Uses of Interface
org.tribuo.ImmutableOutputInfo
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides classes and infrastructure for anomaly detection problems.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
Evaluation classes for multi-class classification.
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides infrastructure for
SequenceModel
s which
emit Label
s at each step of the sequence.Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides an interface to XGBoost for classification problems.
Provides classes and infrastructure for working with clustering problems.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective
of the predicted
Output
.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Provides implementations of base classes and interfaces from
org.tribuo
.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around the ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel
abstraction.Provides classes and infrastructure for working with multi-label classification problems.
Provides a multi-label ensemble combiner that performs a (possibly
weighted) majority vote among each label independently, along with an
implementation of classifier chain ensembles.
Evaluation classes for multi-label classification using
MultiLabel
.Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides
EnsembleCombiner
implementations
for working with multi-output regression problems.Evaluation classes for single or multi-dimensional regression.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides internal implementation classes for the regression trees.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides an interface to XGBoost for regression problems.
Provides core classes for working with sequences of
Example
s.-
Uses of ImmutableOutputInfo in org.tribuo
Modifier and TypeFieldDescriptionprotected ImmutableOutputInfo<T>
ImmutableDataset.outputIDInfo
Output information, and id numbers for outputs found in this dataset.protected final ImmutableOutputInfo<T>
Model.outputIDInfo
The outputs this model predicts.Modifier and TypeMethodDescriptionOutputFactory.constructInfoForExternalModel
(Map<T, Integer> mapping) Creates anImmutableOutputInfo
from the supplied mapping.OutputInfo.generateImmutableOutputInfo()
Generates anImmutableOutputInfo
which has a copy of the data in thisOutputInfo
, but also has id values and is immutable.abstract ImmutableOutputInfo<T>
Dataset.getOutputIDInfo()
Returns or generates anImmutableOutputInfo
.ImmutableDataset.getOutputIDInfo()
Model.getOutputIDInfo()
Gets the output domain.MutableDataset.getOutputIDInfo()
ImmutableDataset.getOutputInfo()
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.copyDataset
(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.copyDataset
(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.default boolean
ImmutableOutputInfo.domainAndIDEquals
(ImmutableOutputInfo<T> other) Checks if the domain is the same as the other output info's domain, and that each element is mapped to the same id number.ModifierConstructorDescriptionImmutableDataset
(Iterable<Example<T>> dataSource, DataProvenance description, OutputFactory<T> outputFactory, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean dropInvalidExamples) Creates a dataset from a data source.protected
ImmutableDataset
(DataProvenance description, OutputFactory<T> outputFactory, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) This is dangerous, and should not be used unless you've overridden everything in ImmutableDataset.protected
Model
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean generatesProbabilities) Constructs a new model, storing the supplied fields.SparseModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean generatesProbabilities, Map<String, List<String>> activeFeatures) Constructs a sparse model from the supplied arguments. -
Uses of ImmutableOutputInfo in org.tribuo.anomaly
Modifier and TypeMethodDescriptionAnomalyFactory.constructInfoForExternalModel
(Map<Event, Integer> mapping) AnomalyInfo.generateImmutableOutputInfo()
Modifier and TypeMethodDescriptionboolean
ImmutableAnomalyInfo.domainAndIDEquals
(ImmutableOutputInfo<Event> other) -
Uses of ImmutableOutputInfo in org.tribuo.anomaly.liblinear
Modifier and TypeMethodDescriptionprotected LibLinearModel<Event>
LibLinearAnomalyTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Event> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearAnomalyTrainer.extractData
