Class RegressionDataGenerator
java.lang.Object
org.tribuo.regression.example.RegressionDataGenerator
Generates two example train and test datasets, used for unit testing.
They don't necessarily have linear regressed values,
it's for testing the machinery rather than accuracy.
Also can generate a variety of single dimensional gaussian datasets.
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondenseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.Generates an example with no features.Generates an example with no features.Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.multiDimDenseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.multiDimSparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.
-
Field Details
-
firstDimensionName
- See Also:
-
secondDimensionName
- See Also:
-
SINGLE_DIM_NAME
- See Also:
-
-
Constructor Details
-
RegressionDataGenerator
public RegressionDataGenerator()
-
-
Method Details
-
multiDimDenseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> multiDimDenseTrainTest() -
multiDimDenseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> multiDimDenseTrainTest(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.- Parameters:
negate
- Supply -1.0 to negate some features.- Returns:
- A pair of datasets.
-
multiDimSparseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> multiDimSparseTrainTest() -
multiDimSparseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> multiDimSparseTrainTest(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.- Parameters:
negate
- Supply -1.0 to negate some features.- Returns:
- A pair of datasets.
-
invalidMultiDimSparseExample
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class. This should make the example empty at prediction time.- Returns:
- An example with features {1:1.0,5:5.0,8:8.0}.
-
emptyMultiDimExample
Generates an example with no features.- Returns:
- An example with no features.
-
denseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> denseTrainTest() -
denseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> denseTrainTest(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.- Parameters:
negate
- Supply -1.0 to negate some values in this dataset.- Returns:
- A pair of datasets.
-
sparseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> sparseTrainTest() -
sparseTrainTest
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>, Dataset<Regressor>> sparseTrainTest(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.- Parameters:
negate
- Supply -1.0 to negate some values in this dataset.- Returns:
- A pair of datasets.
-
invalidSparseExample
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class. This should make the example empty at prediction time.- Returns:
- An example with features {1:1.0,5:5.0,8:8.0}.
-
emptyExample
Generates an example with no features.- Returns:
- An example with no features.
-