Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly.example |
Provides a anomaly data generator used for testing implementations.
|
org.tribuo.anomaly.liblinear |
Provides an interface to LibLinear-java for anomaly detection problems.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
org.tribuo.classification.baseline |
Provides simple baseline multiclass classifiers.
|
org.tribuo.classification.example |
Provides a multiclass data generator used for testing implementations.
|
org.tribuo.classification.explanations |
Provides core infrastructure for local model based explanations.
|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.mnb |
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
|
org.tribuo.classification.sgd.kernel |
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.classification.xgboost |
Provides an interface to XGBoost for classification problems.
|
org.tribuo.clustering.example |
Provides a clustering data generator used for testing implementations.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.nearest |
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types. |
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.data.text | |
org.tribuo.data.text.impl |
Provides implementations of text data processors.
|
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.datasource |
Simple data sources for ingesting or aggregating data.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.evaluation |
Evaluation base classes, along with code for train/test splits and cross validation.
|
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.onnx.extractors |
Provides feature extraction implementations which use ONNX models.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.multilabel.baseline | |
org.tribuo.multilabel.example |
Provides a multi-label data generator for testing implementations.
|
org.tribuo.multilabel.sgd.linear |
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
|
org.tribuo.regression.baseline |
Provides simple baseline regression predictors.
|
org.tribuo.regression.example |
Provides some example regression data generators for testing implementations.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
org.tribuo.regression.xgboost |
Provides an interface to XGBoost for regression problems.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
org.tribuo.transform |
Provides infrastructure for applying transformations to a
Dataset . |
Modifier and Type | Field and Description |
---|---|
protected List<Example<T>> |
Dataset.data
The data in this data set.
|
Modifier and Type | Method and Description |
---|---|
abstract Example<T> |
Example.copy()
Returns a deep copy of this Example.
|
Example<T> |
Prediction.getExample()
Returns the example itself.
|
Example<T> |
Excuse.getExample()
The example being excused.
|
Example<T> |
Dataset.getExample(int index)
Gets the example at the supplied index.
|
Modifier and Type | Method and Description |
---|---|
List<Example<T>> |
Dataset.getData()
Gets the examples as an unmodifiable list.
|
Iterator<Example<T>> |
Dataset.iterator() |
Modifier and Type | Method and Description |
---|---|
void |
MutableDataset.add(Example<T> ex)
Adds an example to the dataset, which observes the output and each feature value.
|
protected void |
ImmutableDataset.add(Example<T> ex)
Adds an
Example to the dataset, which will remove features with
unknown names. |
protected void |
ImmutableDataset.add(Example<T> ex,
Merger merger)
Adds a
Example to the dataset, which will insert feature ids,
remove unknown features and sort the examples by the feature ids (merging duplicate ids). |
abstract Optional<Excuse<T>> |
Model.getExcuse(Example<T> example)
Generates an excuse for an example.
|
abstract Prediction<T> |
Model.predict(Example<T> example)
Uses the model to predict the output for a single example.
|
Modifier and Type | Method and Description |
---|---|
void |
MutableDataset.addAll(Collection<? extends Example<T>> collection)
Adds all the Examples in the supplied collection to this dataset.
|
Optional<List<Excuse<T>>> |
Model.getExcuses(Iterable<Example<T>> examples)
Generates an excuse for each example.
|
protected List<Prediction<T>> |
Model.innerPredict(Iterable<Example<T>> examples)
Called by the base implementations of
Model.predict(Iterable) and Model.predict(Dataset) . |
List<Prediction<T>> |
Model.predict(Iterable<Example<T>> examples)
Uses the model to predict the output for multiple examples.
|
Constructor and Description |
---|
Example(Example<T> other)
Copies the output, weight and metadata into this example.
|
Excuse(Example<T> example,
Prediction<T> prediction,
Map<String,List<com.oracle.labs.mlrg.olcut.util.Pair<String,Double>>> weights)
Constructs an excuse for the prediction of the supplied example, using the feature weights.
|
Prediction(Prediction<T> other,
int numUsed,
Example<T> example)
Constructs a prediction from the supplied arguments.
|
Prediction(T output,
int numUsed,
Example<T> example)
Constructs a prediction from the supplied arguments.