(Dataset<Event> data, ImmutableOutputInfo<Event> outputInfo, ImmutableFeatureMap featureMap) protected de.bwaldvogel.liblinear.Parameter
LibLinearAnomalyTrainer.setupParameters
(ImmutableOutputInfo<Event> labelIDMap) -
Uses of ImmutableOutputInfo in org.tribuo.anomaly.libsvm
Modifier and TypeMethodDescriptionprotected LibSVMModel<Event>
LibSVMAnomalyTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Event> outputIDInfo, List<libsvm.svm_model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMAnomalyTrainer.extractData
(Dataset<Event> data, ImmutableOutputInfo<Event> outputInfo, ImmutableFeatureMap featureMap) -
Uses of ImmutableOutputInfo in org.tribuo.classification
Modifier and TypeMethodDescriptionLabelFactory.constructInfoForExternalModel
(Map<Label, Integer> mapping) LabelInfo.generateImmutableOutputInfo()
Modifier and TypeMethodDescriptionboolean
ImmutableLabelInfo.domainAndIDEquals
(ImmutableOutputInfo<Label> other) -
Uses of ImmutableOutputInfo in org.tribuo.classification.ensemble
Modifier and TypeMethodDescriptionFullyWeightedVotingCombiner.combine
(ImmutableOutputInfo<Label> outputInfo, List<Prediction<Label>> predictions) FullyWeightedVotingCombiner.combine
(ImmutableOutputInfo<Label> outputInfo, List<Prediction<Label>> predictions, float[] weights) VotingCombiner.combine
(ImmutableOutputInfo<Label> outputInfo, List<Prediction<Label>> predictions) VotingCombiner.combine
(ImmutableOutputInfo<Label> outputInfo, List<Prediction<Label>> predictions, float[] weights) -
Uses of ImmutableOutputInfo in org.tribuo.classification.evaluation
Modifier and TypeMethodDescriptionConfusionMatrix.getDomain()
Returns the classification domain that this confusion matrix operates over.LabelConfusionMatrix.getDomain()
Modifier and TypeMethodDescriptionstatic <T extends Classifiable<T>>
doubleConfusionMatrix.sumOverOutputs
(ImmutableOutputInfo<T> domain, ToDoubleFunction<T> getter) Sums the supplied getter over the domain.ModifierConstructorDescriptionLabelConfusionMatrix
(ImmutableOutputInfo<Label> domain, List<Prediction<Label>> predictions) Creates a confusion matrix from the supplied predictions and label info. -
Uses of ImmutableOutputInfo in org.tribuo.classification.liblinear
Modifier and TypeMethodDescriptionprotected LibLinearModel<Label>
LibLinearClassificationTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearClassificationTrainer.extractData
(Dataset<Label> data, ImmutableOutputInfo<Label> outputInfo, ImmutableFeatureMap featureMap) protected de.bwaldvogel.liblinear.Parameter
LibLinearClassificationTrainer.setupParameters
(ImmutableOutputInfo<Label> labelIDMap) -
Uses of ImmutableOutputInfo in org.tribuo.classification.libsvm
Modifier and TypeMethodDescriptionprotected LibSVMModel<Label>
LibSVMClassificationTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> outputIDInfo, List<libsvm.svm_model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMClassificationTrainer.extractData
(Dataset<Label> data, ImmutableOutputInfo<Label> outputInfo, ImmutableFeatureMap featureMap) protected libsvm.svm_parameter
LibSVMClassificationTrainer.setupParameters
(ImmutableOutputInfo<Label> outputIDInfo) -
Uses of ImmutableOutputInfo in org.tribuo.classification.sequence
ModifierConstructorDescriptionprotected
ConfidencePredictingSequenceModel
(String name, ModelProvenance description, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> labelIDMap) Constructs a ConfidencePredictingSequenceModel with the supplied parameters. -
Uses of ImmutableOutputInfo in org.tribuo.classification.sgd.crf
Modifier and TypeMethodDescriptionstatic com.oracle.labs.mlrg.olcut.util.Pair<int[],
SparseVector[]> CRFModel.convert
(SequenceExample<Label> example, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> labelIDMap) Deprecated.static com.oracle.labs.mlrg.olcut.util.Pair<int[],
SGDVector[]> CRFModel.convertToVector
(SequenceExample<Label> example, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Label> labelIDMap) Converts aSequenceExample
into an array ofSGDVector
s and labels suitable for CRF prediction. -
Uses of ImmutableOutputInfo in org.tribuo.classification.sgd.fm
Modifier and TypeMethodDescriptionprotected FMClassificationModel
FMClassificationTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Label> outputInfo, FMParameters parameters) protected Integer
FMClassificationTrainer.getTarget
(ImmutableOutputInfo<Label> outputInfo, Label output) -
Uses of ImmutableOutputInfo in org.tribuo.classification.sgd.linear
