public abstract class RegressionDataGenerator extends Object
Also can generate a variety of single dimensional gaussian datasets.
Modifier and Type | Field and Description |
---|---|
static String |
firstDimensionName |
static String |
secondDimensionName |
static String |
SINGLE_DIM_NAME |
Constructor and Description |
---|
RegressionDataGenerator() |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static Example<Regressor> |
emptyExample()
Generates an example with no features.
|
static Example<Regressor> |
emptyMultiDimExample()
Generates an example with no features.
|
static Example<Regressor> |
invalidMultiDimSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
static Example<Regressor> |
invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
multiDimDenseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
multiDimDenseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
multiDimSparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
multiDimSparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
public static final String firstDimensionName
public static final String secondDimensionName
public static final String SINGLE_DIM_NAME
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> multiDimDenseTrainTest()
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> multiDimDenseTrainTest(double negate)
negate
- Supply -1.0 to negate some features.public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> multiDimSparseTrainTest()
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> multiDimSparseTrainTest(double negate)
negate
- Supply -1.0 to negate some features.public static Example<Regressor> invalidMultiDimSparseExample()
public static Example<Regressor> emptyMultiDimExample()
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> denseTrainTest()
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> denseTrainTest(double negate)
negate
- Supply -1.0 to negate some values in this dataset.public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> sparseTrainTest()
public static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> sparseTrainTest(double negate)
negate
- Supply -1.0 to negate some values in this dataset.public static Example<Regressor> invalidSparseExample()
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.