|
Prediction(T output,
Map<String,T> outputScores,
int numUsed,
Example<T> example,
boolean probability)
Constructs a prediction from the supplied arguments.
|
Constructor and Description |
---|
ImmutableDataset(Iterable<Example<T>> dataSource,
DataProvenance description,
OutputFactory<T> outputFactory,
FeatureMap featureIDMap,
OutputInfo<T> outputIDInfo,
boolean dropInvalidExamples)
Creates a dataset from a data source.
|
ImmutableDataset(Iterable<Example<T>> dataSource,
DataProvenance description,
OutputFactory<T> outputFactory,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean dropInvalidExamples)
Creates a dataset from a data source.
|
MutableDataset(Iterable<Example<T>> dataSource,
DataProvenance provenance,
OutputFactory<T> outputFactory)
Creates a dataset from a data source.
|
Modifier and Type | Method and Description |
---|---|
static Example<Event> |
AnomalyDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<Event> |
AnomalyDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
protected Excuse<Event> |
LibLinearAnomalyModel.innerGetExcuse(Example<Event> e,
double[][] allFeatureWeights)
The call to model.getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Prediction<Event> |
LibLinearAnomalyModel.predict(Example<Event> example) |
Modifier and Type | Method and Description |
---|---|
Prediction<Event> |
LibSVMAnomalyModel.predict(Example<Event> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Label>> |
DummyClassifierModel.getExcuse(Example<Label> example) |
Prediction<Label> |
DummyClassifierModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
static Example<Label> |
LabelledDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<Label> |
LabelledDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
Explanation<T> |
TabularExplainer.explain(Example<Label> example)
Explain why the supplied
Example is classified a certain way. |
Modifier and Type | Method and Description |
---|---|
static Example<Label> |
LIMEBase.samplePoint(Random rng,
ImmutableFeatureMap fMap,
long numTrainingExamples,
SparseVector input)
Samples a single example from the supplied feature map and input vector.
|
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,List<Example<Regressor>>> |
LIMEBase.explainWithSamples(Example<Label> example) |
protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,List<Example<Regressor>>> |
LIMEColumnar.explainWithSamples(Map<String,String> input) |
protected List<Example<Regressor>> |
LIMEText.sampleData(String inputText,
List<Token> tokens)
Samples a new dataset from the input text.
|
Modifier and Type | Method and Description |
---|---|
LIMEExplanation |
LIMEBase.explain(Example<Label> example) |
protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,List<Example<Regressor>>> |
LIMEBase.explainWithSamples(Example<Label> example) |
protected SparseModel<Regressor> |
LIMEBase.trainExplainer(Example<Regressor> target,
List<Example<Regressor>> samples)
Trains the explanation model using the supplied sampled data and the input example.
|
Modifier and Type | Method and Description |
---|---|
protected SparseModel<Regressor> |
LIMEBase.trainExplainer(Example<Regressor> target,
List<Example<Regressor>> samples)
Trains the explanation model using the supplied sampled data and the input example.
|
Modifier and Type | Method and Description |
---|---|
protected Excuse<Label> |
LibLinearClassificationModel.innerGetExcuse(Example<Label> e,
double[][] allFeatureWeights)
The call to model.getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Prediction<Label> |
LibLinearClassificationModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
Prediction<Label> |
LibSVMClassificationModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Label>> |
MultinomialNaiveBayesModel.getExcuse(Example<Label> example) |
Prediction<Label> |
MultinomialNaiveBayesModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Label>> |
KernelSVMModel.getExcuse(Example<Label> example) |
Prediction<Label> |
KernelSVMModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
Prediction<Label> |
LinearSGDModel.predict(Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Label>> |
XGBoostClassificationConverter.convertBatchOutput(ImmutableOutputInfo<Label> info,
List<float[][]> probabilitiesList,
int[] numValidFeatures,
Example<Label>[] examples) |
Prediction<Label> |
XGBoostClassificationConverter.convertOutput(ImmutableOutputInfo<Label> info,
List<float[]> probabilitiesList,
int numValidFeatures,
Example<Label> example) |
Modifier and Type | Method and Description |
---|---|
static Example<ClusterID> |
ClusteringDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<ClusterID> |
ClusteringDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<ClusterID>> |
KMeansModel.getExcuse(Example<ClusterID> example) |
Prediction<ClusterID> |
KMeansModel.predict(Example<ClusterID> example) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibLinearTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<de.bwaldvogel.liblinear.FeatureNode> features)
Converts a Tribuo
Example into a liblinear FeatureNode array, including a bias feature. |
Optional<Excuse<T>> |
LibLinearModel.getExcuse(Example<T> e)
This call is expensive as it copies out the weight matrix from the
LibLinear model.
