Label>>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transformToBatchPrediction(Tensor<?>, ImmutableOutputInfo<Regressor>, int[], List<Example<Regressor>>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transformToBatchPrediction(Tensor<?>, ImmutableOutputInfo<T>, int[], List<Example<T>>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts a
Tensor
containing multiple outputs into a list ofPrediction
s. - transformToOutput(List<OnnxValue>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToOutput(List<OnnxValue>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToOutput(List<OnnxValue>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
into the specified output type. - transformToOutput(Tensor<?>, ImmutableOutputInfo<Label>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transformToOutput(Tensor<?>, ImmutableOutputInfo<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transformToOutput(Tensor<?>, ImmutableOutputInfo<T>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts a
Tensor
into the specified output type. - transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<Label>, int, Example<Label>) - Method in class org.tribuo.interop.onnx.LabelTransformer
- transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<Regressor>, int, Example<Regressor>) - Method in class org.tribuo.interop.onnx.RegressorTransformer
- transformToPrediction(List<OnnxValue>, ImmutableOutputInfo<T>, int, Example<T>) - Method in interface org.tribuo.interop.onnx.OutputTransformer
-
Converts a
OnnxValue
into aPrediction
. - transformToPrediction(Tensor<?>, ImmutableOutputInfo<Label>, int, Example<Label>) - Method in class org.tribuo.interop.tensorflow.LabelTransformer
- transformToPrediction(Tensor<?>, ImmutableOutputInfo<Regressor>, int, Example<Regressor>) - Method in class org.tribuo.interop.tensorflow.RegressorTransformer
- transformToPrediction(Tensor<?>, ImmutableOutputInfo<T>, int, Example<T>) - Method in interface org.tribuo.interop.tensorflow.OutputTransformer
-
Converts a
Tensor
into aPrediction
. - TransformTrainer<T> - Class in org.tribuo.transform
-
A
Trainer
which encapsulates another trainer plus aTransformationMap
object to apply to eachDataset
before training eachModel
. - TransformTrainer(Trainer<T>, TransformationMap) - Constructor for class org.tribuo.transform.TransformTrainer
-
Creates a trainer which transforms the data before training, and stores the transformers along with the trained model in a
TransformedModel
. - TransformTrainer(Trainer<T>, TransformationMap, boolean) - Constructor for class org.tribuo.transform.TransformTrainer
-
Creates a trainer which transforms the data before training, and stores the transformers along with the trained model in a
TransformedModel
. - transitionValues - Variable in class org.tribuo.classification.sgd.crf.ChainHelper.ChainCliqueValues
- transpose() - Method in class org.tribuo.math.la.DenseMatrix
- transpose(Dataset<T>) - Static method in class org.tribuo.math.la.SparseVector
-
Converts a dataset of row-major examples into an array of column-major sparse vectors.
- transpose(Dataset<T>, ImmutableFeatureMap) - Static method in class org.tribuo.math.la.SparseVector
-
Converts a dataset of row-major examples into an array of column-major sparse vectors.
- transpose(SparseVector[]) - Static method in class org.tribuo.math.la.SparseVector
-
Transposes an array of sparse vectors from row-major to column-major or vice versa.
- TreeFeature - Class in org.tribuo.regression.rtree.impl
-
An inverted feature, which stores a reference to all the values of this feature.
- TreeFeature(int) - Constructor for class org.tribuo.regression.rtree.impl.TreeFeature
- TreeModel<T> - Class in org.tribuo.common.tree
- TreeModel(String, ModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, boolean, Map<String, List<String>>) - Constructor for class org.tribuo.common.tree.TreeModel
-
Constructs a trained decision tree model.
- treeType - Variable in class org.tribuo.regression.rtree.TrainTest.DecisionTreeOptions
- Tribuo - Class in org.tribuo
-
This class stores the current Tribuo version, along with other compile time information.
- Tribuo() - Constructor for class org.tribuo.Tribuo
- TRIBUO_VERSION_STRING - Static variable in interface org.tribuo.provenance.TrainerProvenance
- TripleDistribution<T1,
T2, - Class in org.tribuo.util.infotheory.implT3> -
Generates the counts for a triplet of vectors.
