Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly |
Provides classes and infrastructure for anomaly detection problems.
|
org.tribuo.classification |
Provides classes and infrastructure for multiclass classification problems.
|
org.tribuo.classification.explanations |
Provides core infrastructure for local model based explanations.
|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.clustering |
Provides classes and infrastructure for working with clustering problems.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.nearest |
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types. |
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.data |
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
|
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.data.columnar.processors.response |
Provides implementations of
ResponseProcessor . |
org.tribuo.data.csv |
Provides classes which can load columnar data (using a
RowProcessor )
from a CSV (or other character delimited format) file. |
org.tribuo.data.sql |
Provides classes which can load columnar data (using a
RowProcessor )
from a SQL source. |
org.tribuo.data.text | |
org.tribuo.data.text.impl |
Provides implementations of text data processors.
|
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.datasource |
Simple data sources for ingesting or aggregating data.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.evaluation |
Evaluation base classes, along with code for train/test splits and cross validation.
|
org.tribuo.evaluation.metrics |
This package contains the infrastructure classes for building evaluation metrics.
|
org.tribuo.hash |
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model. |
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.onnx.extractors |
Provides feature extraction implementations which use ONNX models.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.interop.tensorflow.sequence |
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel abstraction. |
org.tribuo.json |
Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.multilabel |
Provides classes and infrastructure for working with multi-label classification problems.
|
org.tribuo.regression |
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
org.tribuo.transform |
Provides infrastructure for applying transformations to a
Dataset . |
Modifier and Type | Interface and Description |
---|---|
interface |
ConfigurableDataSource<T extends Output<T>>
It's a
DataSource that's also Configurable . |
class |
Dataset<T extends Output<T>>
A class for sets of data, which are used to train and evaluate classifiers.
|
interface |
DataSource<T extends Output<T>>
A interface for things that can be given to a Dataset's constructor.
|
class |
Example<T extends Output<T>>
An example used for training and evaluation.
|
class |
Excuse<T extends Output<T>>
Holds an
Example , a Prediction and a Map from String to List of Pairs
that contains the per output explanation. |
class |
ImmutableDataset<T extends Output<T>>
This is a
Dataset which has an ImmutableFeatureMap to store the feature information. |
interface |
ImmutableOutputInfo<T extends Output<T>>
An
OutputInfo that is fixed, and contains an id number for each valid output. |
interface |
IncrementalTrainer<T extends Output<T>,U extends Model<T>>
An interface for incremental training of
Model s. |
class |
Model<T extends Output<T>>
A prediction model, which is used to predict outputs for unseen instances.
|
class |
MutableDataset<T extends Output<T>>
A MutableDataset is a
Dataset with a MutableFeatureMap which grows over time. |
interface |
MutableOutputInfo<T extends Output<T>>
A mutable OutputInfo that can record observed output values.
|
interface |
Output<T extends Output<T>>
Output is the root interface for the supported prediction types.
|
interface |
OutputFactory<T extends Output<T>>
An interface associated with a specific
Output , which can generate the
appropriate Output subclass, and OutputInfo subclass. |
interface |
OutputInfo<T extends Output<T>>
Tracks relevant properties of the appropriate
Output subclass. |
class |
Prediction<T extends Output<T>>
A prediction made by a
Model . |
class |
SparseModel<T extends Output<T>>
A model which uses a subset of the features it knows about to make predictions.
|
interface |
SparseTrainer<T extends Output<T>>
Denotes this trainer emits a
SparseModel . |
interface |
Trainer<T extends Output<T>>
An interface for things that can train predictive models.
|
Modifier and Type | Field and Description |
---|---|
protected T |
Example.output
The output associated with this example.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
MutableDataset.createDeepCopy(Dataset<T> other)
Creates a deep copy of the supplied
Dataset which is mutable. |
static <T extends Output<T>> |
ImmutableDataset.hashFeatureMap(Dataset<T> dataset,
Hasher hasher)
Creates an immutable shallow copy of the supplied dataset, using the hasher to generate a
HashedFeatureMap which transparently maps from the feature name to the hashed variant. |
static <T extends Output<T>> |
OutputFactory.validateMapping(Map<T,Integer> mapping)
Validates that the mapping can be used as an output info, i.e.