|
protected abstract Excuse<T> |
LibLinearModel.innerGetExcuse(Example<T> e,
double[][] featureWeights)
The call to getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Modifier and Type | Method and Description |
---|---|
Optional<List<Excuse<T>>> |
LibLinearModel.getExcuses(Iterable<Example<T>> examples) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibSVMTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<libsvm.svm_node> features)
Convert the example into an array of svm_node which represents a sparse feature vector.
|
Optional<Excuse<T>> |
LibSVMModel.getExcuse(Example<T> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<T>> |
KNNModel.getExcuse(Example<T> example) |
Prediction<T> |
KNNModel.predict(Example<T> example) |
Modifier and Type | Method and Description |
---|---|
protected List<Prediction<T>> |
KNNModel.innerPredict(Iterable<Example<T>> examples)
Uses the model to predict the output for multiple examples.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<T>> |
AbstractLinearSGDModel.getExcuse(Example<T> example) |
protected AbstractSGDModel.PredAndActive |
AbstractSGDModel.predictSingle(Example<T> example)
Generates the dense vector prediction from the supplied example.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<T>> |
TreeModel.getExcuse(Example<T> example) |
Prediction<T> |
LeafNode.getPrediction(int numUsed,
Example<T> example)
Constructs a new prediction object based on this node's scores.
|
Prediction<T> |
TreeModel.predict(Example<T> example) |
Modifier and Type | Field and Description |
---|---|
Example<T>[] |
XGBoostTrainer.DMatrixTuple.examples |
Modifier and Type | Method and Description |
---|---|
List<Prediction<T>> |
XGBoostOutputConverter.convertBatchOutput(ImmutableOutputInfo<T> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<T>[] examples)
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction . |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an examples into a DMatrix.
|
protected Prediction<T> |
XGBoostExternalModel.convertOutput(float[][] output,
int numValidFeatures,
Example<T> example) |
Prediction<T> |
XGBoostOutputConverter.convertOutput(ImmutableOutputInfo<T> info,
List<float[]> probabilities,
int numValidFeatures,
Example<T> example)
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction . |
protected static <T extends Output<T>> |
XGBoostTrainer.convertSingleExample(Example<T> example,
ImmutableFeatureMap featureMap,
ArrayList<Float> dataList,
ArrayList<Integer> indicesList,
ArrayList<Long> headersList,
long header)
Writes out the features from an example into the three supplied
ArrayList s. |
Optional<Excuse<T>> |
XGBoostModel.getExcuse(Example<T> example) |
Prediction<T> |
XGBoostModel.predict(Example<T> example) |
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an iterable of examples into a DMatrix.
|
protected List<Prediction<T>> |
XGBoostExternalModel.convertOutput(float[][] output,
int[] numValidFeatures,
List<Example<T>> examples) |
List<Prediction<T>> |
XGBoostModel.predict(Iterable<Example<T>> examples)
Uses the model to predict the label for multiple examples.
|
Constructor and Description |
---|
DMatrixTuple(ml.dmlc.xgboost4j.java.DMatrix data,
int[] numValidFeatures,
Example<T>[] examples) |
Modifier and Type | Method and Description |
---|---|
Optional<Example<T>> |
RowProcessor.generateExample(ColumnarIterator.Row row,
boolean outputRequired)
Generate an
Example from the supplied row. |
Optional<Example<T>> |
RowProcessor.generateExample(long idx,
Map<String,String> row,
boolean outputRequired)
Generate an
Example from the supplied row. |
Optional<Example<T>> |
RowProcessor.generateExample(Map<String,String> row,
boolean outputRequired)
Generate an
Example from the supplied row. |
Iterator<Example<T>> |
ColumnarDataSource.iterator() |
Modifier and Type | Field and Description |
---|---|
protected List<Example<T>> |
TextDataSource.data
The actual data read out of the text file.