- TripleDistribution(long, Map<CachedTriple<T1, T2, T3>, MutableLong>, Map<CachedPair<T1, T2>, MutableLong>, Map<CachedPair<T1, T3>, MutableLong>, Map<CachedPair<T2, T3>, MutableLong>, Map<T1, MutableLong>, Map<T2, MutableLong>, Map<T3, MutableLong>) - Constructor for class org.tribuo.util.infotheory.impl.TripleDistribution
- tryAdvance(Consumer<? super ColumnarIterator.Row>) - Method in class org.tribuo.data.columnar.ColumnarIterator
- TWEEDIE - Enum constant in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Tweedie loss function.
- twoNorm() - Method in class org.tribuo.math.la.DenseMatrix
- twoNorm() - Method in class org.tribuo.math.la.DenseSparseMatrix
- twoNorm() - Method in class org.tribuo.math.la.DenseVector
- twoNorm() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the euclidean norm for this vector.
- twoNorm() - Method in class org.tribuo.math.la.SparseVector
- twoNorm() - Method in interface org.tribuo.math.la.Tensor
-
Calculates the euclidean norm for this vector.
- twoNorm() - Method in class org.tribuo.math.optimisers.util.ShrinkingMatrix
- twoNorm() - Method in class org.tribuo.math.optimisers.util.ShrinkingVector
- type - Variable in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- type - Variable in class org.tribuo.util.infotheory.example.InformationTheoryDemo.DemoOptions
- type - Variable in class org.tribuo.util.tokens.Token
- type - Variable in class org.tribuo.util.tokens.universal.Range
U
- UBYTE - Enum constant in enum org.tribuo.datasource.IDXDataSource.IDXType
- UNASSIGNED - Static variable in class org.tribuo.clustering.ClusterID
- UNASSIGNED_CLUSTER_ID - Static variable in class org.tribuo.clustering.ClusteringFactory
- UNIFORM - Enum constant in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Samples uniformly from the label domain.
- uniformSample(SplittableRandom) - Method in class org.tribuo.CategoricalInfo
- uniformSample(SplittableRandom) - Method in class org.tribuo.RealInfo
- uniformSample(SplittableRandom) - Method in interface org.tribuo.VariableInfo
-
Sample a value uniformly from the range of this variable.
- UniqueAggregator - Class in org.tribuo.data.text.impl
-
Aggregates feature tokens, generating unique features.
- UniqueAggregator() - Constructor for class org.tribuo.data.text.impl.UniqueAggregator
- UniqueAggregator(double) - Constructor for class org.tribuo.data.text.impl.UniqueAggregator
- UniqueProcessor - Class in org.tribuo.data.columnar.processors.feature
-
Processes a feature list, aggregating all the feature values with the same name.
- UniqueProcessor(UniqueProcessor.UniqueType) - Constructor for class org.tribuo.data.columnar.processors.feature.UniqueProcessor
-
Creates a UniqueProcessor using the specified reduction operation.
- UniqueProcessor.UniqueType - Enum in org.tribuo.data.columnar.processors.feature
-
The type of reduction operation to perform.
- UNIVERSAL - Enum constant in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
- UniversalTokenizer - Class in org.tribuo.util.tokens.universal
-
This class was originally written for the purpose of document indexing in an information retrieval context (principally used in Sun Labs' Minion search engine).
- UniversalTokenizer() - Constructor for class org.tribuo.util.tokens.universal.UniversalTokenizer
-
Constructs a universal tokenizer which doesn't send punctuation.
- UniversalTokenizer(boolean) - Constructor for class org.tribuo.util.tokens.universal.UniversalTokenizer
- UNKNOWN - Enum constant in enum org.tribuo.anomaly.Event.EventType
-
An unknown (i.e., unlabelled) event, with id -1.
- UNKNOWN - Static variable in class org.tribuo.classification.Label
-
The name of the unknown label (i.e., an unlabelled output).
- UNKNOWN_EVENT - Static variable in class org.tribuo.anomaly.AnomalyFactory
-
The unknown event.
- UNKNOWN_LABEL - Static variable in class org.tribuo.classification.LabelFactory
-
The singleton unknown label, used for unlablled examples.
- UNKNOWN_MULTILABEL - Static variable in class org.tribuo.multilabel.MultiLabelFactory
- UNKNOWN_MULTIPLE_REGRESSOR - Static variable in class org.tribuo.regression.RegressionFactory
- UNKNOWN_REGRESSOR - Static variable in class org.tribuo.regression.RegressionFactory
- unknownCount - Variable in class org.tribuo.anomaly.AnomalyInfo
-
The number of unknown events observed (i.e., those without labels).