|
Modifier and Type | Method and Description |
---|---|
boolean |
Model.validate(Class<? extends Output<?>> clazz)
Validates that this Model does in fact support the supplied output type.
|
Modifier and Type | Class and Description |
---|---|
class |
Event
|
Modifier and Type | Interface and Description |
---|---|
interface |
Classifiable<T extends Classifiable<T>>
A tag interface for multi-class and multi-label classification tasks.
|
Modifier and Type | Class and Description |
---|---|
class |
Label
An immutable multi-class classification label.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ColumnarExplainer<T extends Output<T>>
An explainer for data using Tribuo's columnar data package.
|
interface |
Explanation<T extends Output<T>>
An explanation knows what features are used, what the explaining Model is and what the original Model's prediction is.
|
interface |
TabularExplainer<T extends Output<T>>
An explainer for tabular data.
|
interface |
TextExplainer<T extends Output<T>>
An explainer for text data.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
CRFModel.convert(SequenceExample<T> example,
ImmutableFeatureMap featureIDMap)
Deprecated.
As it's replaced with
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap) which is more flexible. |
static <T extends Output<T>> |
CRFModel.convertToVector(SequenceExample<T> example,
ImmutableFeatureMap featureIDMap)
Converts a
SequenceExample into an array of SGDVector s suitable for CRF prediction. |
Modifier and Type | Class and Description |
---|---|
class |
ClusterID
A clustering id.
|
Modifier and Type | Class and Description |
---|---|
class |
LibLinearModel<T extends Output<T>>
A
Model which wraps a LibLinear-java model. |
class |
LibLinearTrainer<T extends Output<T>>
A
Trainer which wraps a liblinear-java trainer. |
interface |
LibLinearType<T extends Output<T>>
A carrier type for the liblinear algorithm type.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibLinearTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<de.bwaldvogel.liblinear.FeatureNode> features)
Converts a Tribuo
Example into a liblinear FeatureNode array, including a bias feature. |
Modifier and Type | Class and Description |
---|---|
class |
LibSVMModel<T extends Output<T>>
A model that uses an underlying libSVM model to make the
predictions.
|
class |
LibSVMTrainer<T extends Output<T>>
A trainer that will train using libsvm's Java implementation.
|
class |
SVMParameters<T extends Output<T>>
A container for SVM parameters and the kernel.
|
interface |
SVMType<T extends Output<T>>
A carrier type for the SVM type.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibSVMTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<libsvm.svm_node> features)
Convert the example into an array of svm_node which represents a sparse feature vector.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNModel<T extends Output<T>>
A k-nearest neighbours model.
|
class |
KNNTrainer<T extends Output<T>>
A
Trainer for k-nearest neighbour models. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractLinearSGDModel<T extends Output<T>> |
class |
AbstractLinearSGDTrainer<T extends Output<T>,U>
A trainer for a linear model which uses SGD.
|
class |
AbstractSGDModel<T extends Output<T>> |
class |
AbstractSGDTrainer<T extends Output<T>,U,V extends Model<T>,X extends FeedForwardParameters>
A trainer for a model which uses SGD.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCARTTrainer<T extends Output<T>>
Base class for
Trainer 's that use an approximation of the CART algorithm to build a decision tree. |
class |
AbstractTrainingNode<T extends Output<T>>
Base class for decision tree nodes used at training time.
|
interface |
DecisionTreeTrainer<T extends Output<T>>
A tag interface for a
Trainer so the random forests trainer can check if it's actually a tree. |
class |
ExtraTreesTrainer<T extends Output<T>>
A trainer which produces an Extremely Randomized Tree Ensemble.
