Class SkeletalIndependentRegressionSparseTrainer<T>
java.lang.Object
org.tribuo.regression.impl.SkeletalIndependentRegressionSparseTrainer<T>
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,SparseTrainer<Regressor>,Trainer<Regressor>
public abstract class SkeletalIndependentRegressionSparseTrainer<T>
extends Object
implements SparseTrainer<Regressor>
Base class for training n independent sparse models, one per dimension. Generates the SparseVectors
once to reduce allocation.
Then wraps them in an SkeletalIndependentRegressionSparseModel to provide a Regressor
prediction.
It trains each model sequentially, and could be optimised to train in parallel.
-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionprotected abstract SkeletalIndependentRegressionSparseModelcreateModel(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModelfor this trainer.intThe number of times this trainer instance has had it's train method invoked.protected abstract StringReturns the class name of the model that this class produces.voidTrains a sparse predictive model using the examples in the given data set.train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.protected abstract TtrainDimension(double[] outputs, SparseVector[] features, float[] weights, SplittableRandom rng) Trains a single dimension of the possibly multiple dimensions.protected abstract booleanuseBias()Returns true if the SparseVector should be constructed with a bias feature.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
-
Constructor Details
-
SkeletalIndependentRegressionSparseTrainer
protected SkeletalIndependentRegressionSparseTrainer()for olcut.
-
-
Method Details
-
postConfig
- Specified by:
postConfigin interfacecom.oracle.labs.mlrg.olcut.config.Configurable
-
train
Description copied from interface:SparseTrainerTrains a sparse predictive model using the examples in the given data set. -
train
public SkeletalIndependentRegressionSparseModel train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Description copied from interface:SparseTrainerTrains a sparse predictive model using the examples in the given data set.- Specified by:
trainin interfaceSparseTrainer<T>- Specified by:
trainin interfaceTrainer<T>- Parameters:
examples- the data set containing the examples.runProvenance- Training run specific provenance (e.g., fold number).- Returns:
- a predictive model that can be used to generate predictions for new examples.
-
getInvocationCount
Description copied from interface:TrainerThe number of times this trainer instance has had it's train method invoked.This is used to determine how many times the trainer's RNG has been accessed to ensure replicability in the random number stream.
- Specified by:
getInvocationCountin interfaceTrainer<T>- Returns:
- The number of train invocations.
-
createModel
protected abstract SkeletalIndependentRegressionSparseModel createModel(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModelfor this trainer.- Parameters:
models- The models to use.provenance- The model provenancefeatureMap- The feature map.outputInfo- The regression info.- Returns:
- A subclass of IndependentRegressionModel.
-
trainDimension
protected abstract T trainDimension(double[] outputs, SparseVector[] features, float[] weights, SplittableRandom rng) Trains a single dimension of the possibly multiple dimensions.- Parameters:
outputs- The regression targets for this dimension.features- The features.weights- The example weights.rng- The RNG to use.- Returns:
- An object representing the model.
-
useBias
Returns true if the SparseVector should be constructed with a bias feature.- Returns:
- True if the trainer needs a bias.
-
getModelClassName
Returns the class name of the model that this class produces.- Returns:
- The class name of the model.
-