Uses of Class
org.tribuo.regression.Regressor
Package
Description
Provides an implementation of LIME (Locally Interpretable Model Explanations).
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around the ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides simple baseline regression predictors.
Provides
EnsembleCombiner
implementations
for working with multi-output regression problems.Evaluation classes for single or multi-dimensional regression.
Provides some example regression data generators for testing implementations.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides internal implementation classes for the regression trees.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Provides an interface to XGBoost for regression problems.
-
Uses of Regressor in org.tribuo.classification.explanations.lime
Modifier and TypeFieldDescriptionprotected final SparseTrainer<Regressor>
LIMEBase.explanationTrainer
protected static final OutputFactory<Regressor>
LIMEBase.regressionFactory
Modifier and TypeMethodDescriptionstatic Regressor
LIMEBase.transformOutput
(Prediction<Label> prediction) Transforms aPrediction
for a multiclass problem into aRegressor
output which represents the probability for each class.Modifier and TypeMethodDescriptionprotected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,
List<Example<Regressor>>> LIMEBase.explainWithSamples
(Example<Label> example) protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,
List<Example<Regressor>>> LIMEColumnar.explainWithSamples
(Map<String, String> input) LIMEExplanation.getModel()
LIMEText.sampleData
(String inputText, List<Token> tokens) Samples a new dataset from the input text.protected SparseModel<Regressor>
Trains the explanation model using the supplied sampled data and the input example.Modifier and TypeMethodDescriptionprotected SparseModel<Regressor>
Trains the explanation model using the supplied sampled data and the input example.protected SparseModel<Regressor>
Trains the explanation model using the supplied sampled data and the input example.ModifierConstructorDescriptionLIMEBase
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples) Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).LIMEColumnar
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, RowProcessor<Label> exampleGenerator, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses the columnar data processing system.LIMEExplanation
(SparseModel<Regressor> model, Prediction<Label> prediction, RegressionEvaluation evaluation) Constructs a LIME explanation.LIMEText
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, TextFeatureExtractor<Label> extractor, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses text data. -
Uses of Regressor in org.tribuo.interop.oci
Modifier and TypeMethodDescriptionOCIRegressorConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) OCIRegressorConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Regressor> example, ImmutableOutputInfo<Regressor> outputIDInfo) Modifier and TypeMethodDescriptionOCIRegressorConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) OCIRegressorConverter.convertOutput
(DenseMatrix scores, int[] numValidFeatures, List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) OCIRegressorConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Regressor> example, ImmutableOutputInfo<Regressor> outputIDInfo) OCIRegressorConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Regressor> example, ImmutableOutputInfo<Regressor> outputIDInfo) -
Uses of Regressor in org.tribuo.interop.onnx
Modifier and TypeMethodDescriptionRegressorTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) Modifier and TypeMethodDescriptionRegressorTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) RegressorTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) Modifier and TypeMethodDescriptionRegressorTransformer.transformToBatchOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorTransformer.transformToBatchPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) RegressorTransformer.transformToOutput
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) RegressorTransformer.transformToPrediction
(List<ai.onnxruntime.OnnxValue> tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) -
Uses of Regressor in org.tribuo.interop.tensorflow
Modifier and TypeMethodDescriptionRegressorConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) Modifier and TypeMethodDescriptionRegressorConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) RegressorConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) Modifier and TypeMethodDescriptionorg.tensorflow.Tensor
RegressorConverter.convertToTensor
(Regressor example, ImmutableOutputInfo<Regressor> outputIDInfo) Modifier and TypeMethodDescriptionRegressorConverter.convertToBatchOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) RegressorConverter.convertToBatchPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int[] numValidFeatures, List<Example<Regressor>> examples) RegressorConverter.convertToOutput