|
Modifier and Type | Method and Description |
---|---|
Example<T> |
TextFeatureExtractor.extract(T output,
String data)
Extracts an example from the supplied input text and output object.
|
Modifier and Type | Method and Description |
---|---|
Iterator<Example<T>> |
TextDataSource.iterator() |
Iterator<Example<T>> |
DirectoryFileSource.iterator() |
Modifier and Type | Method and Description |
---|---|
Example<T> |
TextFeatureExtractorImpl.extract(T label,
String data) |
Modifier and Type | Method and Description |
---|---|
protected Optional<Example<T>> |
SimpleTextDataSource.parseLine(String line,
int n) |
Modifier and Type | Method and Description |
---|---|
Example<T> |
DatasetView.getExample(int index) |
Modifier and Type | Method and Description |
---|---|
List<Example<T>> |
DatasetView.getData() |
Iterator<Example<T>> |
DatasetView.iterator() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DatasetView.createView(Dataset<T> dataset,
Predicate<Example<T>> predicate,
String tag)
Creates a view from the supplied dataset, using the specified predicate to
test if each example should be in this view.
|
Modifier and Type | Method and Description |
---|---|
Iterator<Example<T>> |
ListDataSource.iterator() |
Iterator<Example<T>> |
LibSVMDataSource.iterator() |
Iterator<Example<T>> |
IDXDataSource.iterator() |
Iterator<Example<T>> |
AggregateDataSource.iterator() |
Iterator<Example<T>> |
AggregateConfigurableDataSource.iterator() |
Constructor and Description |
---|
ListDataSource(List<Example<T>> list,
OutputFactory<T> factory,
DataSourceProvenance provenance) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<T>> |
WeightedEnsembleModel.getExcuse(Example<T> example) |
abstract Optional<Excuse<T>> |
EnsembleModel.getExcuse(Example<T> example) |
Prediction<T> |
WeightedEnsembleModel.predict(Example<T> example) |
Constructor and Description |
---|
EnsembleExcuse(Example<T> example,
Prediction<T> prediction,
Map<String,List<com.oracle.labs.mlrg.olcut.util.Pair<String,Double>>> weights,
List<Excuse<T>> innerExcuses) |
Modifier and Type | Method and Description |
---|---|
Prediction<T> |
OnlineEvaluator.predictAndObserve(Example<T> example)
Feeds the example to the model, records the prediction and returns it.
|
Modifier and Type | Method and Description |
---|---|
List<Prediction<T>> |
OnlineEvaluator.predictAndObserve(Iterable<Example<T>> examples)
Feeds the examples to the model, records the predictions and returns them.
|
Modifier and Type | Class and Description |
---|---|
class |
ArrayExample<T extends Output<T>>
An
Example backed by two arrays, one of String and one of double. |
class |
BinaryFeaturesExample<T extends Output<T>>
An
Example backed by a single array of feature names. |
class |
IndexedArrayExample<T extends Output<T>>
A version of ArrayExample which also has the id numbers.
|
class |
ListExample<T extends Output<T>>
This class will not be performant until value types are available in Java.
|
Constructor and Description |
---|
ArrayExample(Example<T> other)
Copy constructor.
|
ArrayExample(T output,
Example<U> other,
float weight)
Clones an example's features, but uses the supplied output and weight.
|
BinaryFeaturesExample(Example<T> other)
Copy constructor.
|
BinaryFeaturesExample(T output,
Example<U> other,
float weight)
Clones an example's features, but uses the supplied output and weight.
|
IndexedArrayExample(Example<T> other,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<T> outputMap)
This constructor removes unknown features.
|
ListExample(Example<T> other) |
Modifier and Type | Method and Description |
---|---|
protected abstract Prediction<T> |
ExternalModel.convertOutput(V output,
int numValidFeatures,
Example<T> example)
Converts the output of the external model into a
Prediction . |
Optional<Excuse<T>> |
ExternalModel.getExcuse(Example<T> example)
By default third party models don't return excuses.
