public class LibSVMRegressionTrainer extends LibSVMTrainer<Regressor>
See:
Chang CC, Lin CJ. "LIBSVM: a library for Support Vector Machines" ACM transactions on intelligent systems and technology (TIST), 2011.for the nu-svr algorithm:
Schölkopf B, Smola A, Williamson R, Bartlett P L. "New support vector algorithms" Neural Computation, 2000, 1207-1245.and for the original algorithm:
Cortes C, Vapnik V. "Support-Vector Networks" Machine Learning, 1995.
parameters, svmType
DEFAULT_SEED
Modifier | Constructor and Description |
---|---|
protected |
LibSVMRegressionTrainer()
For olcut.
|
|
LibSVMRegressionTrainer(SVMParameters<Regressor> parameters) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Regressor> |
createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<libsvm.svm_model> models)
Construct the appropriate subtype of LibSVMModel for the prediction task.
|
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibLinear's format. |
void |
postConfig()
Used by the OLCUT configuration system, and should not be called by external code.
|
protected List<libsvm.svm_model> |
trainModels(libsvm.svm_parameter curParams,
int numFeatures,
libsvm.svm_node[][] features,
double[][] outputs)
Train all the liblinear instances necessary for this dataset.
|
exampleToNodes, getInvocationCount, getProvenance, setupParameters, toString, train, train
protected LibSVMRegressionTrainer()
public LibSVMRegressionTrainer(SVMParameters<Regressor> parameters)
public void postConfig()
postConfig
in interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
in class LibSVMTrainer<Regressor>
protected LibSVMModel<Regressor> createModel(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<libsvm.svm_model> models)
LibSVMTrainer
createModel
in class LibSVMTrainer<Regressor>
provenance
- The model provenance.featureIDMap
- The feature id map.outputIDInfo
- The output id info.models
- The svm models.protected List<libsvm.svm_model> trainModels(libsvm.svm_parameter curParams, int numFeatures, libsvm.svm_node[][] features, double[][] outputs)
LibSVMTrainer
trainModels
in class LibSVMTrainer<Regressor>
curParams
- The LibLinear parameters.numFeatures
- The number of features in this dataset.features
- The features themselves.outputs
- The outputs.protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> extractData(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap)
LibSVMTrainer
Output
s in LibLinear's format.extractData
in class LibSVMTrainer<Regressor>
data
- The input data.outputInfo
- The output info.featureMap
- The feature info.Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.