Class AbstractLinearSGDModel<T extends Output<T>>
java.lang.Object
org.tribuo.Model<T>
org.tribuo.common.sgd.AbstractSGDModel<T>
org.tribuo.common.sgd.AbstractLinearSGDModel<T>
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>
,Serializable
- Direct Known Subclasses:
LinearSGDModel
,LinearSGDModel
,LinearSGDModel
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from class org.tribuo.common.sgd.AbstractSGDModel
AbstractSGDModel.PredAndActive
-
Field Summary
Fields inherited from class org.tribuo.common.sgd.AbstractSGDModel
addBias, modelParameters
Fields inherited from class org.tribuo.Model
ALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutput
-
Constructor Summary
ConstructorsModifierConstructorDescriptionprotected
AbstractLinearSGDModel
(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, LinearParameters parameters, boolean generatesProbabilities) Constructs a linear model trained via SGD. -
Method Summary
Modifier and TypeMethodDescriptionprotected abstract String
getDimensionName
(int index) Gets the name of the indexed output dimension.Generates an excuse for an example.getTopFeatures
(int n) Gets the topn
features associated with this model.Returns a copy of the weights.Methods inherited from class org.tribuo.common.sgd.AbstractSGDModel
getModelParameters, predictSingle
Methods inherited from class org.tribuo.Model
copy, copy, generatesProbabilities, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, innerPredict, predict, predict, predict, setName, toString, validate
-
Constructor Details
-
AbstractLinearSGDModel
protected AbstractLinearSGDModel(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, LinearParameters parameters, boolean generatesProbabilities) Constructs a linear model trained via SGD.- Parameters:
name
- The model name.provenance
- The model provenance.featureIDMap
- The feature domain.outputIDInfo
- The output domain.parameters
- The model parameters.generatesProbabilities
- Does this model generate probabilities?
-
-
Method Details
-
getTopFeatures
Description copied from class:Model
Gets the topn
features associated with this model.If the model does not produce per output feature lists, it returns a map with a single element with key Model.ALL_OUTPUTS.
If the model cannot describe it's top features then it returns
Collections.emptyMap()
.- Specified by:
getTopFeatures
in classModel<T extends Output<T>>
- Parameters:
n
- the number of features to return. If this value is less than 0, all features should be returned for each class, unless the model cannot score it's features.- Returns:
- a map from string outputs to an ordered list of pairs of feature names and weights associated with that feature in the model
-
getExcuse
Description copied from class:Model
Generates an excuse for an example.This attempts to explain a classification result. Generating an excuse may be quite an expensive operation.
This excuse either contains per class information or an entry with key Model.ALL_OUTPUTS.
The optional is empty if the model does not provide excuses.
-
getDimensionName
Gets the name of the indexed output dimension.- Parameters:
index
- The output dimension index.- Returns:
- The name of the requested output dimension.
-
getWeightsCopy
-