- unknownCount - Variable in class org.tribuo.classification.LabelInfo
-
The number of unknown labels this LabelInfo has seen.
- unknownCount - Variable in class org.tribuo.clustering.ClusteringInfo
- unknownCount - Variable in class org.tribuo.multilabel.MultiLabelInfo
- unknownCount - Variable in class org.tribuo.regression.RegressionInfo
- unpack(int[]) - Method in class org.tribuo.classification.sgd.crf.Chunk
- update(Tensor[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
- update(Tensor[]) - Method in class org.tribuo.math.LinearParameters
- update(Tensor[]) - Method in interface org.tribuo.math.Parameters
-
Apply gradients to the parameters.
- usage() - Static method in class org.tribuo.sequence.SequenceModelExplorer
- useBias() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer
-
Returns true if the SparseVector should be constructed with a bias feature.
- useBias() - Method in class org.tribuo.regression.impl.SkeletalIndependentRegressionTrainer
-
Returns true if the SparseVector should be constructed with a bias feature.
- useMomentum - Variable in class org.tribuo.math.optimisers.SGD
- username - Variable in class org.tribuo.data.sql.SQLToCSV.SQLToCSVOptions
- utf8Charset - Static variable in class org.tribuo.hash.MessageDigestHasher
- Util - Class in org.tribuo.classification.sgd
-
SGD utilities.
- Util - Class in org.tribuo.regression.sgd
-
Utilities.
- Util - Class in org.tribuo.util
-
Ye olde util class.
- Util() - Constructor for class org.tribuo.classification.sgd.Util
- Util() - Constructor for class org.tribuo.regression.sgd.Util
- Util.ExampleArray - Class in org.tribuo.classification.sgd
-
A nominal tuple.
- Util.SequenceExampleArray - Class in org.tribuo.classification.sgd
-
A nominal tuple.
V
- val1 - Variable in class org.tribuo.util.MurmurHash3.LongPair
- val2 - Variable in class org.tribuo.util.MurmurHash3.LongPair
- validate(Class<? extends Output<?>>) - Method in class org.tribuo.Model
-
Validates that this Model does in fact support the supplied output type.
- validate(Class<? extends Output<?>>) - Method in class org.tribuo.sequence.SequenceModel
-
Validates that this Model does in fact support the supplied output type.
- validateExample() - Method in class org.tribuo.Example
-
Checks the example to see if all the feature names are unique, the feature values are not NaN, and there is at least one feature.
- validateExample() - Method in class org.tribuo.impl.ArrayExample
- validateExample() - Method in class org.tribuo.impl.BinaryFeaturesExample
- validateExample() - Method in class org.tribuo.impl.ListExample
- validateExample() - Method in class org.tribuo.sequence.SequenceExample
-
Checks that each
Example
in this sequence is valid. - validateMapping(Map<T, Integer>) - Static method in interface org.tribuo.OutputFactory
-
Validates that the mapping can be used as an output info, i.e.
- validateSalt(String) - Static method in class org.tribuo.hash.Hasher
-
Salt validation is currently a test to see if the string is longer than
Hasher.MIN_LENGTH
. - validateTransformations(FeatureMap) - Method in class org.tribuo.transform.TransformationMap
-
Checks that a given transformation set doesn't have conflicts when applied to the supplied featureMap.
- validationPath - Variable in class org.tribuo.data.text.SplitTextData.TrainTestSplitOptions
- value - Variable in enum org.tribuo.data.DataOptions.Delimiter
- value - Variable in enum org.tribuo.datasource.IDXDataSource.IDXType
-
The encoded byte value.
- value - Variable in class org.tribuo.Feature
-
The feature value.
- value - Variable in class org.tribuo.impl.IndexedArrayExample.FeatureTuple
- value - Variable in class org.tribuo.math.la.MatrixTuple
- value - Variable in class org.tribuo.math.la.VectorTuple
- value - Variable in class org.tribuo.regression.rtree.impl.InvertedFeature
- value - Variable in class org.tribuo.util.IntDoublePair
- valueAndGradient(int, SGDVector) - Method in interface org.tribuo.classification.sgd.LabelObjective
-
Scores a prediction, returning the loss and a vector of per label gradients.