|
Prediction<T> |
ExternalModel.predict(Example<T> example) |
Modifier and Type | Method and Description |
---|---|
protected abstract List<Prediction<T>> |
ExternalModel.convertOutput(V output,
int[] numValidFeatures,
List<Example<T>> examples)
Converts the output of the external model into a list of
Prediction s. |
protected List<Prediction<T>> |
ExternalModel.innerPredict(Iterable<Example<T>> examples) |
Modifier and Type | Method and Description |
---|---|
protected Prediction<T> |
ONNXExternalModel.convertOutput(List<ai.onnxruntime.OnnxValue> output,
int numValidFeatures,
Example<T> example)
Converts a tensor into a prediction.
|
Prediction<Label> |
LabelTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int numValidFeatures,
Example<Label> example) |
Prediction<Regressor> |
RegressorTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<T> |
OutputTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo,
int numValidFeatures,
Example<T> example)
Converts a
OnnxValue into a Prediction . |
Modifier and Type | Method and Description |
---|---|
protected List<Prediction<T>> |
ONNXExternalModel.convertOutput(List<ai.onnxruntime.OnnxValue> output,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a tensor into a prediction.
|
List<Prediction<Label>> |
LabelTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int[] numValidFeatures,
List<Example<Label>> examples) |
List<Prediction<Regressor>> |
RegressorTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<T>> |
OutputTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a
OnnxValue containing multiple outputs into a list of Prediction s. |
Modifier and Type | Method and Description |
---|---|
Example<T> |
BERTFeatureExtractor.extract(T output,
String data)
Tokenizes the input using the loaded tokenizer, truncates the
token list if it's longer than
maxLength - 2 (to account
for [CLS] and [SEP] tokens), and then passes the token
list to BERTFeatureExtractor.extractExample(java.util.List<java.lang.String>) . |
Example<T> |
BERTFeatureExtractor.extractExample(List<String> tokens)
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
|
Example<T> |
BERTFeatureExtractor.extractExample(List<String> tokens,
T output)
Passes the tokens through BERT, replacing any unknown tokens with the [UNK] token.
|
Modifier and Type | Method and Description |
---|---|
TensorMap |
ImageConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap)
Transform implicitly pads unseen values with zero.
|
TensorMap |
FeatureConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap)
|
TensorMap |
DenseFeatureConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap) |
protected Prediction<T> |
TensorFlowFrozenExternalModel.convertOutput(org.tensorflow.Tensor output,
int numValidFeatures,
Example<T> example)
Converts a tensor into a prediction.
|
protected Prediction<T> |
TensorFlowSavedModelExternalModel.convertOutput(TensorMap output,
int numValidFeatures,
Example<T> example)
Converts a tensor into a prediction.
|
Prediction<Label> |
LabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int numValidFeatures,
Example<Label> example) |
Prediction<MultiLabel> |
MultiLabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int numValidFeatures,
Example<MultiLabel> example) |
Prediction<Regressor> |
RegressorConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<T> |
OutputConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo,
int numValidFeatures,
Example<T> example)
Converts a
Tensor into a Prediction . |
Optional<Excuse<T>> |
TensorFlowModel.getExcuse(Example<T> example)
Deep learning models don't do excuses.
|
Prediction<T> |
TensorFlowModel.predict(Example<T> example) |
Modifier and Type | Method and Description |
---|---|
TensorMap |
ImageConverter.convert(List<? extends Example<?>> examples,
ImmutableFeatureMap featureIDMap)
Transform implicitly pads unseen values with zero.
|
TensorMap |
FeatureConverter.convert(List<? extends Example<?>> example,
ImmutableFeatureMap featureIDMap)
|
TensorMap |
DenseFeatureConverter.convert(List<? extends Example<?>> examples,
ImmutableFeatureMap featureIDMap) |
protected List<Prediction<T>> |
TensorFlowFrozenExternalModel.convertOutput(org.tensorflow.Tensor output,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a tensor into a prediction.
|
protected List<Prediction<T>> |
TensorFlowSavedModelExternalModel.convertOutput(TensorMap output,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a tensor into a prediction.