Modifier and TypeMethodDescriptionprotected LinearSGDModel
LinearSGDTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Label> outputInfo, LinearParameters parameters) protected Integer
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Label> outputInfo, Label output) -
Uses of ImmutableOutputInfo in org.tribuo.classification.xgboost
Modifier and TypeMethodDescriptionXGBoostClassificationConverter.convertBatchOutput
(ImmutableOutputInfo<Label> info, List<float[][]> probabilitiesList, int[] numValidFeatures, Example<Label>[] examples) XGBoostClassificationConverter.convertOutput
(ImmutableOutputInfo<Label> info, List<float[]> probabilitiesList, int numValidFeatures, Example<Label> example) -
Uses of ImmutableOutputInfo in org.tribuo.clustering
Modifier and TypeMethodDescriptionClusteringFactory.constructInfoForExternalModel
(Map<ClusterID, Integer> mapping) Unlike the other info types, clustering directly uses the integer IDs as the stored value, so this mapping discards the cluster IDs and just uses the supplied integers.ClusteringInfo.generateImmutableOutputInfo()
Modifier and TypeMethodDescriptionboolean
ImmutableClusteringInfo.domainAndIDEquals
(ImmutableOutputInfo<ClusterID> other) -
Uses of ImmutableOutputInfo in org.tribuo.common.liblinear
Modifier and TypeMethodDescriptionprotected abstract LibLinearModel<T>
LibLinearTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) Construct the appropriate subtype of LibLinearModel for the prediction task.protected abstract com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearTrainer.extractData
(Dataset<T> data, ImmutableOutputInfo<T> outputInfo, ImmutableFeatureMap featureMap) Extracts the features andOutput
s in LibLinear's format.protected de.bwaldvogel.liblinear.Parameter
LibLinearTrainer.setupParameters
(ImmutableOutputInfo<T> info) Constructs the parameters.ModifierConstructorDescriptionprotected
LibLinearModel
(String name, ModelProvenance description, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> labelIDMap, boolean generatesProbabilities, List<de.bwaldvogel.liblinear.Model> models) Constructs a LibLinear model from the supplied arguments. -
Uses of ImmutableOutputInfo in org.tribuo.common.libsvm
Modifier and TypeMethodDescriptionprotected abstract LibSVMModel<T>
LibSVMTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<libsvm.svm_model> models) Construct the appropriate subtype of LibSVMModel for the prediction task.protected abstract com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMTrainer.extractData
(Dataset<T> data, ImmutableOutputInfo<T> outputInfo, ImmutableFeatureMap featureMap) Extracts the features andOutput
s in LibSVM's format.protected libsvm.svm_parameter
LibSVMTrainer.setupParameters
(ImmutableOutputInfo<T> info) Constructs the svm_parameter.ModifierConstructorDescriptionprotected
LibSVMModel
(String name, ModelProvenance description, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean generatesProbabilities, List<libsvm.svm_model> models) Constructs a LibSVMModel from the supplied arguments. -
Uses of ImmutableOutputInfo in org.tribuo.common.sgd
Modifier and TypeMethodDescriptionprotected abstract V
AbstractSGDTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<T> outputInfo, X parameters) Creates the appropriate model subclass for this subclass of AbstractSGDTrainer.protected abstract U
AbstractSGDTrainer.getTarget
(ImmutableOutputInfo<T> outputInfo, T output) Extracts the appropriate training time representation from the supplied output.ModifierConstructorDescriptionprotected
AbstractFMModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, FMParameters parameters, boolean generatesProbabilities) Constructs a factorization machine model trained via SGD.protected
AbstractLinearSGDModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, LinearParameters parameters, boolean generatesProbabilities) Constructs a linear model trained via SGD.protected
AbstractSGDModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, FeedForwardParameters weights, boolean generatesProbabilities, boolean addBias) Constructs a linear model trained via SGD. -
Uses of ImmutableOutputInfo in org.tribuo.common.tree
ModifierConstructorDescriptionprotected
TreeModel
(String name, ModelProvenance description, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean generatesProbabilities, Map<String, List<String>> activeFeatures) Constructs a trained decision tree model. -