|
class |
LeafNode<T extends Output<T>>
An immutable leaf
Node that can create a prediction. |
interface |
Node<T extends Output<T>>
A node in a decision tree.
|
class |
RandomForestTrainer<T extends Output<T>>
A trainer which produces a random forest.
|
class |
SplitNode<T extends Output<T>>
An immutable
Node with a split and two child nodes. |
class |
TreeModel<T extends Output<T>>
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
TreeModel.computeDepth(int initialDepth,
Node<T> root) |
Modifier and Type | Class and Description |
---|---|
class |
XGBoostExternalModel<T extends Output<T>>
A
Model which wraps around a XGBoost.Booster which was trained by a system other than Tribuo. |
class |
XGBoostModel<T extends Output<T>>
A
Model which wraps around a XGBoost.Booster. |
interface |
XGBoostOutputConverter<T extends Output<T>>
Converts the output of XGBoost into the appropriate prediction type.
|
class |
XGBoostTrainer<T extends Output<T>>
A
Trainer which wraps the XGBoost training procedure. |
protected static class |
XGBoostTrainer.DMatrixTuple<T extends Output<T>>
Tuple of a DMatrix, the number of valid features in each example, and the examples themselves.
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
XGBoostTrainer.convertDataset(Dataset<T> examples) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertDataset(Dataset<T> examples,
Function<T,Float> responseExtractor) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an examples into a DMatrix.
|
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an iterable of examples into a DMatrix.
|
protected static <T extends Output<T>> |
XGBoostTrainer.convertSingleExample(Example<T> example,
ImmutableFeatureMap featureMap,
ArrayList<Float> dataList,
ArrayList<Integer> indicesList,
ArrayList<Long> headersList,
long header)
Writes out the features from an example into the three supplied
ArrayList s. |
static <T extends Output<T>> |
XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
XGBoostOutputConverter<T> outputFunc,
ml.dmlc.xgboost4j.java.Booster model,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance)
Creates an
XGBoostExternalModel from the supplied in-memory XGBoost Booster . |
static <T extends Output<T>> |
XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
XGBoostOutputConverter<T> outputFunc,
ml.dmlc.xgboost4j.java.Booster model,
URL provenanceLocation)
Deprecated.
As the URL argument must always be valid. To wrap an in-memory booster use
XGBoostExternalModel.createXGBoostModel(OutputFactory, Map, Map, XGBoostOutputConverter, Booster, Map) . |
static <T extends Output<T>> |
XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
XGBoostOutputConverter<T> outputFunc,
Path path)
Creates an
XGBoostExternalModel from the supplied model on disk. |
static <T extends Output<T>> |
XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
XGBoostOutputConverter<T> outputFunc,
String path)
Creates an
XGBoostExternalModel from the supplied model on disk. |
Modifier and Type | Field and Description |
---|---|
ConfigurableDataSource<? extends Output<?>> |
PreprocessAndSerialize.PreprocessAndSerializeOptions.dataSource |
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
DataOptions.load(OutputFactory<T> outputFactory) |
static <T extends Output<T>> |
ConfigurableTrainTest.main(String[] args) |
static <T extends Output<T>> |
CompletelyConfigurableTrainTest.main(String[] args) |
<T extends Output<T>> |
DataOptions.saveModel(Model<T> model) |
Modifier and Type | Class and Description |
---|---|
class |
ColumnarDataSource<T extends Output<T>>
A
ConfigurableDataSource base class which takes columnar data (e.g., csv or DB table rows) and generates Example s. |
interface |
ResponseProcessor<T extends Output<T>>
An interface that will take the response field and produce an
Output . |
class |
RowProcessor<T extends Output<T>>
A processor which takes a Map of String to String and returns an
Example . |
Modifier and Type | Class and Description |
---|---|
class |
BinaryResponseProcessor<T extends Output<T>>
A
ResponseProcessor that takes a single value of the
field as the positive class and all other values as the negative
class. |
class |
EmptyResponseProcessor<T extends Output<T>>
A
ResponseProcessor that always emits an empty optional. |
class |
FieldResponseProcessor<T extends Output<T>>
A response processor that returns the value in a given field.
