Class LibSVMClassificationTrainer
java.lang.Object
org.tribuo.common.libsvm.LibSVMTrainer<Label>
org.tribuo.classification.libsvm.LibSVMClassificationTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,WeightedLabels,Trainer<Label>
A trainer for classification models that uses LibSVM.
See:
Chang CC, Lin CJ. "LIBSVM: a library for Support Vector Machines" ACM transactions on intelligent systems and technology (TIST), 2011.for the nu-svc algorithm:
Schölkopf B, Smola A, Williamson R, Bartlett P L. "New support vector algorithms" Neural Computation, 2000, 1207-1245.and for the original algorithm:
Cortes C, Vapnik V. "Support-Vector Networks" Machine Learning, 1995.
-
Field Summary
Fields inherited from class org.tribuo.common.libsvm.LibSVMTrainer
parameters, svmTypeFields inherited from interface org.tribuo.Trainer
DEFAULT_SEED -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedLibSVMClassificationTrainer(SVMParameters<Label> parameters) -
Method Summary
Modifier and TypeMethodDescriptionprotected LibSVMModel<Label> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> outputIDInfo, List<libsvm.svm_model> models) Construct the appropriate subtype of LibSVMModel for the prediction task.protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][], double[][]> extractData(Dataset<Label> data, ImmutableOutputInfo<Label> outputInfo, ImmutableFeatureMap featureMap) Extracts the features andOutputs in LibLinear's format.voidUsed by the OLCUT configuration system, and should not be called by external code.voidsetLabelWeights(Map<Label, Float> weights) Sets the label weights used by this trainer.protected libsvm.svm_parametersetupParameters(ImmutableOutputInfo<Label> outputIDInfo) Constructs the svm_parameter.protected List<libsvm.svm_model> trainModels(libsvm.svm_parameter curParams, int numFeatures, libsvm.svm_node[][] features, double[][] outputs) Train all the liblinear instances necessary for this dataset.Methods inherited from class org.tribuo.common.libsvm.LibSVMTrainer
exampleToNodes, getInvocationCount, getProvenance, toString, train, train
-
Constructor Details
-
LibSVMClassificationTrainer
protected LibSVMClassificationTrainer() -
LibSVMClassificationTrainer
-
-
Method Details
-
postConfig
Used by the OLCUT configuration system, and should not be called by external code.- Specified by:
postConfigin interfacecom.oracle.labs.mlrg.olcut.config.Configurable- Overrides:
postConfigin classLibSVMTrainer<Label>
-
createModel
protected LibSVMModel<Label> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> outputIDInfo, List<libsvm.svm_model> models) Description copied from class:LibSVMTrainerConstruct the appropriate subtype of LibSVMModel for the prediction task.- Specified by:
createModelin classLibSVMTrainer<Label>- Parameters:
provenance- The model provenance.featureIDMap- The feature id map.outputIDInfo- The output id info.models- The svm models.- Returns:
- An implementation of LibSVMModel.
-
trainModels
protected List<libsvm.svm_model> trainModels(libsvm.svm_parameter curParams, int numFeatures, libsvm.svm_node[][] features, double[][] outputs) Description copied from class:LibSVMTrainerTrain all the liblinear instances necessary for this dataset.- Specified by:
trainModelsin classLibSVMTrainer<Label>- Parameters:
curParams- The LibLinear parameters.numFeatures- The number of features in this dataset.features- The features themselves.outputs- The outputs.- Returns:
- A list of liblinear models.
-
extractData
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][], double[][]> extractData(Dataset<Label> data, ImmutableOutputInfo<Label> outputInfo, ImmutableFeatureMap featureMap) Description copied from class:LibSVMTrainerExtracts the features andOutputs in LibLinear's format.- Specified by:
extractDatain classLibSVMTrainer<Label>- Parameters:
data- The input data.outputInfo- The output info.featureMap- The feature info.- Returns:
- The features and outputs.
-
setupParameters
Description copied from class:LibSVMTrainerConstructs the svm_parameter. Most of the time this is a no-op, but classification overrides it to incorporate label weights if they exist.- Overrides:
setupParametersin classLibSVMTrainer<Label>- Parameters:
outputIDInfo- The output info.- Returns:
- The svm_parameters to use for training.
-
setLabelWeights
Description copied from interface:WeightedLabelsSets the label weights used by this trainer.Supply
Collections.emptyMap()to turn off label weights.- Specified by:
setLabelWeightsin interfaceWeightedLabels- Parameters:
weights- A map from Label instances to weight values.
-