Uses of ImmutableOutputInfo in org.tribuo.common.xgboost
Modifier and TypeMethodDescriptionList<Prediction<T>>
XGBoostOutputConverter.convertBatchOutput
(ImmutableOutputInfo<T> info, List<float[][]> probabilities, int[] numValidFeatures, Example<T>[] examples) Converts a list of float arrays from XGBoost Boosters into a TribuoPrediction
.XGBoostOutputConverter.convertOutput
(ImmutableOutputInfo<T> info, List<float[]> probabilities, int numValidFeatures, Example<T> example) Converts a list of float arrays from XGBoost Boosters into a TribuoPrediction
.protected XGBoostModel<T>
XGBoostTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<ml.dmlc.xgboost4j.java.Booster> models, XGBoostOutputConverter<T> converter) -
Uses of ImmutableOutputInfo in org.tribuo.dataset
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
DatasetView<T>DatasetView.createBootstrapView
(Dataset<T> dataset, int size, long seed, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset.static <T extends Output<T>>
DatasetView<T>DatasetView.createWeightedBootstrapView
(Dataset<T> dataset, int size, long seed, float[] exampleWeights, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.ModifierConstructorDescriptionDatasetView
(Dataset<T> dataset, int[] exampleIndices, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> labelIDs, String tag) Creates a DatasetView which includes the supplied indices from the dataset. -
Uses of ImmutableOutputInfo in org.tribuo.ensemble
Modifier and TypeMethodDescriptionEnsembleCombiner.combine
(ImmutableOutputInfo<T> outputInfo, List<Prediction<T>> predictions) Combine the predictions.EnsembleCombiner.combine
(ImmutableOutputInfo<T> outputInfo, List<Prediction<T>> predictions, float[] weights) Combine the supplied predictions.BaggingTrainer.trainSingleModel
(Dataset<T> examples, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> labelIDs, int randInt, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a single model.ModifierConstructorDescriptionprotected
EnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels) Builds an EnsembleModel from the supplied model list.WeightedEnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner) Unless you are implementing aTrainer
you should not use this constructor directly.WeightedEnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner, float[] weights) Unless you are implementing aTrainer
you should not use this constructor directly. -
Uses of ImmutableOutputInfo in org.tribuo.impl
ModifierConstructorDescriptionIndexedArrayExample
(Example<T> other, ImmutableFeatureMap featureMap, ImmutableOutputInfo<T> outputMap) This constructor removes unknown features. -
Uses of ImmutableOutputInfo in org.tribuo.interop
Modifier and TypeMethodDescriptionprotected static <T extends Output<T>>
ImmutableOutputInfo<T>ExternalModel.createOutputInfo
(OutputFactory<T> factory, Map<T, Integer> outputs) Creates an output info from a set of outputs.ModifierConstructorDescriptionprotected
ExternalModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, boolean generatesProbabilities, Map<String, Integer> featureMapping) Constructs an external model from a model trained outside of Tribuo.protected
ExternalModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, int[] featureForwardMapping, int[] featureBackwardMapping, boolean generatesProbabilities) Constructs an external model from a model trained outside of Tribuo. -
Uses of ImmutableOutputInfo in org.tribuo.interop.oci
Modifier and TypeMethodDescriptionOCILabelConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Label>> examples, ImmutableOutputInfo<Label> outputIDInfo) OCILabelConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Label> example, ImmutableOutputInfo<Label> outputIDInfo) OCIMultiLabelConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<MultiLabel>> examples, ImmutableOutputInfo<MultiLabel> outputIDInfo) OCIMultiLabelConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<MultiLabel> example, ImmutableOutputInfo<MultiLabel> outputIDInfo) List<Prediction<T>>
OCIOutputConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<T>> examples, ImmutableOutputInfo<T> outputIDInfo) Converts a dense matrix into a list of predictions of the appropriate type.OCIOutputConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<T> example, ImmutableOutputInfo<T> outputIDInfo) Converts a dense vector into a single prediction of the appropriate type.OCIRegressorConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) OCIRegressorConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Regressor> example, ImmutableOutputInfo<Regressor> outputIDInfo) -
