public interface RegressionEvaluation extends Evaluation<Regressor>
Modifier and Type | Method and Description |
---|---|
double |
averagedExplainedVariance()
The average explained variance across all dimensions.
|
double |
averageMAE()
The average Mean Absolute Error across all dimensions.
|
double |
averageR2()
The average R2 across all dimensions.
|
double |
averageRMSE()
The average RMSE across all dimensions.
|
Map<Regressor,Double> |
explainedVariance()
Calculatest the explained variance for all dimensions.
|
double |
explainedVariance(Regressor variable)
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.
|
Map<Regressor,Double> |
mae()
Calculates the Mean Absolute Error for all dimensions.
|
double |
mae(Regressor variable)
Calculates the Mean Absolute Error for that dimension.
|
Map<Regressor,Double> |
r2()
Calculates R2 for all dimensions.
|
double |
r2(Regressor variable)
Calculates R2 for the supplied dimension.
|
Map<Regressor,Double> |
rmse()
Calculates the RMSE for all dimensions.
|
double |
rmse(Regressor variable)
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.
|
asMap, get, getPredictions
double averageMAE()
double mae(Regressor variable)
variable
- The regression dimension to use.Map<Regressor,Double> mae()
double averageR2()
double r2(Regressor variable)
variable
- The regression dimension to use.double averageRMSE()
double rmse(Regressor variable)
variable
- The regression dimension to use.double averagedExplainedVariance()
double explainedVariance(Regressor variable)
variable
- The regression dimension to use.Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.