- valueAndGradient(int, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.Hinge
- valueAndGradient(int, SGDVector) - Method in class org.tribuo.classification.sgd.objectives.LogMulticlass
-
Returns a
Pair
ofDouble
and the supplied prediction vector. - valueAndGradient(SparseVector[], int[]) - Method in class org.tribuo.classification.sgd.crf.CRFParameters
-
Generates predictions based on the input features and labels, then scores those predictions to produce a loss for the example and a gradient update.
- valueCounts - Variable in class org.tribuo.CategoricalInfo
-
The occurrence counts of each value.
- valueOf(String) - Static method in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.anomaly.Event.EventType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.common.libsvm.KernelType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.common.nearest.KNNModel.Backend
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.common.nearest.KNNTrainer.Distance
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.data.DataOptions.Delimiter
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.data.DataOptions.InputFormat
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.datasource.IDXDataSource.IDXType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.hash.HashingOptions.ModelHashingType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.interop.tensorflow.TrainTest.InputType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.math.optimisers.SGD.Momentum
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.rtree.TrainTest.TreeType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.sgd.TrainTest.LossEnum
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.slm.TrainTest.SLMType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum org.tribuo.util.tokens.Token.TokenType
-
Returns the enum constant of this type with the specified name.
- values - Variable in class org.tribuo.CategoricalInfo
-
The values array.
- values - Variable in class org.tribuo.math.la.DenseMatrix
- values - Variable in class org.tribuo.math.la.SparseVector
- values() - Static method in enum org.tribuo.anomaly.evaluation.AnomalyMetrics
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.anomaly.Event.EventType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.anomaly.libsvm.SVMAnomalyType.SVMMode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.baseline.DummyClassifierTrainer.DummyType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.dtree.CARTClassificationOptions.ImpurityType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.dtree.CARTClassificationOptions.TreeType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.ensemble.ClassificationEnsembleOptions.EnsembleType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.evaluation.LabelMetrics
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.liblinear.LinearClassificationType.LinearType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.libsvm.SVMClassificationType.SVMMode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.sequence.viterbi.ViterbiModel.ScoreAggregation
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions.ViterbiLabelFeatures
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.sgd.crf.CRFModel.ConfidenceType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.sgd.kernel.KernelSVMOptions.KernelEnum
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.classification.sgd.linear.LinearSGDOptions.LossEnum
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.clustering.evaluation.ClusteringMetrics
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.clustering.kmeans.KMeansTrainer.Distance
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.common.libsvm.KernelType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.common.nearest.KNNModel.Backend
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.common.nearest.KNNTrainer.Distance
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.common.xgboost.XGBoostTrainer.BoosterType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.data.columnar.FieldProcessor.GeneratedFeatureType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.data.columnar.processors.feature.UniqueProcessor.UniqueType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.data.columnar.processors.field.RegexFieldProcessor.Mode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.data.DataOptions.Delimiter
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.data.DataOptions.InputFormat
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.datasource.IDXDataSource.IDXType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Method in class org.tribuo.evaluation.DescriptiveStats
-
Returns a copy of the values.
- values() - Static method in enum org.tribuo.evaluation.metrics.EvaluationMetric.Average
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.hash.HashingOptions.ModelHashingType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.interop.tensorflow.TrainTest.InputType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.json.StripProvenance.ProvenanceTypes
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.math.optimisers.GradientOptimiserOptions.StochasticGradientOptimiserType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.math.optimisers.SGD.Momentum
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.multilabel.evaluation.MultiLabelMetrics
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.baseline.DummyRegressionTrainer.DummyType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.evaluation.RegressionMetrics
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.liblinear.LinearRegressionType.LinearType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.libsvm.SVMRegressionType.SVMMode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.rtree.TrainTest.ImpurityType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.rtree.TrainTest.TreeType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.sgd.TrainTest.LossEnum
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.slm.TrainTest.SLMType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.regression.xgboost.XGBoostRegressionTrainer.RegressionType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.transform.transformations.BinningTransformation.BinningType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.transform.transformations.SimpleTransform.Operation
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.util.infotheory.WeightedInformationTheory.VariableSelector
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.util.tokens.options.CoreTokenizerOptions.CoreTokenizerType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum org.tribuo.util.tokens.Token.TokenType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- VARIABLE_V2 - Static variable in class org.tribuo.interop.tensorflow.TensorflowUtil
- VariableIDInfo - Interface in org.tribuo
-
Adds an id number to a
VariableInfo
. - VariableInfo - Interface in org.tribuo
-
A VariableInfo subclass contains information about a feature and its observed values.