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo) RegressorConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) RegressorConverter.convertToPrediction
(org.tensorflow.Tensor tensor, ImmutableOutputInfo<Regressor> outputIDInfo, int numValidFeatures, Example<Regressor> example) org.tensorflow.Tensor
RegressorConverter.convertToTensor
(List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) org.tensorflow.Tensor
RegressorConverter.convertToTensor
(List<Example<Regressor>> examples, ImmutableOutputInfo<Regressor> outputIDInfo) org.tensorflow.Tensor
RegressorConverter.convertToTensor
(Regressor example, ImmutableOutputInfo<Regressor> outputIDInfo) -
Uses of Regressor in org.tribuo.regression
Modifier and TypeClassDescriptionstatic final class
ARegressor
which contains a single dimension, used internally when the model implementation doesn't natively support multi-dimensional regression outputs.Modifier and TypeFieldDescriptionstatic final Regressor
RegressionFactory.UNKNOWN_MULTIPLE_REGRESSOR
Deprecated.Deprecated when regression was made multidimensional by default.static final Regressor
RegressionFactory.UNKNOWN_REGRESSOR
The sentinel unknown regressor, used when there is no ground truth regressor value.Modifier and TypeMethodDescriptionRegressor.copy()
static Regressor
Regressor.createFromPairList
(List<com.oracle.labs.mlrg.olcut.util.Pair<String, Double>> dimensions) Creates a Regressor from a list of dimension tuples.<V> Regressor
RegressionFactory.generateOutput
(V label) Parses the Regressor value either by toStringing the input and callingparseString(java.lang.String)
or if it's a collection iterating over the elements calling toString on each element in turn and usingparseElement(int, java.lang.String)
.ImmutableRegressionInfo.getOutput
(int id) RegressionFactory.getUnknownOutput()
static Regressor
Regressor.parseString
(String s) Parses a string of the form:static Regressor
Regressor.parseString
(String s, char splitChar) Parses a string of the form:Modifier and TypeMethodDescriptionRegressionFactory.constructInfoForExternalModel
(Map<Regressor, Integer> mapping) RegressionInfo.generateImmutableOutputInfo()
RegressionFactory.generateInfo()
RegressionInfo.generateMutableOutputInfo()
ImmutableRegressionInfo.getDomain()
RegressionInfo.getDomain()
Returns a set containing a Regressor for each dimension with the minimum value observed.RegressionFactory.getEvaluator()
ImmutableRegressionInfo.iterator()
Modifier and TypeMethodDescriptionboolean
Regressor.DimensionTuple.fullEquals
(Regressor other) boolean
Regressor.fullEquals
(Regressor other) int
void
Modifier and TypeMethodDescriptionRegressionFactory.constructInfoForExternalModel
(Map<Regressor, Integer> mapping) boolean
ImmutableRegressionInfo.domainAndIDEquals
(ImmutableOutputInfo<Regressor> other) static String[]
Regressor.extractNames
(OutputInfo<Regressor> info) Extracts the names from the supplied Regressor domain in their canonical order. -
Uses of Regressor in org.tribuo.regression.baseline
Modifier and TypeMethodDescriptionDummyRegressionModel.copy
(String newName, ModelProvenance newProvenance) Modifier and TypeMethodDescriptionDummyRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) DummyRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance, int invocationCount) -
Uses of Regressor in org.tribuo.regression.ensemble
Modifier and TypeMethodDescriptionAveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions) AveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions, float[] weights) Modifier and TypeMethodDescriptionAveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions) AveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions) AveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions, float[] weights) AveragingCombiner.combine
(ImmutableOutputInfo<Regressor> outputInfo, List<Prediction<Regressor>> predictions, float[] weights) -
Uses of Regressor in org.tribuo.regression.evaluation
Modifier and TypeMethodDescriptionRegressionEvaluation.explainedVariance()
Calculatest the explained variance for all dimensions.RegressionMetric.getTarget()
RegressionEvaluation.mae()
Calculates the Mean Absolute Error for all dimensions.RegressionEvaluation.r2()
Calculates R2 for all dimensions.RegressionEvaluation.rmse()
Calculates the RMSE for all dimensions.Modifier and TypeMethodDescriptiondouble
RegressionEvaluation.explainedVariance
(Regressor variable) Calculates the explained variance of the ground truth using the predictions for the supplied dimension.static double
RegressionMetrics.explainedVariance
(Regressor variable, RegressionSufficientStatistics sufficientStats) Calculates the explained variance based on the supplied statistics for a single dimension.double
Calculates the Mean Absolute Error for that dimension.static double
