Class AbstractLinearSGDModel<T extends Output<T>>
java.lang.Object
org.tribuo.Model<T>
org.tribuo.common.sgd.AbstractSGDModel<T>
org.tribuo.common.sgd.AbstractLinearSGDModel<T>
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>,Serializable
- Direct Known Subclasses:
LinearSGDModel,LinearSGDModel,LinearSGDModel
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from class org.tribuo.common.sgd.AbstractSGDModel
AbstractSGDModel.PredAndActive -
Field Summary
Fields inherited from class org.tribuo.common.sgd.AbstractSGDModel
addBias, modelParametersFields inherited from class org.tribuo.Model
ALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutput -
Constructor Summary
ConstructorsModifierConstructorDescriptionprotectedAbstractLinearSGDModel(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, LinearParameters parameters, boolean generatesProbabilities) Constructs a linear model trained via SGD. -
Method Summary
Modifier and TypeMethodDescriptionprotected abstract StringgetDimensionName(int index) Gets the name of the indexed output dimension.Generates an excuse for an example.getTopFeatures(int n) Gets the topnfeatures associated with this model.Returns a copy of the weights.Methods inherited from class org.tribuo.common.sgd.AbstractSGDModel
getModelParameters, predictSingleMethods inherited from class org.tribuo.Model
copy, copy, generatesProbabilities, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, innerPredict, predict, predict, predict, setName, toString, validate
-
Constructor Details
-
AbstractLinearSGDModel
protected AbstractLinearSGDModel(String name, ModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, LinearParameters parameters, boolean generatesProbabilities) Constructs a linear model trained via SGD.- Parameters:
name- The model name.provenance- The model provenance.featureIDMap- The feature domain.outputIDInfo- The output domain.parameters- The model parameters.generatesProbabilities- Does this model generate probabilities?
-
-
Method Details
-
getTopFeatures
Description copied from class:ModelGets the topnfeatures associated with this model.If the model does not produce per output feature lists, it returns a map with a single element with key Model.ALL_OUTPUTS.
If the model cannot describe it's top features then it returns
Collections.emptyMap().- Specified by:
getTopFeaturesin classModel<T extends Output<T>>- Parameters:
n- the number of features to return. If this value is less than 0, all features should be returned for each class, unless the model cannot score it's features.- Returns:
- a map from string outputs to an ordered list of pairs of feature names and weights associated with that feature in the model
-
getExcuse
Description copied from class:ModelGenerates an excuse for an example.This attempts to explain a classification result. Generating an excuse may be quite an expensive operation.
This excuse either contains per class information or an entry with key Model.ALL_OUTPUTS.
The optional is empty if the model does not provide excuses.
-
getDimensionName
Gets the name of the indexed output dimension.- Parameters:
index- The output dimension index.- Returns:
- The name of the requested output dimension.
-
getWeightsCopy
-