- variance() - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the variance of this vector.
- variance(double) - Method in class org.tribuo.math.la.DenseVector
- variance(double) - Method in interface org.tribuo.math.la.SGDVector
-
Calculates the variance of this vector based on the supplied mean.
- variance(double) - Method in class org.tribuo.math.la.SparseVector
- VectorIterator - Interface in org.tribuo.math.la
- vectorNorm(double[]) - Static method in class org.tribuo.util.Util
- VectorNormalizer - Interface in org.tribuo.math.util
-
A functional interface that generates a normalized version of a double array.
- VectorTuple - Class in org.tribuo.math.la
-
A mutable tuple used to avoid allocation when iterating a vector.
- VectorTuple() - Constructor for class org.tribuo.math.la.VectorTuple
- VectorTuple(int, int) - Constructor for class org.tribuo.math.la.VectorTuple
- VERSION - Static variable in class org.tribuo.Tribuo
-
The full Tribuo version string.
- versionString - Variable in class org.tribuo.provenance.ModelProvenance
- viterbi(ChainHelper.ChainCliqueValues) - Static method in class org.tribuo.classification.sgd.crf.ChainHelper
-
Runs Viterbi on a linear chain CRF.
- ViterbiModel - Class in org.tribuo.classification.sequence.viterbi
-
An implementation of a viterbi model.
- ViterbiModel.ScoreAggregation - Enum in org.tribuo.classification.sequence.viterbi
-
Types of label score aggregation.
- ViterbiTrainer - Class in org.tribuo.classification.sequence.viterbi
-
Builds a Viterbi model using the supplied
Trainer
. - ViterbiTrainer(Trainer<Label>, LabelFeatureExtractor, int, ViterbiModel.ScoreAggregation) - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- ViterbiTrainer(Trainer<Label>, LabelFeatureExtractor, ViterbiModel.ScoreAggregation) - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainer
- ViterbiTrainerOptions - Class in org.tribuo.classification.sequence.viterbi
-
Options for building a viterbi trainer.
- ViterbiTrainerOptions() - Constructor for class org.tribuo.classification.sequence.viterbi.ViterbiTrainerOptions
- ViterbiTrainerOptions.ViterbiLabelFeatures - Enum in org.tribuo.classification.sequence.viterbi
- VOTING - Enum constant in enum org.tribuo.common.nearest.KNNClassifierOptions.EnsembleCombinerType
- VotingCombiner - Class in org.tribuo.classification.ensemble
-
A combiner which performs a weighted or unweighted vote across the predicted labels.
- VotingCombiner() - Constructor for class org.tribuo.classification.ensemble.VotingCombiner
W
- WARNING_THRESHOLD - Static variable in class org.tribuo.interop.onnx.DenseTransformer
-
Number of times the feature size warning should be printed.
- WARNING_THRESHOLD - Static variable in class org.tribuo.interop.tensorflow.DenseTransformer
-
Number of times the feature size warning should be printed.
- weight - Variable in class org.tribuo.Example
-
The weight associated with this example.
- weight - Variable in class org.tribuo.regression.rtree.impurity.RegressorImpurity.ImpurityTuple
- weight - Variable in class org.tribuo.util.infotheory.impl.WeightCountTuple
- WeightCountTuple - Class in org.tribuo.util.infotheory.impl
-
An mutable tuple of a double and a long.
- WeightCountTuple() - Constructor for class org.tribuo.util.infotheory.impl.WeightCountTuple
- WeightCountTuple(double, long) - Constructor for class org.tribuo.util.infotheory.impl.WeightCountTuple
- weightedConditionalEntropy(ArrayList<T1>, ArrayList<T2>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete Shannon/Guiasu Weighted Conditional Entropy of two arrays, using histogram probability estimators.
- WeightedEnsembleModel<T> - Class in org.tribuo.ensemble
-
An ensemble model that uses weights to combine the ensemble member predictions.
- WeightedEnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>, EnsembleCombiner<T>) - Constructor for class org.tribuo.ensemble.WeightedEnsembleModel
- WeightedEnsembleModel(String, EnsembleModelProvenance, ImmutableFeatureMap, ImmutableOutputInfo<T>, List<Model<T>>, EnsembleCombiner<T>, float[]) - Constructor for class org.tribuo.ensemble.WeightedEnsembleModel
- weightedEntropy(ArrayList<T>, ArrayList<Double>) - Static method in class org.tribuo.util.infotheory.WeightedInformationTheory
-
Calculates the discrete Shannon/Guiasu Weighted Entropy, using histogram probability estimators.
- WeightedExamples - Interface in org.tribuo
-
Tag interface denoting that a
Trainer
can use example weights. - WeightedInformationTheory - Class in org.tribuo.util.infotheory
-
A class of (discrete) weighted information theoretic functions.
- WeightedInformationTheory.VariableSelector - Enum in org.tribuo.util.infotheory
-
Chooses which variable is the one with associated weights.
- WeightedLabels - Interface in org.tribuo.classification
-
Tag interface denoting the
Trainer
can use label weights. - weightedMean(double[], double[]) - Static method in class org.tribuo.util.Util
-
Returns the weighted mean of the input.
- weightedMean(double[], float[], int) - Static method in class org.tribuo.util.Util
- WeightedPairDistribution<T1,
T2> - Class in org.tribuo.util.infotheory.impl -
Generates the counts for a pair of vectors.
- WeightedPairDistribution(long, LinkedHashMap<CachedPair<T1, T2>, WeightCountTuple>, LinkedHashMap<T1, WeightCountTuple>, LinkedHashMap<T2, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- WeightedPairDistribution(long, Map<CachedPair<T1, T2>, WeightCountTuple>, Map<T1, WeightCountTuple>, Map<T2, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedPairDistribution
- weightedSum(double[], float[], int) - Static method in class org.tribuo.util.Util
- WeightedTripleDistribution<T1,
T2, - Class in org.tribuo.util.infotheory.implT3> -
Generates the counts for a triplet of vectors.
- WeightedTripleDistribution(long, Map<CachedTriple<T1, T2, T3>, WeightCountTuple>, Map<CachedPair<T1, T2>, WeightCountTuple>, Map<CachedPair<T1, T3>, WeightCountTuple>, Map<CachedPair<T2, T3>, WeightCountTuple>, Map<T1, WeightCountTuple>, Map<T2, WeightCountTuple>, Map<T3, WeightCountTuple>) - Constructor for class org.tribuo.util.infotheory.impl.WeightedTripleDistribution
- weightExtractor - Variable in class org.tribuo.data.columnar.RowProcessor
- weights - Variable in class org.tribuo.classification.experiments.ConfigurableTrainTest.ConfigurableTrainTestOptions
- weights - Variable in class org.tribuo.classification.sgd.Util.ExampleArray
- weights - Variable in class org.tribuo.classification.sgd.Util.SequenceExampleArray
- weights - Variable in class org.tribuo.ensemble.WeightedEnsembleModel
- WHITESPACE - Enum constant in enum org.tribuo.util.tokens.Token.TokenType
- WIDTH_CONSTANT - Static variable in class org.tribuo.classification.explanations.lime.LIMEBase
- WORD - Enum constant in enum org.tribuo.util.tokens.Token.TokenType
- wrapFeatures(String, List<Feature>) - Static method in class org.tribuo.data.columnar.processors.field.TextFieldProcessor
-
Convert the
Feature
s from a text pipeline intoColumnarFeature
s with the right field name. - wrapTrainer(Trainer<Label>) - Method in class org.tribuo.classification.ensemble.ClassificationEnsembleOptions
- writeLibSVMFormat(Dataset<T>, PrintStream, boolean, Function<T, Number>) - Static method in class org.tribuo.datasource.LibSVMDataSource
-
Writes out a dataset in LibSVM format.
X
- xbgAlpha - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbEnsembleSize - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbEta - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbGamma - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbLambda - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbMaxDepth - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbMinWeight - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbNumThreads - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- XGBOOST - Enum constant in enum org.tribuo.classification.experiments.AllTrainerOptions.AlgorithmType
- XGBoostClassificationConverter - Class in org.tribuo.classification.xgboost
-
Converts XGBoost outputs into
Label
Prediction
s. - XGBoostClassificationConverter() - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationConverter
- XGBoostClassificationTrainer - Class in org.tribuo.classification.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostClassificationTrainer() - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
For olcut.