RegressionMetrics.mae
(Regressor variable, RegressionSufficientStatistics sufficientStats) Calculates the Mean Absolute Error based on the supplied statistics for a single dimension.double
Calculates R2 for the supplied dimension.static double
RegressionMetrics.r2
(Regressor variable, RegressionSufficientStatistics sufficientStats) Calculates R^2 based on the supplied statistics for a single dimension.double
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.static double
RegressionMetrics.rmse
(Regressor variable, RegressionSufficientStatistics sufficientStats) Calculates the RMSE based on the supplied statistics for a single dimension.Modifier and TypeMethodDescriptionprotected org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionEvaluator.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) protected org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionEvaluator.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionMetric.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionMetric.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) protected RegressionEvaluation
RegressionEvaluator.createEvaluation
(org.tribuo.regression.evaluation.RegressionMetric.Context context, Map<MetricID<Regressor>, Double> results, EvaluationProvenance provenance) protected Set<RegressionMetric>
RegressionEvaluator.createMetrics
(Model<Regressor> model) static double
RegressionMetrics.explainedVariance
(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats) Calculates the explained variance based on the supplied statistics.static double
RegressionMetrics.mae
(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats) Calculates the Mean Absolute Error based on the supplied statistics.static double
RegressionMetrics.r2
(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats) Calculates R^2 based on the supplied statistics.static double
RegressionMetrics.rmse
(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats) Calculates the RMSE based on the supplied statistics.ModifierConstructorDescriptionRegressionMetric
(MetricTarget<Regressor> tgt, String name, ToDoubleBiFunction<MetricTarget<Regressor>, org.tribuo.regression.evaluation.RegressionMetric.Context> impl) Construct a newRegressionMetric
for the supplied metric target, using the supplied function.RegressionMetric
(MetricTarget<Regressor> tgt, String name, ToDoubleBiFunction<MetricTarget<Regressor>, org.tribuo.regression.evaluation.RegressionMetric.Context> impl) Construct a newRegressionMetric
for the supplied metric target, using the supplied function.RegressionMetric
(MetricTarget<Regressor> tgt, String name, ToDoubleBiFunction<MetricTarget<Regressor>, org.tribuo.regression.evaluation.RegressionMetric.Context> impl, boolean useExampleWeights) Construct a newRegressionMetric
for the supplied metric target, using the supplied function.RegressionMetric
(MetricTarget<Regressor> tgt, String name, ToDoubleBiFunction<MetricTarget<Regressor>, org.tribuo.regression.evaluation.RegressionMetric.Context> impl, boolean useExampleWeights) Construct a newRegressionMetric
for the supplied metric target, using the supplied function.RegressionSufficientStatistics
(ImmutableOutputInfo<Regressor> domain, List<Prediction<Regressor>> predictions, boolean useExampleWeights) Constructs the sufficient statistics for regression metrics.RegressionSufficientStatistics
(ImmutableOutputInfo<Regressor> domain, List<Prediction<Regressor>> predictions, boolean useExampleWeights) Constructs the sufficient statistics for regression metrics. -
Uses of Regressor in org.tribuo.regression.example
Modifier and TypeMethodDescriptionRegressionDataGenerator.denseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.denseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.denseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.emptyExample()
Generates an example with no features.RegressionDataGenerator.emptyMultiDimExample()
Generates an example with no features.static MutableDataset<Regressor>
GaussianDataSource.generateDataset
(int numSamples, float slope, float intercept, float variance, float xMin, float xMax, long seed) Generates a single dimensional output drawn from N(slope*x + intercept,variance).static MutableDataset<Regressor>
NonlinearGaussianDataSource.generateDataset
(int numSamples, float[] weights, float intercept, float variance, float xZeroMin, float xZeroMax, float xOneMin, float xOneMax, long seed) Generates a single dimensional output drawn from N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).GaussianDataSource.getOutputFactory()
NonlinearGaussianDataSource.getOutputFactory()
RegressionDataGenerator.invalidMultiDimSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.RegressionDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the ids used elsewhere in this class.GaussianDataSource.iterator()
NonlinearGaussianDataSource.iterator()