Uses of ImmutableOutputInfo in org.tribuo.interop.onnx
Modifier and TypeMethodDescriptionprotected float[][]
LabelOneVOneTransformer.getBatchPredictions
(List<ai.onnxruntime.OnnxValue> inputs, ImmutableOutputInfo<Label> outputIDInfo) Rationalises the output of an onnx model into a standard format suitable for downstream work in Tribuo.protected float[][]
LabelTransformer.getBatchPredictions
(List<ai.onnxruntime.OnnxValue> inputs, ImmutableOutputInfo<Label> outputIDInfo) Rationalises the output of an onnx model into a standard format suitable for downstream work in Tribuo.LabelTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Label> outputIDInfo) MultiLabelTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<MultiLabel> outputIDInfo) OutputTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<T> outputIDInfo) Converts aOnnxValue
containing multiple outputs into a list ofOutput
s.RegressorTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) LabelTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Label> outputIDInfo, int[] numValidFeatures, List<Example<Label>> examples) MultiLabelTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<MultiLabel> outputIDInfo, int[] numValidFeatures, List<Example<MultiLabel>> examples) List<Prediction<T>>
OutputTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<T> outputIDInfo, int[] numValidFeatures, List<Example<T>> examples) Converts aOnnxValue
containing multiple outputs into a list ofPrediction
s.RegressorTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) LabelTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Label> outputIDInfo) MultiLabelTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<MultiLabel> outputIDInfo) OutputTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<T> outputIDInfo) Converts aOnnxValue
into the specified output type.RegressorTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) LabelTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Label> outputIDInfo, int numValidFeatures, Example<Label> example) MultiLabelTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<MultiLabel> outputIDInfo, int numValidFeatures, Example<MultiLabel> example) OutputTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> value, ImmutableOutputInfo<T> outputIDInfo, int numValidFeatures, Example<T> example) Converts aOnnxValue
into aPrediction
.RegressorTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) -
Uses of ImmutableOutputInfo in org.tribuo.interop.tensorflow
Modifier and TypeMethodDescriptionLabelConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Label> outputIDInfo) MultiLabelConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<MultiLabel> outputIDInfo) OutputConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<T> outputIDInfo) Converts aTensor
containing multiple outputs into a list ofOutput
s.RegressorConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) LabelConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Label> outputIDInfo, int[] numValidFeatures, List<Example<Label>> examples) MultiLabelConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<MultiLabel> outputIDInfo, int[] numValidFeatures, List<Example<MultiLabel>> examples) List<Prediction<T>>
OutputConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<T> outputIDInfo, int[] numValidFeatures, List<Example<T>> examples) Converts aTensor
containing multiple outputs into a list ofPrediction
s.RegressorConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) LabelConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Label> outputIDInfo) MultiLabelConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<MultiLabel> outputIDInfo) OutputConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<T> outputIDInfo) Converts aTensor
into the specified output type.RegressorConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) LabelConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Label> outputIDInfo, int numValidFeatures, Example<Label> example) MultiLabelConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<MultiLabel> outputIDInfo, int numValidFeatures, Example<MultiLabel> example) OutputConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<T> outputIDInfo, int numValidFeatures, Example<T> example) Converts aTensor
into aPrediction
.RegressorConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) org.tensorflow.Tensor
