Class XGBoostOptions
java.lang.Object
org.tribuo.classification.xgboost.XGBoostOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options,ClassificationOptions<XGBoostClassificationTrainer>
public class XGBoostOptions
extends Object
implements ClassificationOptions<XGBoostClassificationTrainer>
CLI options for training an XGBoost classifier.
-
Field Summary
FieldsModifier and TypeFieldDescriptionfloatintfloatfloatfloatintfloatintbooleanfloatfloatFields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionConstructs the trainer based on the provided arguments.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
xgbEnsembleSize
@Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int xgbEnsembleSize -
xbgAlpha
@Option(longName="xgb-alpha", usage="L1 regularization term for weights (default 0).") public float xbgAlpha -
xgbMinWeight
@Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).") public float xgbMinWeight -
xgbMaxDepth
@Option(longName="xgb-max-depth", usage="Max tree depth (default 6, range (0,inf]).") public int xgbMaxDepth -
xgbEta
@Option(longName="xgb-eta", usage="Step size shrinkage parameter (default 0.3, range [0,1]).") public float xgbEta -
xgbSubsampleFeatures
@Option(longName="xgb-subsample-features", usage="Subsample features for each tree (default 1, range (0,1]).") public float xgbSubsampleFeatures -
xgbGamma
@Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (default 0, range [0,inf]).") public float xgbGamma -
xgbLambda
@Option(longName="xgb-lambda", usage="L2 regularization term for weights (default 1).") public float xgbLambda -
xgbQuiet
@Option(longName="xgb-quiet", usage="Make the XGBoost training procedure quiet.") public boolean xgbQuiet -
xgbSubsample
@Option(longName="xgb-subsample", usage="Subsample size for each tree (default 1, range (0,1]).") public float xgbSubsample -
xgbNumThreads
@Option(longName="xgb-num-threads", usage="Number of threads to use (default 4, range (1, num hw threads)).") public int xgbNumThreads
-
-
Constructor Details
-
XGBoostOptions
public XGBoostOptions()
-
-
Method Details
-
getTrainer
Description copied from interface:ClassificationOptionsConstructs the trainer based on the provided arguments.- Specified by:
getTrainerin interfaceClassificationOptions<XGBoostClassificationTrainer>- Returns:
- The trainer.
-