RegressionDataGenerator.multiDimDenseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.multiDimDenseTrainTest()
Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.multiDimDenseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.multiDimDenseTrainTest
(double negate) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.multiDimSparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.multiDimSparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.sparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.sparseTrainTest()
Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.sparseTrainTest
(double negate) Generates a pair of datasets, where the features are sparse, and unknown features appear in the test data.RegressionDataGenerator.threeDimDenseTrainTest
(double negate, boolean remapIndices) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}.RegressionDataGenerator.threeDimDenseTrainTest
(double negate, boolean remapIndices) Generates a train/test dataset pair which is dense in the features, each example has 4 features,{A,B,C,D}. -
Uses of Regressor in org.tribuo.regression.impl
Modifier and TypeMethodDescriptionModifier and TypeMethodDescriptionprotected SparseVector
SkeletalIndependentRegressionModel.createFeatures
(Example<Regressor> example) Creates the feature vector.protected SparseVector
SkeletalIndependentRegressionSparseModel.createFeatures
(Example<Regressor> example) Creates the feature vector.protected abstract SkeletalIndependentRegressionSparseModel
SkeletalIndependentRegressionSparseTrainer.createModel
(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModel
for this trainer.protected abstract SkeletalIndependentRegressionModel
SkeletalIndependentRegressionTrainer.createModel
(Map<String, T> models, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) Constructs the appropriate subclass ofSkeletalIndependentRegressionModel
for this trainer.SkeletalIndependentRegressionSparseTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) SkeletalIndependentRegressionSparseTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) SkeletalIndependentRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) SkeletalIndependentRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) ModifierConstructorDescriptionprotected
SkeletalIndependentRegressionModel
(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo) models.size() must equal labelInfo.getDomain().size()protected
SkeletalIndependentRegressionSparseModel
(String name, String[] dimensions, ModelProvenance modelProvenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, Map<String, List<String>> activeFeatures) models.size() must equal labelInfo.getDomain().size() -
Uses of Regressor in org.tribuo.regression.liblinear
Modifier and TypeMethodDescriptionprotected LibLinearModel<Regressor>
LibLinearRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) LibLinearRegressionModel.innerGetExcuse
(Example<Regressor> e, double[][] allFeatureWeights) The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses.Modifier and TypeMethodDescriptionprotected LibLinearModel<Regressor>
LibLinearRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<de.bwaldvogel.liblinear.Model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],
double[][]> LibLinearRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) LibLinearRegressionModel.innerGetExcuse
(Example<Regressor> e, double[][] allFeatureWeights) The call to model.getFeatureWeights in the public methods copies the weights array so this inner method exists to save the copy in getExcuses. -
Uses of Regressor in org.tribuo.regression.libsvm
Modifier and TypeMethodDescriptionprotected LibSVMModel<Regressor>
LibSVMRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<libsvm.svm_model> models) Modifier and TypeMethodDescriptionprotected LibSVMModel<Regressor>
LibSVMRegressionTrainer.createModel
(ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputIDInfo, List<libsvm.svm_model> models) protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],
double[][]> LibSVMRegressionTrainer.extractData
(Dataset<Regressor> data, ImmutableOutputInfo<Regressor> outputInfo, ImmutableFeatureMap featureMap) ModifierConstructorDescriptionLibSVMRegressionTrainer
(SVMParameters<Regressor> parameters) Constructs a LibSVMRegressionTrainer using the supplied parameters without standardizing the regression variables.LibSVMRegressionTrainer
(SVMParameters<Regressor> parameters, boolean standardize) Constructs a LibSVMRegressionTrainer using the supplied parameters andTrainer.DEFAULT_SEED
.LibSVMRegressionTrainer
(SVMParameters<Regressor> parameters, boolean standardize, long seed) Constructs a LibSVMRegressionTrainer using the supplied parameters and seed. -
Uses of Regressor in org.tribuo.regression.rtree
Modifier and TypeMethodDescriptionIndependentRegressionTreeModel.getRoot()
Returns null, as this model contains multiple roots, one per regression output dimension.IndependentRegressionTreeModel.getRoots()
