Class XGBoostOptions
java.lang.Object
org.tribuo.regression.xgboost.XGBoostOptions
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Options
CLI options for configuring an XGBoost regression trainer.
-
Field Summary
FieldsModifier and TypeFieldDescriptionfloat
int
int
float
float
float
float
int
boolean
float
float
Fields inherited from interface com.oracle.labs.mlrg.olcut.config.Options
header
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionGets the configured XGBoostRegressionTrainer.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Options
getOptionsDescription
-
Field Details
-
rType
@Option(longName="xgb-regression-metric", usage="Regression type to use. Defaults to LINEAR.") public XGBoostRegressionTrainer.RegressionType rType -
ensembleSize
@Option(longName="xgb-ensemble-size", usage="Number of trees in the ensemble.") public int ensembleSize -
alpha
@Option(longName="xgb-alpha", usage="L1 regularization term for weights (default 0).") public float alpha -
minWeight
@Option(longName="xgb-min-weight", usage="Minimum sum of instance weights needed in a leaf (default 1, range [0,inf]).") public float minWeight -
depth
@Option(longName="xgb-max-depth", usage="Max tree depth (default 6, range (0,inf]).") public int depth -
eta
@Option(longName="xgb-eta", usage="Step size shrinkage parameter (default 0.3, range [0,1]).") public float eta -
subsampleFeatures
@Option(longName="xgb-subsample-features", usage="Subsample features for each tree (default 1, range (0,1]).") public float subsampleFeatures -
gamma
@Option(longName="xgb-gamma", usage="Minimum loss reduction to make a split (default 0, range [0,inf]).") public float gamma -
lambda
@Option(longName="xgb-lambda", usage="L2 regularization term for weights (default 1).") public float lambda -
quiet
@Option(longName="xgb-quiet", usage="Make the XGBoost training procedure quiet.") public boolean quiet -
subsample
@Option(longName="xgb-subsample", usage="Subsample size for each tree (default 1, range (0,1]).") public float subsample -
numThreads
@Option(longName="xgb-num-threads", usage="Number of threads to use (default 4, range (1, num hw threads)).") public int numThreads
-
-
Constructor Details
-
XGBoostOptions
public XGBoostOptions()
-
-
Method Details
-
getTrainer
Gets the configured XGBoostRegressionTrainer.- Returns:
- The configured trainer.
-