Uses of Class
org.tribuo.provenance.ModelProvenance

Packages that use ModelProvenance
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides simple baseline multiclass classifiers.
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
Provides infrastructure for SequenceModels which emit Labels at each step of the sequence.
Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a configurable distance function.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across all Tribuo Output types.
Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective of the predicted Output.
Provides abstract classes for interfacing with XGBoost abstracting away all the Output dependent parts.
Provides an interface for model prediction combinations, two base classes for ensemble models, a base class for ensemble excuses, and a Bagging implementation.
This package contains the abstract implementation of an external model trained by something outside of Tribuo.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around the ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported Tribuo output type.
Provides implementations of binary relevance based multi-label classification algorithms.
Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides Tribuo specific infrastructure for the Provenance system which tracks models and datasets.
Provides simple baseline regression predictors.
Provides skeletal implementations of Regressor Trainer that can wrap a single dimension trainer/model and produce one prediction per dimension independently.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Reproducibility utility based on Tribuo's provenance objects.
Provides core classes for working with sequences of Examples.
Provides infrastructure for applying transformations to a Dataset.