public class RegressorTrainingNode extends AbstractTrainingNode<Regressor>
Modifier and Type | Class and Description |
---|---|
static class |
RegressorTrainingNode.InvertedData
Tuple containing an inverted dataset (i.e., feature-wise not exmaple-wise).
|
DEFAULT_SIZE, depth, greaterThan, lessThanOrEqual, numExamples, split, splitID, splitValue
Constructor and Description |
---|
RegressorTrainingNode(RegressorImpurity impurity,
RegressorTrainingNode.InvertedData tuple,
int dimIndex,
String dimName,
int numExamples,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputInfo) |
Modifier and Type | Method and Description |
---|---|
List<AbstractTrainingNode<Regressor>> |
buildTree(int[] featureIDs)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
Node<Regressor> |
convertTree()
|
double |
getImpurity()
The impurity score of this node.
|
static RegressorTrainingNode.InvertedData |
invertData(Dataset<Regressor> examples)
Inverts a training dataset from row major to column major.
|
copy, getDepth, getNextNode, getNumExamples, isLeaf
public RegressorTrainingNode(RegressorImpurity impurity, RegressorTrainingNode.InvertedData tuple, int dimIndex, String dimName, int numExamples, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputInfo)
public double getImpurity()
Node
public List<AbstractTrainingNode<Regressor>> buildTree(int[] featureIDs)
buildTree
in class AbstractTrainingNode<Regressor>
featureIDs
- Indices of the features available in this split.public Node<Regressor> convertTree()
convertTree
in class AbstractTrainingNode<Regressor>
public static RegressorTrainingNode.InvertedData invertData(Dataset<Regressor> examples)
examples
- An input dataset.InvertedFeature
s.Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.