LabelConverter.convertToTensor
(List<Example<Label>> examples, ImmutableOutputInfo<Label> outputIDInfo) org.tensorflow.Tensor
LabelConverter.convertToTensor
(Label example, ImmutableOutputInfo<Label> outputIDInfo) org.tensorflow.Tensor
MultiLabelConverter.convertToTensor
(List<Example<MultiLabel>> examples, ImmutableOutputInfo<MultiLabel> outputIDInfo) org.tensorflow.Tensor
MultiLabelConverter.convertToTensor
(MultiLabel example, ImmutableOutputInfo<MultiLabel> outputIDInfo) org.tensorflow.Tensor
OutputConverter.convertToTensor
(List<Example<T>> examples, ImmutableOutputInfo<T> outputIDInfo) Converts a list ofExample
into aTensor
representing all the outputs in the list.org.tensorflow.Tensor
OutputConverter.convertToTensor
(T output, ImmutableOutputInfo<T> outputIDInfo) Converts anOutput
into aTensor
representing it's output.org.tensorflow.Tensor
RegressorConverter.convertToTensor
(List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) org.tensorflow.Tensor
RegressorConverter.convertToTensor
(Regressor example, ImmutableOutputInfo<Regressor> outputIDInfo) ModifierConstructorDescriptionprotected
TensorFlowModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, org.tensorflow.proto.framework.GraphDef trainedGraphDef, int batchSize, String outputName, FeatureConverter featureConverter, OutputConverter<T> outputConverter) Builds a TFModel. -
Uses of ImmutableOutputInfo in org.tribuo.interop.tensorflow.sequence
Modifier and TypeMethodDescriptionList<List<Prediction<T>>>
SequenceOutputConverter.decode
(org.tensorflow.Tensor outputs, List<SequenceExample<T>> inputBatch, ImmutableOutputInfo<T> labelMap) Decode graph output tensors corresponding to a batch of input sequences.List<Prediction<T>>
SequenceOutputConverter.decode
(org.tensorflow.Tensor output, SequenceExample<T> input, ImmutableOutputInfo<T> labelMap) Decode a tensor of graph output into a list of predictions for the input sequence.SequenceOutputConverter.encode
(List<SequenceExample<T>> batch, ImmutableOutputInfo<T> labelMap) Encodes a batch of labels as a feed dict.SequenceOutputConverter.encode
(SequenceExample<T> example, ImmutableOutputInfo<T> labelMap) Encodes an example's label as a feed dict. -
Uses of ImmutableOutputInfo in org.tribuo.multilabel
Modifier and TypeMethodDescriptionMultiLabelFactory.constructInfoForExternalModel
(Map<MultiLabel, Integer> mapping) MultiLabelInfo.generateImmutableOutputInfo()
Modifier and TypeMethodDescriptionMultiLabel.convertToDenseVector
(ImmutableOutputInfo<MultiLabel> info) Converts this MultiLabel into a DenseVector using the indices from the output info.MultiLabel.convertToSparseVector
(ImmutableOutputInfo<MultiLabel> info) Converts this MultiLabel into a SparseVector using the indices from the output info.boolean
ImmutableMultiLabelInfo.domainAndIDEquals
(ImmutableOutputInfo<MultiLabel> other) -
Uses of ImmutableOutputInfo in org.tribuo.multilabel.ensemble
Modifier and TypeMethodDescriptionMultiLabelVotingCombiner.combine
(ImmutableOutputInfo<MultiLabel> outputInfo, List<Prediction<MultiLabel>> predictions) MultiLabelVotingCombiner.combine
(ImmutableOutputInfo<MultiLabel> outputInfo, List<Prediction<MultiLabel>> predictions, float[] weights) -
Uses of ImmutableOutputInfo in org.tribuo.multilabel.evaluation
-
Uses of ImmutableOutputInfo in org.tribuo.multilabel.sgd.fm
Modifier and TypeMethodDescriptionprotected FMMultiLabelModel
FMMultiLabelTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<MultiLabel> outputInfo, FMParameters parameters) protected SparseVector
FMMultiLabelTrainer.getTarget
(ImmutableOutputInfo<MultiLabel> outputInfo, MultiLabel output) -
Uses of ImmutableOutputInfo in org.tribuo.multilabel.sgd.linear
Modifier and TypeMethodDescriptionprotected LinearSGDModel
LinearSGDTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<MultiLabel> outputInfo, LinearParameters parameters) protected SparseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<MultiLabel> outputInfo, MultiLabel output) -
Uses of ImmutableOutputInfo in org.tribuo.regression
Modifier and TypeMethodDescriptionRegressionFactory.constructInfoForExternalModel
(Map<Regressor, Integer> mapping) RegressionInfo.generateImmutableOutputInfo()
Modifier and TypeMethodDescriptionboolean
ImmutableRegressionInfo.domainAndIDEquals
(ImmutableOutputInfo<Regressor> other) -
Uses of ImmutableOutputInfo in org.tribuo.regression.ensemble
Modifier and TypeMethodDescriptionAveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions) AveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions, float[] weights) -
Uses of ImmutableOutputInfo in org.tribuo.regression.evaluation
ModifierConstructorDescriptionRegressionSufficientStatistics
(ImmutableOutputInfo<Regressor> domain, List<Prediction<Regressor>> predictions, boolean useExampleWeights) Constructs the sufficient statistics for regression metrics. -
Uses of ImmutableOutputInfo in org.tribuo.regression.impl
Modifier and TypeMethodDescriptionprotected abstract SkeletalIndependentRegressionSparseModel
SkeletalIndependentRegressionSparseTrainer.createModel
(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModel
for this trainer.protected abstract SkeletalIndependentRegressionModel
SkeletalIndependentRegressionTrainer.createModel
(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModel
for this trainer.ModifierConstructorDescriptionprotected
SkeletalIndependentRegressionModel
(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) models.size() must equal labelInfo.getDomain().size()protected
SkeletalIndependentRegressionSparseModel
(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, Map<String, List<String>> activeFeatures) models.size() must equal labelInfo.getDomain().size() -
Uses of ImmutableOutputInfo in org.tribuo.regression.liblinear
Modifier and TypeMethodDescriptionprotected LibLinearModel<Regressor>
LibLinearRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) -
Uses of ImmutableOutputInfo in org.tribuo.regression.libsvm
Modifier and TypeMethodDescriptionprotected LibSVMModel<Regressor>
LibSVMRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<libsvm.svm_model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) -
Uses of ImmutableOutputInfo in org.tribuo.regression.rtree.impl
ModifierConstructorDescriptionRegressorTrainingNode
(RegressorImpurity impurity, RegressorTrainingNode.InvertedData tuple, int dimIndex, String dimName, int numExamples, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputInfo, AbstractTrainingNode.LeafDeterminer leafDeterminer) Constructs a tree training node for regression problems. -
Uses of ImmutableOutputInfo in org.tribuo.regression.sgd.fm
Modifier and TypeMethodDescriptionprotected FMRegressionModel
FMRegressionTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, FMParameters parameters) protected DenseVector
FMRegressionTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) -
Uses of ImmutableOutputInfo in org.tribuo.regression.sgd.linear
Modifier and TypeMethodDescriptionprotected LinearSGDModel
LinearSGDTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, LinearParameters parameters) protected DenseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) -
Uses of ImmutableOutputInfo in org.tribuo.regression.xgboost
Modifier and TypeMethodDescriptionXGBoostRegressionConverter.convertBatchOutput
(ImmutableOutputInfo<Regressor> info, List<float[][]> probabilities, int[] numValidFeatures, Example<Regressor>[] examples) XGBoostRegressionConverter.convertOutput
(ImmutableOutputInfo<Regressor> info, List<float[]> probabilities, int numValidFeatures, Example<Regressor> example) -
Uses of ImmutableOutputInfo in org.tribuo.sequence
Modifier and TypeFieldDescriptionprotected ImmutableOutputInfo<T>
ImmutableSequenceDataset.outputIDInfo
A map from labels to IDs for the labels found in this dataset.protected final ImmutableOutputInfo<T>
SequenceModel.outputIDMap
Modifier and TypeMethodDescriptionImmutableSequenceDataset.getOutputIDInfo()
MutableSequenceDataset.getOutputIDInfo()
abstract ImmutableOutputInfo<T>
SequenceDataset.getOutputIDInfo()
An immutable view on the output info in this dataset.SequenceModel.getOutputIDInfo()
Gets the output domain.ImmutableSequenceDataset.getOutputInfo()
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.ModifierConstructorDescriptionImmutableSequenceDataset
(Iterable<SequenceExample<T>> dataSource, DataProvenance sourceProvenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, OutputFactory<T> outputFactory) Creates a dataset from a data source.protected
ImmutableSequenceDataset
(DataProvenance sourceProvenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) This is dangerous, and should not be used unless you've overridden everything in ImmutableSequenceDataset.SequenceModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDMap) Builds a SequenceModel.
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap)
which is more flexible.