|
class |
QuartileResponseProcessor<T extends Output<T>>
Processes the response into quartiles and emits them as classification outputs.
|
Modifier and Type | Class and Description |
---|---|
class |
CSVDataSource<T extends Output<T>>
A
DataSource for loading separable data from a text file (e.g., CSV, TSV)
and applying FieldProcessor s to it. |
class |
CSVLoader<T extends Output<T>>
Load a DataSource/Dataset from a CSV file.
|
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
CSVSaver.save(Path csvPath,
Dataset<T> dataset,
Set<String> responseNames)
Saves the dataset to the specified path.
|
<T extends Output<T>> |
CSVSaver.save(Path csvPath,
Dataset<T> dataset,
String responseName)
Saves the dataset to the specified path.
|
Modifier and Type | Class and Description |
---|---|
class |
SQLDataSource<T extends Output<T>>
A
DataSource for loading columnar data from a database
and applying FieldProcessor s to it. |
Modifier and Type | Class and Description |
---|---|
class |
DirectoryFileSource<T extends Output<T>>
A data source for a somewhat-common format for text classification datasets:
a top level directory that contains a number of subdirectories.
|
class |
TextDataSource<T extends Output<T>>
A base class for textual data sets.
|
interface |
TextFeatureExtractor<T extends Output<T>>
An interface for things that take text and turn them into examples that we
can use to train or evaluate a classifier.
|
Modifier and Type | Class and Description |
---|---|
class |
SimpleStringDataSource<T extends Output<T>>
A version of
SimpleTextDataSource that accepts a List of Strings. |
class |
SimpleTextDataSource<T extends Output<T>>
A dataset for a simple data format for text classification experiments.
|
class |
TextFeatureExtractorImpl<T extends Output<T>>
|
Modifier and Type | Class and Description |
---|---|
class |
DatasetView<T extends Output<T>>
DatasetView provides an immutable view on another
Dataset that only exposes selected examples. |
class |
MinimumCardinalityDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that
occur less than the provided minimum cardinality have been removed.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createView(Dataset<T> dataset,
Predicate<Example<T>> predicate,
String tag)
Creates a view from the supplied dataset, using the specified predicate to
test if each example should be in this view.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
Modifier and Type | Class and Description |
---|---|
class |
AggregateConfigurableDataSource<T extends Output<T>>
Aggregates multiple
ConfigurableDataSource s, uses AggregateDataSource.IterationOrder to control the
iteration order. |
class |
AggregateDataSource<T extends Output<T>>
Aggregates multiple
DataSource s, uses AggregateDataSource.IterationOrder to control the
iteration order. |
class |
IDXDataSource<T extends Output<T>>
A DataSource which can read IDX formatted data (i.e., MNIST).
|
class |
LibSVMDataSource<T extends Output<T>>
A DataSource which can read LibSVM formatted data.
|
class |
ListDataSource<T extends Output<T>>
A data source which wraps up a list of
Example s
along with their DataSourceProvenance and an OutputFactory . |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibSVMDataSource.writeLibSVMFormat(Dataset<T> dataset,
PrintStream out,
boolean zeroIndexed,
Function<T,Number> transformationFunc)
Writes out a dataset in LibSVM format.
|
Modifier and Type | Class and Description |
---|---|
class |
BaggingTrainer<T extends Output<T>>
A Trainer that wraps another trainer and produces a bagged ensemble.
|
interface |
EnsembleCombiner<T extends Output<T>>
An interface for combining predictions.
