public final class XGBoostRegressionTrainer extends XGBoostTrainer<Regressor>
Trainer
which wraps the XGBoost training procedure.
This only exposes a few of XGBoost's training parameters.
It uses pthreads outside of the JVM to parallelise the computation.
Each output dimension is trained independently (and so contains a separate XGBoost ensemble).
See:
Chen T, Guestrin C. "XGBoost: A Scalable Tree Boosting System" Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.and for the original algorithm:
Friedman JH. "Greedy Function Approximation: a Gradient Boosting Machine" Annals of statistics, 2001.
Note: XGBoost requires a native library, on macOS this library requires libomp (which can be installed via homebrew), on Windows this native library must be compiled into a jar as it's not contained in the official XGBoost binary on Maven Central.
Modifier and Type | Class and Description |
---|---|
static class |
XGBoostRegressionTrainer.RegressionType
Types of regression loss.
|
XGBoostTrainer.BoosterType, XGBoostTrainer.DMatrixTuple<T extends Output<T>>, XGBoostTrainer.XGBoostTrainerProvenance
numTrees, parameters, trainInvocationCounter
DEFAULT_SEED
Constructor and Description |
---|
XGBoostRegressionTrainer(int numTrees) |
XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType,
int numTrees) |
XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType,
int numTrees,
double eta,
double gamma,
int maxDepth,
double minChildWeight,
double subsample,
double featureSubsample,
double lambda,
double alpha,
int nThread,
boolean silent,
long seed)
Create an XGBoost trainer.
|
XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType,
int numTrees,
int numThreads,
boolean silent) |
XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType,
int numTrees,
Map<String,Object> parameters)
This gives direct access to the XGBoost parameter map.
|
Modifier and Type | Method and Description |
---|---|
TrainerProvenance |
getProvenance() |
void |
postConfig()
Used by the OLCUT configuration system, and should not be called by external code.
|
XGBoostModel<Regressor> |
train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a predictive model using the examples in the given data set.
|
convertDataset, convertDataset, convertExample, convertExample, convertExamples, convertExamples, convertSingleExample, convertSparseVector, convertSparseVectors, createModel, getInvocationCount, toString
public XGBoostRegressionTrainer(int numTrees)
public XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType, int numTrees)
public XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType, int numTrees, int numThreads, boolean silent)
public XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType, int numTrees, double eta, double gamma, int maxDepth, double minChildWeight, double subsample, double featureSubsample, double lambda, double alpha, int nThread, boolean silent, long seed)
rType
- The type of regression to build.numTrees
- Number of trees to boost.eta
- Step size shrinkage parameter (default 0.3, range [0,1]).gamma
- Minimum loss reduction to make a split (default 0, range
[0,inf]).maxDepth
- Maximum tree depth (default 6, range [1,inf]).minChildWeight
- Minimum sum of instance weights needed in a leaf
(default 1, range [0, inf]).subsample
- Subsample size for each tree (default 1, range (0,1]).featureSubsample
- Subsample features for each tree (default 1,
range (0,1]).lambda
- L2 regularization term on weights (default 1).alpha
- L1 regularization term on weights (default 0).nThread
- Number of threads to use (default 4).silent
- Silence the training output text.seed
- RNG seed.public XGBoostRegressionTrainer(XGBoostRegressionTrainer.RegressionType rType, int numTrees, Map<String,Object> parameters)
It lets you pick things that we haven't exposed like dropout trees, binary classification etc.
This sidesteps the validation that Tribuo provides for the hyperparameters, and so can produce unexpected results.
rType
- The type of the regression.numTrees
- Number of trees to boost.parameters
- A map from string to object, where object can be Number or String.public void postConfig()
postConfig
in interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
in class XGBoostTrainer<Regressor>
public XGBoostModel<Regressor> train(Dataset<Regressor> examples, Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trainer
examples
- the data set containing the examples.runProvenance
- Training run specific provenance (e.g., fold number).public TrainerProvenance getProvenance()
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.