|
List<Prediction<Label>> |
LabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int[] numValidFeatures,
List<Example<Label>> examples) |
List<Prediction<MultiLabel>> |
MultiLabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int[] numValidFeatures,
List<Example<MultiLabel>> examples) |
List<Prediction<Regressor>> |
RegressorConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<T>> |
OutputConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a
Tensor containing multiple outputs into a list of Prediction s. |
org.tensorflow.Tensor |
LabelConverter.convertToTensor(List<Example<Label>> examples,
ImmutableOutputInfo<Label> outputIDInfo) |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(List<Example<MultiLabel>> examples,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(List<Example<Regressor>> examples,
ImmutableOutputInfo<Regressor> outputIDInfo) |
org.tensorflow.Tensor |
OutputConverter.convertToTensor(List<Example<T>> examples,
ImmutableOutputInfo<T> outputIDInfo)
Converts a list of
Example into a Tensor representing all the outputs
in the list. |
protected List<Prediction<T>> |
TensorFlowModel.innerPredict(Iterable<Example<T>> examples) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DenseVector.createDenseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
DenseVector from an Example . |
static <T extends Output<T>> |
SparseVector.createSparseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
SparseVector from an Example . |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<MultiLabel>> |
IndependentMultiLabelModel.getExcuse(Example<MultiLabel> example) |
Prediction<MultiLabel> |
IndependentMultiLabelModel.predict(Example<MultiLabel> example) |
Modifier and Type | Method and Description |
---|---|
static Example<MultiLabel> |
MultiLabelDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<MultiLabel> |
MultiLabelDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
Prediction<MultiLabel> |
LinearSGDModel.predict(Example<MultiLabel> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Regressor>> |
DummyRegressionModel.getExcuse(Example<Regressor> example) |
Prediction<Regressor> |
DummyRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
static Example<Regressor> |
RegressionDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<Regressor> |
RegressionDataGenerator.emptyMultiDimExample()
Generates an example with no features.
|
static Example<Regressor> |
RegressionDataGenerator.invalidMultiDimSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
static Example<Regressor> |
RegressionDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Modifier and Type | Method and Description |
---|---|
Iterator<Example<Regressor>> |
NonlinearGaussianDataSource.iterator() |
Iterator<Example<Regressor>> |
GaussianDataSource.iterator() |
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SkeletalIndependentRegressionSparseModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
protected SparseVector |
SkeletalIndependentRegressionModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
Prediction<Regressor> |
SkeletalIndependentRegressionSparseModel.predict(Example<Regressor> example) |
Prediction<Regressor> |
SkeletalIndependentRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected Excuse<Regressor> |
LibLinearRegressionModel.innerGetExcuse(Example<Regressor> e,
double[][] allFeatureWeights)
The call to model.getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Prediction<Regressor> |
LibLinearRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
LibSVMRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Regressor>> |
IndependentRegressionTreeModel.getExcuse(Example<Regressor> example) |
Prediction<Regressor> |
IndependentRegressionTreeModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
LinearSGDModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SparseLinearModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
Optional<Excuse<Regressor>> |
SparseLinearModel.getExcuse(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Regressor>> |
XGBoostRegressionConverter.convertBatchOutput(ImmutableOutputInfo<Regressor> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<Regressor>[] examples) |
Prediction<Regressor> |
XGBoostRegressionConverter.convertOutput(ImmutableOutputInfo<Regressor> info,
List<float[]> probabilities,
int numValidFeatures,
Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Example<T> |
SequenceExample.get(int i)
Gets the example found at the specified index.
|
Modifier and Type | Method and Description |
---|---|
Iterator<Example<T>> |
SequenceExample.iterator() |
Modifier and Type | Method and Description |
---|---|
void |
SequenceExample.addExample(Example<T> e)
Adds an
Example to this sequence. |
Constructor and Description |
---|
SequenceExample(List<Example<T>> examples)
Creates a sequence example from the list of examples.
|
SequenceExample(List<Example<T>> examples,
float weight)
Creates a sequence example from the list of examples, setting the weight.
|
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example)
Copies the supplied example and applies the transformers to it.
|
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example,
List<String> featureNames)
Copies the supplied example and applies the transformers to it.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<T>> |
TransformedModel.getExcuse(Example<T> example) |
Prediction<T> |
TransformedModel.predict(Example<T> example) |
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example)
Copies the supplied example and applies the transformers to it.
|
<T extends Output<T>> |
TransformerMap.transformExample(Example<T> example,
List<String> featureNames)
Copies the supplied example and applies the transformers to it.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.