- XGBoostClassificationTrainer(int) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- XGBoostClassificationTrainer(int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
Create an XGBoost trainer.
- XGBoostClassificationTrainer(int, int, boolean) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
- XGBoostClassificationTrainer(int, Map<String, Object>) - Constructor for class org.tribuo.classification.xgboost.XGBoostClassificationTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostExternalModel<T> - Class in org.tribuo.common.xgboost
-
A
Model
which wraps around a XGBoost.Booster which was trained by a system other than Tribuo. - XGBoostModel<T> - Class in org.tribuo.common.xgboost
-
A
Model
which wraps around a XGBoost.Booster. - xgboostOptions - Variable in class org.tribuo.classification.xgboost.TrainTest.TrainTestOptions
- xgBoostOptions - Variable in class org.tribuo.classification.experiments.AllTrainerOptions
- XGBoostOptions - Class in org.tribuo.classification.xgboost
-
CLI options for training an XGBoost classifier.
- XGBoostOptions - Class in org.tribuo.regression.xgboost
-
CLI options for configuring an XGBoost regression trainer.
- XGBoostOptions() - Constructor for class org.tribuo.classification.xgboost.XGBoostOptions
- XGBoostOptions() - Constructor for class org.tribuo.regression.xgboost.TrainTest.XGBoostOptions
- XGBoostOptions() - Constructor for class org.tribuo.regression.xgboost.XGBoostOptions
- XGBoostOutputConverter<T> - Interface in org.tribuo.common.xgboost
-
Converts the output of XGBoost into the appropriate prediction type.
- XGBoostRegressionConverter - Class in org.tribuo.regression.xgboost
-
Converts XGBoost outputs into
Regressor
Prediction
s. - XGBoostRegressionConverter() - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionConverter
- XGBoostRegressionTrainer - Class in org.tribuo.regression.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostRegressionTrainer(int) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
Create an XGBoost trainer.
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, int, boolean) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
- XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType, int, Map<String, Object>) - Constructor for class org.tribuo.regression.xgboost.XGBoostRegressionTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostRegressionTrainer.RegressionType - Enum in org.tribuo.regression.xgboost
-
Types of regression loss.
- XGBoostTrainer<T> - Class in org.tribuo.common.xgboost
-
A
Trainer
which wraps the XGBoost training procedure. - XGBoostTrainer() - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
For olcut.
- XGBoostTrainer(int) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
- XGBoostTrainer(int, double, double, int, double, double, double, double, double, int, boolean, long) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
Create an XGBoost trainer.
- XGBoostTrainer(int, int, boolean) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
- XGBoostTrainer(int, Map<String, Object>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer
-
This gives direct access to the XGBoost parameter map.
- XGBoostTrainer.BoosterType - Enum in org.tribuo.common.xgboost
-
The type of XGBoost model.
- XGBoostTrainer.DMatrixTuple<T> - Class in org.tribuo.common.xgboost
-
Tuple of a DMatrix, the number of valid features in each example, and the examples themselves.
- XGBoostTrainer.XGBoostTrainerProvenance - Class in org.tribuo.common.xgboost
-
Deprecated.
- XGBoostTrainerProvenance(Map<String, Provenance>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.XGBoostTrainerProvenance
-
Deprecated.
- XGBoostTrainerProvenance(XGBoostTrainer<T>) - Constructor for class org.tribuo.common.xgboost.XGBoostTrainer.XGBoostTrainerProvenance
-
Deprecated.
- xgbQuiet - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbSubsample - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- xgbSubsampleFeatures - Variable in class org.tribuo.classification.xgboost.XGBoostOptions
- XOR - Enum constant in enum org.tribuo.util.infotheory.example.InformationTheoryDemo.DistributionType
Z
- zeroIndexed - Variable in class org.tribuo.classification.experiments.Test.ConfigurableTestOptions
- zipArraysCached(ArrayList<T1>, ArrayList<T2>) - Static method in class org.tribuo.util.infotheory.impl.CachedPair
-
Takes two arrays and zips them together into an array of CachedPairs.
All Classes and Interfaces|All Packages|Constant Field Values|Serialized Form
When using regexMappingProcessors, RowProcessor is stateful in a way that can sometimes make it fail the second time it is used. Concretely:
This method returns a RowProcessor with clean state and the same configuration as this row processor.