Class SparseLinearModel
java.lang.Object
org.tribuo.Model<Regressor>
org.tribuo.SparseModel<Regressor>
org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
org.tribuo.regression.slm.SparseLinearModel
- All Implemented Interfaces:
- com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>,- Serializable
The inference time version of a sparse linear regression model.
 
The type of the model depends on the trainer used.
- See Also:
- 
Field SummaryFields inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModeldimensionsFields inherited from class org.tribuo.ModelALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutput
- 
Method SummaryModifier and TypeMethodDescriptioncopy(String newName, ModelProvenance newProvenance) Copies a model, replacing it's provenance and name with the supplied values.protected SparseVectorcreateFeatures(Example<Regressor> example) Creates the feature vector.Generates an excuse for an example.getTopFeatures(int n) Gets the topnfeatures associated with this model.Gets a copy of the model parameters.protected Regressor.DimensionTuplescoreDimension(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension.Methods inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModelpredictMethods inherited from class org.tribuo.SparseModelcopy, getActiveFeaturesMethods inherited from class org.tribuo.ModelgeneratesProbabilities, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, innerPredict, predict, predict, setName, toString, validate
- 
Method Details- 
createFeaturesCreates the feature vector. Includes a bias term if the model requires it.- Overrides:
- createFeaturesin class- SkeletalIndependentRegressionSparseModel
- Parameters:
- example- The example to convert.
- Returns:
- The feature vector.
 
- 
scoreDimensionDescription copied from class:SkeletalIndependentRegressionSparseModelMakes a prediction for a single dimension.- Specified by:
- scoreDimensionin class- SkeletalIndependentRegressionSparseModel
- Parameters:
- dimensionIdx- The dimension index to predict.
- features- The features to use.
- Returns:
- A single dimension prediction.
 
- 
getTopFeaturesDescription copied from class:ModelGets the topnfeatures associated with this model.If the model does not produce per output feature lists, it returns a map with a single element with key Model.ALL_OUTPUTS. If the model cannot describe it's top features then it returns Collections.emptyMap().- Specified by:
- getTopFeaturesin class- Model<Regressor>
- Parameters:
- n- the number of features to return. If this value is less than 0, all features should be returned for each class, unless the model cannot score it's features.
- Returns:
- a map from string outputs to an ordered list of pairs of feature names and weights associated with that feature in the model
 
- 
getExcuseDescription copied from class:ModelGenerates an excuse for an example.This attempts to explain a classification result. Generating an excuse may be quite an expensive operation. This excuse either contains per class information or an entry with key Model.ALL_OUTPUTS. The optional is empty if the model does not provide excuses. 
- 
copyDescription copied from class:ModelCopies a model, replacing it's provenance and name with the supplied values.Used to provide the provenance removal functionality. 
- 
getWeightsGets a copy of the model parameters.- Returns:
- A map from the dimension name to the model parameters.
 
 
-