|
class |
EnsembleExcuse<T extends Output<T>>
An
Excuse which has a List of excuses for each of the ensemble members. |
class |
EnsembleModel<T extends Output<T>>
A model which contains a list of other
Model s. |
class |
WeightedEnsembleModel<T extends Output<T>>
An ensemble model that uses weights to combine the ensemble member predictions.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
WeightedEnsembleModel.createEnsembleFromExistingModels(String name,
List<Model<T>> models,
EnsembleCombiner<T> combiner)
Creates an ensemble from existing models.
|
static <T extends Output<T>> |
WeightedEnsembleModel.createEnsembleFromExistingModels(String name,
List<Model<T>> models,
EnsembleCombiner<T> combiner,
float[] weights)
Creates an ensemble from existing models.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractEvaluator<T extends Output<T>,C extends MetricContext<T>,E extends Evaluation<T>,M extends EvaluationMetric<T,C>>
Base class for evaluators.
|
class |
CrossValidation<T extends Output<T>,E extends Evaluation<T>>
A class that does k-fold cross-validation.
|
interface |
Evaluation<T extends Output<T>>
An immutable evaluation of a specific model and dataset.
|
interface |
EvaluationRenderer<T extends Output<T>,E extends Evaluation<T>>
Renders an
Evaluation into a String. |
interface |
Evaluator<T extends Output<T>,E extends Evaluation<T>>
An evaluation factory which produces immutable
Evaluation s of a given Dataset using the given Model . |
class |
KFoldSplitter<T extends Output<T>>
A k-fold splitter to be used in cross-validation.
|
static class |
KFoldSplitter.TrainTestFold<T extends Output<T>>
Stores a train/test split for a dataset.
|
class |
OnlineEvaluator<T extends Output<T>,E extends Evaluation<T>>
An evaluator which aggregates predictions and produces
Evaluation s
covering all the Prediction s it has seen or created. |
class |
TrainTestSplitter<T extends Output<T>>
Splits data into training and testing sets.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Calculates the argmax of a metric across the supplied datasets.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.argmax(List<R> evaluations,
Function<R,Double> getter)
Calculates the argmax of a metric across the supplied evaluations.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance w.r.t.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize a model's performance w.r.t.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance using the supplied evaluator across several models on one dataset.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize performance according to evaluator for a single model across several datasets.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(List<? extends EvaluationMetric<T,C>> metrics,
Model<T> model,
Dataset<T> dataset)
Summarize model performance on dataset across several metrics.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(List<? extends EvaluationMetric<T,C>> metrics,
Model<T> model,
List<Prediction<T>> predictions)
Summarize model performance on dataset across several metrics.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(List<R> evaluations)
Summarize all fields of a list of evaluations.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(List<R> evaluations,
ToDoubleFunction<R> fieldGetter)
Summarize a single field of an evaluation across several evaluations.
|
Modifier and Type | Interface and Description |
---|---|
interface |
EvaluationMetric<T extends Output<T>,C extends MetricContext<T>>
A metric that can be calculated for the specified output type.
|
class |
MetricContext<T extends Output<T>>
The context for a metric or set of metrics.
|
class |
MetricID<T extends Output<T>>
Just an easier-to-read alias for
Pair<MetricTarget<T>, String> . |
class |
MetricTarget<T extends Output<T>>
Used by a given
EvaluationMetric to determine whether it should compute its value for a specific Output value
or whether it should average them. |
Modifier and Type | Method and Description |
---|---|
static <U extends Output<U>> |
MetricTarget.macroAverageTarget()
Get the singleton
MetricTarget which contains the EvaluationMetric.Average.MACRO . |
static <U extends Output<U>> |
MetricTarget.microAverageTarget()
Get the singleton
MetricTarget which contains the EvaluationMetric.Average.MICRO . |
Modifier and Type | Class and Description |
---|---|
class |
HashingTrainer<T extends Output<T>>
|
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
HashingOptions.getHashedTrainer(Trainer<T> innerTrainer)
Gets the trainer wrapped in a hashing trainer.
|
Modifier and Type | Class and Description |
---|---|
class |
ArrayExample<T extends Output<T>>
An
Example backed by two arrays, one of String and one of double. |
class |
BinaryFeaturesExample<T extends Output<T>>
An
Example backed by a single array of feature names. |
class |
IndexedArrayExample<T extends Output<T>>
A version of ArrayExample which also has the id numbers.
|
class |
ListExample<T extends Output<T>>
This class will not be performant until value types are available in Java.
|
Modifier and Type | Class and Description |
---|---|
class |
ExternalModel<T extends Output<T>,U,V>
This is the base class for third party models which are trained externally and
loaded into Tribuo for prediction.
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
ExternalModel.createOutputInfo(OutputFactory<T> factory,
Map<T,Integer> outputs)
Creates an output info from a set of outputs.
|
Modifier and Type | Class and Description |
---|---|
class |
ONNXExternalModel<T extends Output<T>>
A Tribuo wrapper around a ONNX model.
|
interface |
OutputTransformer<T extends Output<T>>
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ONNXExternalModel.createOnnxModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
ExampleTransformer featureTransformer,
OutputTransformer<T> outputTransformer,
ai.onnxruntime.OrtSession.SessionOptions opts,
Path path,
String inputName)
Creates an
ONNXExternalModel by loading the model from disk. |
static <T extends Output<T>> |
ONNXExternalModel.createOnnxModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
ExampleTransformer featureTransformer,
OutputTransformer<T> outputTransformer,
ai.onnxruntime.OrtSession.SessionOptions opts,
String filename,
String inputName)
Creates an
ONNXExternalModel by loading the model from disk. |
Modifier and Type | Class and Description |
---|---|
class |
BERTFeatureExtractor<T extends Output<T>>
Builds examples and sequence examples using features from BERT.
|
Modifier and Type | Interface and Description |
---|---|
interface |
OutputConverter<T extends Output<T>>
Converts the
Output into a Tensor and vice versa. |
class |
TensorFlowCheckpointModel<T extends Output<T>>
This model encapsulates a simple model with an input feed dict,
and produces a single output tensor.
|
class |
TensorFlowFrozenExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow frozen model.
|
class |
TensorFlowModel<T extends Output<T>>
Base class for a TensorFlow model that operates on
Example s. |
class |
TensorFlowNativeModel<T extends Output<T>>
This model encapsulates a TensorFlow model running in graph mode with a single tensor output.
|
class |
TensorFlowSavedModelExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow saved model bundle.
|
class |
TensorFlowTrainer<T extends Output<T>>
Trainer for TensorFlow.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
TensorFlowSavedModelExternalModel.createTensorflowModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
String outputName,
FeatureConverter featureConverter,
OutputConverter<T> outputConverter,
String bundleDirectory)
Creates a TensorflowSavedModelExternalModel by loading in a
SavedModelBundle . |
static <T extends Output<T>> |
TensorFlowFrozenExternalModel.createTensorflowModel(OutputFactory<T> factory,
Map<String,Integer> featureMapping,
Map<T,Integer> outputMapping,
String inputName,
String outputName,
FeatureConverter featureConverter,
OutputConverter<T> outputConverter,
String filename)
Creates a TensorflowFrozenExternalModel by loading in a frozen graph.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SequenceOutputConverter<T extends Output<T>>
Converts a TensorFlow output tensor into a list of predictions, and a Tribuo sequence example into
a Tensorflow tensor suitable for training.
|
class |
TensorFlowSequenceModel<T extends Output<T>>
A TensorFlow model which implements SequenceModel, suitable for use in sequential prediction tasks.
|
class |
TensorFlowSequenceTrainer<T extends Output<T>>
A trainer for SequenceModels which use an underlying TensorFlow graph.
|
Modifier and Type | Class and Description |
---|---|
class |
JsonDataSource<T extends Output<T>>
A
DataSource for loading data from a JSON text file
and applying FieldProcessor s to it. |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
StripProvenance.main(String[] args)
Runs StripProvenance.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DenseVector.createDenseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
DenseVector from an Example . |
static <T extends Output<T>> |
SparseVector.createSparseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
SparseVector from an Example . |
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset,
ImmutableFeatureMap fMap)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
MultiLabel
A class for multi-label classification.
|
Modifier and Type | Class and Description |
---|---|
class |
Regressor
An
Output for n-dimensional real valued regression. |
static class |
Regressor.DimensionTuple
A
Regressor which contains a single dimension, used internally
when the model implementation doesn't natively support multi-dimensional
regression outputs. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractSequenceEvaluator<T extends Output<T>,C extends MetricContext<T>,E extends SequenceEvaluation<T>,M extends EvaluationMetric<T,C>>
Base class for sequence evaluators.
|
class |
HashingSequenceTrainer<T extends Output<T>>
A SequenceTrainer that hashes all the feature names on the way in.
|
class |
ImmutableSequenceDataset<T extends Output<T>>
This is a
SequenceDataset which has an ImmutableFeatureMap to store the feature information. |
class |
IndependentSequenceModel<T extends Output<T>>
A SequenceModel which independently predicts each element of the sequence.
|
class |
IndependentSequenceTrainer<T extends Output<T>>
Trains a sequence model by training a regular model to independently predict every example in each sequence.
|
class |
MinimumCardinalitySequenceDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that
occur less than the provided minimum cardinality have been removed.
|
class |
MutableSequenceDataset<T extends Output<T>>
A MutableSequenceDataset is a
SequenceDataset with a MutableFeatureMap which grows over time. |
class |
SequenceDataset<T extends Output<T>>
A class for sets of data, which are used to train and evaluate classifiers.
|
interface |
SequenceDataSource<T extends Output<T>>
A interface for things that can be given to a SequenceDataset's constructor.
|
interface |
SequenceEvaluation<T extends Output<T>>
An immutable evaluation of a specific sequence model and dataset.
|
interface |
SequenceEvaluator<T extends Output<T>,E extends SequenceEvaluation<T>>
An evaluation factory which produces immutable
SequenceEvaluation s of a given SequenceDataset using the given SequenceModel . |
class |
SequenceExample<T extends Output<T>>
A sequence of examples, used for sequence classification.
|
class |
SequenceModel<T extends Output<T>>
A prediction model, which is used to predict outputs for unseen instances.
|
interface |
SequenceTrainer<T extends Output<T>>
An interface for things that can train sequence prediction models.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
SequenceExample.createWithEmptyOutputs(List<? extends List<? extends Feature>> features,
OutputFactory<T> outputFactory)
Creates a SequenceExample using
OutputFactory.getUnknownOutput() as the output for each
sequence element. |
static <T extends Output<T>> |
SequenceModel.toMaxLabels(List<Prediction<T>> predictions) |
Modifier and Type | Method and Description |
---|---|
boolean |
SequenceModel.validate(Class<? extends Output<?>> clazz)
Validates that this Model does in fact support the supplied output type.
|
Modifier and Type | Class and Description |
---|---|
class |
TransformedModel<T extends Output<T>>
Wraps a
Model with it's TransformerMap so all Example s are transformed
appropriately before the model makes predictions. |
class |
TransformTrainer<T extends Output<T>>
A
Trainer which encapsulates another trainer plus a TransformationMap object
to apply to each Dataset before training each Model . |
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
TransformerMap.transformDataset(Dataset<T> dataset)
Copies the supplied dataset and applies the transformers to each example in it.
|
<T extends Output<T>> |
TransformerMap.transformDataset(Dataset<T> dataset,
boolean densify)
Copies the supplied dataset and applies the transformers to each example in it.
|
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example)
Copies the supplied example and applies the transformers to it.
|
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example,
List<String> featureNames)
Copies the supplied example and applies the transformers to it.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.