Class SparseLinearModel
java.lang.Object
org.tribuo.Model<Regressor>
org.tribuo.SparseModel<Regressor>
org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
org.tribuo.regression.slm.SparseLinearModel
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>
,Serializable
The inference time version of a sparse linear regression model.
The type of the model depends on the trainer used.
- See Also:
-
Field Summary
Fields inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
dimensions
Fields inherited from class org.tribuo.Model
ALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutput
-
Method Summary
Modifier and TypeMethodDescriptioncopy
(String newName, ModelProvenance newProvenance) Copies a model, replacing it's provenance and name with the supplied values.protected SparseVector
createFeatures
(Example<Regressor> example) Creates the feature vector.Generates an excuse for an example.getTopFeatures
(int n) Gets the topn
features associated with this model.Gets a copy of the model parameters.protected Regressor.DimensionTuple
scoreDimension
(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension.Methods inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
predict
Methods inherited from class org.tribuo.SparseModel
copy, getActiveFeatures
Methods inherited from class org.tribuo.Model
generatesProbabilities, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, innerPredict, predict, predict, setName, toString, validate
-
Method Details
-
createFeatures
Creates the feature vector. Includes a bias term if the model requires it.- Overrides:
createFeatures
in classSkeletalIndependentRegressionSparseModel
- Parameters:
example
- The example to convert.- Returns:
- The feature vector.
-
scoreDimension
Description copied from class:SkeletalIndependentRegressionSparseModel
Makes a prediction for a single dimension.- Specified by:
scoreDimension
in classSkeletalIndependentRegressionSparseModel
- Parameters:
dimensionIdx
- The dimension index to predict.features
- The features to use.- Returns:
- A single dimension prediction.
-
getTopFeatures
Description copied from class:Model
Gets the topn
features associated with this model.If the model does not produce per output feature lists, it returns a map with a single element with key Model.ALL_OUTPUTS.
If the model cannot describe it's top features then it returns
Collections.emptyMap()
.- Specified by:
getTopFeatures
in classModel<Regressor>
- Parameters:
n
- the number of features to return. If this value is less than 0, all features should be returned for each class, unless the model cannot score it's features.- Returns:
- a map from string outputs to an ordered list of pairs of feature names and weights associated with that feature in the model
-
getExcuse
Description copied from class:Model
Generates an excuse for an example.This attempts to explain a classification result. Generating an excuse may be quite an expensive operation.
This excuse either contains per class information or an entry with key Model.ALL_OUTPUTS.
The optional is empty if the model does not provide excuses.
-
copy
Description copied from class:Model
Copies a model, replacing it's provenance and name with the supplied values.Used to provide the provenance removal functionality.
-
getWeights
Gets a copy of the model parameters.- Returns:
- A map from the dimension name to the model parameters.
-