Returns an unmodifiable view on the root node collection.protected AbstractTrainingNode<Regressor>
CARTJointRegressionTrainer.mkTrainingNode
(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) protected AbstractTrainingNode<Regressor>
CARTRegressionTrainer.mkTrainingNode
(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) CARTRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) CARTRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Modifier and TypeMethodDescriptionprotected AbstractTrainingNode<Regressor>
CARTJointRegressionTrainer.mkTrainingNode
(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) protected AbstractTrainingNode<Regressor>
CARTRegressionTrainer.mkTrainingNode
(Dataset<Regressor> examples, AbstractTrainingNode.LeafDeterminer leafDeterminer) CARTRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) CARTRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) -
Uses of Regressor in org.tribuo.regression.rtree.impl
Modifier and TypeMethodDescriptionJointRegressorTrainingNode.buildTree
(int[] featureIDs, SplittableRandom rng, boolean useRandomSplitPoints) Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).RegressorTrainingNode.buildTree
(int[] featureIDs, SplittableRandom rng, boolean useRandomSplitPoints) Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).JointRegressorTrainingNode.convertTree()
RegressorTrainingNode.convertTree()
Modifier and TypeMethodDescriptionRegressorTrainingNode.invertData
(Dataset<Regressor> examples) Inverts a training dataset from row major to column major.ModifierConstructorDescriptionJointRegressorTrainingNode
(RegressorImpurity impurity, Dataset<Regressor> examples, boolean normalize, AbstractTrainingNode.LeafDeterminer leafDeterminer) Constructor which creates the inverted file.RegressorTrainingNode
(RegressorImpurity impurity, RegressorTrainingNode.InvertedData tuple, int dimIndex, String dimName, int numExamples, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<Regressor> outputInfo, AbstractTrainingNode.LeafDeterminer leafDeterminer) Constructs a tree training node for regression problems. -
Uses of Regressor in org.tribuo.regression.sgd.fm
Modifier and TypeMethodDescriptionModifier and TypeMethodDescriptionprotected DenseVector
FMRegressionTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Modifier and TypeMethodDescriptionprotected FMRegressionModel
FMRegressionTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, FMParameters parameters) protected DenseVector
FMRegressionTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) -
Uses of Regressor in org.tribuo.regression.sgd.linear
Modifier and TypeMethodDescriptionModifier and TypeMethodDescriptionprotected DenseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Modifier and TypeMethodDescriptionprotected LinearSGDModel
LinearSGDTrainer.createModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureMap, ImmutableOutputInfo<Regressor> outputInfo, LinearParameters parameters) protected DenseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) -
Uses of Regressor in org.tribuo.regression.slm
Modifier and TypeMethodDescriptionSparseLinearModel.copy
(String newName, ModelProvenance newProvenance) ElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) ElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Modifier and TypeMethodDescriptionprotected SparseVector
SparseLinearModel.createFeatures
(Example<Regressor> example) Creates the feature vector.ElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) ElasticNetCDTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) SLMTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse linear model.SLMTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a sparse linear model. -
Uses of Regressor in org.tribuo.regression.xgboost
Modifier and TypeMethodDescriptionXGBoostRegressionConverter.convertBatchOutput
(ImmutableOutputInfo<Regressor> info, List<float[][]> probabilities, int[] numValidFeatures, Example<Regressor>[] examples) XGBoostRegressionConverter.convertOutput
(ImmutableOutputInfo<Regressor> info, List<float[]> probabilities, int numValidFeatures, Example<Regressor> example) XGBoostRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) XGBoostRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Modifier and TypeMethodDescriptionXGBoostRegressionConverter.convertBatchOutput
(ImmutableOutputInfo<Regressor> info, List<float[][]> probabilities, int[] numValidFeatures, Example<Regressor>[] examples) XGBoostRegressionConverter.convertOutput
(ImmutableOutputInfo<Regressor> info, List<float[]> probabilities, int numValidFeatures, Example<Regressor> example) XGBoostRegressionConverter.convertOutput
(ImmutableOutputInfo<Regressor> info, List<float[]> probabilities, int numValidFeatures, Example<Regressor> example) XGBoostRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) XGBoostRegressionTrainer.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount)