Interface DecisionTreeTrainer<T extends Output<T>>
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>,SparseTrainer<T>,Trainer<T>,WeightedExamples
- All Known Implementing Classes:
AbstractCARTTrainer,CARTClassificationTrainer,CARTJointRegressionTrainer,CARTRegressionTrainer
public interface DecisionTreeTrainer<T extends Output<T>>
extends SparseTrainer<T>, WeightedExamples
A tag interface for a
Trainer so the random forests trainer can check if it's actually a tree.-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED -
Method Summary
Modifier and TypeMethodDescriptionfloatReturns the feature subsampling rate.floatReturns the minimum decrease in impurity necessary to split a node.booleanReturns whether to choose split points for features at random.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfigMethods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenanceMethods inherited from interface org.tribuo.SparseTrainer
train, trainMethods inherited from interface org.tribuo.Trainer
getInvocationCount
-
Method Details
-
getFractionFeaturesInSplit
float getFractionFeaturesInSplit()Returns the feature subsampling rate.- Returns:
- The feature subsampling rate.
-
getUseRandomSplitPoints
boolean getUseRandomSplitPoints()Returns whether to choose split points for features at random.- Returns:
- Whether to choose split points for features at random.
-
getMinImpurityDecrease
float getMinImpurityDecrease()Returns the minimum decrease in impurity necessary to split a node.- Returns:
- The minimum decrease in impurity necessary to split a node.
-