Class SkeletalIndependentRegressionSparseModel
java.lang.Object
org.tribuo.Model<Regressor>
org.tribuo.SparseModel<Regressor>
org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>,Serializable
- Direct Known Subclasses:
SparseLinearModel
A
SparseModel which wraps n independent regression models, where n is the
size of the MultipleRegressor domain. Each model independently predicts
a single regression dimension.- See Also:
-
Field Summary
FieldsFields inherited from class org.tribuo.Model
ALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutput -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedSkeletalIndependentRegressionSparseModel(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, Map<String, List<String>> activeFeatures) models.size() must equal labelInfo.getDomain().size() -
Method Summary
Modifier and TypeMethodDescriptionprotected SparseVectorcreateFeatures(Example<Regressor> example) Creates the feature vector.Uses the model to predict the output for a single example.protected abstract Regressor.DimensionTuplescoreDimension(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension.Methods inherited from class org.tribuo.SparseModel
copy, getActiveFeaturesMethods inherited from class org.tribuo.Model
copy, generatesProbabilities, getExcuse, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, getTopFeatures, innerPredict, predict, predict, setName, toString, validate
-
Field Details
-
dimensions
-
-
Constructor Details
-
SkeletalIndependentRegressionSparseModel
protected SkeletalIndependentRegressionSparseModel(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, Map<String, List<String>> activeFeatures) models.size() must equal labelInfo.getDomain().size()- Parameters:
name- Model name.dimensions- Dimension names.modelProvenance- The model provenance.featureMap- The feature domain used in training.outputInfo- The output domain used in training.activeFeatures- The active features in this model.
-
-
Method Details
-
predict
Description copied from class:ModelUses the model to predict the output for a single example.predict does not mutate the example.
Throws
IllegalArgumentExceptionif the example has no features or no feature overlap with the model. -
createFeatures
Creates the feature vector. Does not include a bias term.Designed to be overridden, called by the predict method.
- Parameters:
example- The example to convert.- Returns:
- The feature vector.
-
scoreDimension
Makes a prediction for a single dimension.- Parameters:
dimensionIdx- The dimension index to predict.features- The features to use.- Returns:
- A single dimension prediction.
-