Uses of Class
org.tribuo.Model
Packages that use Model
Package
Description
Provides the core interfaces and classes for using Tribuo.
Evaluation classes for anomaly detection.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides simple baseline multiclass classifiers.
Evaluation classes for multi-class classification.
Provides a set of main methods for interacting with classification tasks.
Provides core infrastructure for local model based explanations.
Provides an implementation of LIME (Locally Interpretable Model Explanations).
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label based classification model.Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Evaluation classes for clustering.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types.Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective
of the predicted
Output.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
Provides classes for processing columnar data and generating
Examples.Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Evaluation base classes, along with code for train/test splits and cross validation.
This package contains the infrastructure classes for building evaluation metrics.
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
ModelCard feature to allow more transparent model reporting.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides implementations of binary relevance based multi-label classification
algorithms.
Evaluation classes for multi-label classification using
MultiLabel.Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides simple baseline regression predictors.
Evaluation classes for single or multi-dimensional regression.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Reproducibility utility based on Tribuo's provenance objects.
Provides infrastructure for applying transformations to a
Dataset.-
Uses of Model in org.tribuo
Classes in org.tribuo with type parameters of type ModelModifier and TypeInterfaceDescriptioninterfaceIncrementalTrainer<T extends Output<T>, U extends Model<T>>An interface for incremental training ofModels.Subclasses of Model in org.tribuoModifier and TypeClassDescriptionclassSparseModel<T extends Output<T>>A model which uses a subset of the features it knows about to make predictions.Methods in org.tribuo that return ModelModifier and TypeMethodDescriptionCasts the model to the specified output type, assuming it is valid.Model.copy()Copies a model, returning a deep copy of any mutable state, and a shallow copy otherwise.Model.copy(String newName, ModelProvenance newProvenance) Copies a model, replacing its provenance and name with the supplied values.static Model<?> Model.deserialize(org.tribuo.protos.core.ModelProto proto) Deserializes the model from the supplied protobuf.static Model<?> Model.deserializeFromFile(Path path) Reads an instance ofModelProtofrom the supplied path and deserializes it.static Model<?> Model.deserializeFromStream(InputStream is) Reads an instance ofModelProtofrom the supplied input stream and deserializes it.Trains a predictive model using the examples in the given data set.Trainer.train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a predictive model using the examples in the given data set.Trainer.train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.Constructors in org.tribuo with parameters of type ModelModifierConstructorDescriptionImmutableDataset(DataSource<T> dataSource, Model<T> model, boolean dropInvalidExamples) Creates a dataset from a data source. -
Uses of Model in org.tribuo.anomaly.evaluation
Methods in org.tribuo.anomaly.evaluation with parameters of type ModelModifier and TypeMethodDescriptionprotected org.tribuo.anomaly.evaluation.AnomalyMetric.ContextAnomalyEvaluator.createContext(Model<Event> model, List<Prediction<Event>> predictions) org.tribuo.anomaly.evaluation.AnomalyMetric.ContextAnomalyMetric.createContext(Model<Event> model, List<Prediction<Event>> predictions) protected Set<AnomalyMetric> AnomalyEvaluator.createMetrics(Model<Event> model) -
Uses of Model in org.tribuo.anomaly.liblinear
Subclasses of Model in org.tribuo.anomaly.liblinearModifier and TypeClassDescriptionclassAModelwhich wraps a LibLinear-java anomaly detection model. -
Uses of Model in org.tribuo.anomaly.libsvm
Subclasses of Model in org.tribuo.anomaly.libsvmModifier and TypeClassDescriptionclassAn anomaly detection model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.classification
Methods in org.tribuo.classification that return Model -
Uses of Model in org.tribuo.classification.baseline
Subclasses of Model in org.tribuo.classification.baselineModifier and TypeClassDescriptionclassA model which performs dummy classifications (e.g., constant output, uniform sampled labels, stratified sampled labels).Methods in org.tribuo.classification.baseline that return ModelModifier and TypeMethodDescriptionDummyClassifierTrainer.train(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) DummyClassifierTrainer.train(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance, int invocationCount) -
Uses of Model in org.tribuo.classification.evaluation
Methods in org.tribuo.classification.evaluation with parameters of type ModelModifier and TypeMethodDescriptionprotected LabelMetric.ContextLabelEvaluator.createContext(Model<Label> model, List<Prediction<Label>> predictions) LabelMetric.createContext(Model<Label> model, List<Prediction<Label>> predictions) protected Set<LabelMetric> LabelEvaluator.createMetrics(Model<Label> model) Constructors in org.tribuo.classification.evaluation with parameters of type ModelModifierConstructorDescriptionConstructs a context and compute the confusion matrix using the specified model and predictions.LabelConfusionMatrix(Model<Label> model, List<Prediction<Label>> predictions) Creates a confusion matrix from the supplied predictions, using the label info from the supplied model. -
Uses of Model in org.tribuo.classification.experiments
Methods in org.tribuo.classification.experiments that return types with arguments of type Model -
Uses of Model in org.tribuo.classification.explanations
Methods in org.tribuo.classification.explanations that return Model -
Uses of Model in org.tribuo.classification.explanations.lime
Fields in org.tribuo.classification.explanations.lime declared as ModelConstructors in org.tribuo.classification.explanations.lime with parameters of type ModelModifierConstructorDescriptionLIMEBase(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples) Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).LIMEColumnar(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, RowProcessor<Label> exampleGenerator, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses the columnar data processing system.LIMEText(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, TextFeatureExtractor<Label> extractor, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses text data. -
Uses of Model in org.tribuo.classification.liblinear
Subclasses of Model in org.tribuo.classification.liblinearModifier and TypeClassDescriptionclassAModelwhich wraps a LibLinear-java classification model. -
Uses of Model in org.tribuo.classification.libsvm
Subclasses of Model in org.tribuo.classification.libsvmModifier and TypeClassDescriptionclassA classification model that uses an underlying LibSVM model to make the predictions. -
Uses of Model in org.tribuo.classification.mnb
Subclasses of Model in org.tribuo.classification.mnbModifier and TypeClassDescriptionclassAModelfor multinomial Naive Bayes with Laplace smoothing.Methods in org.tribuo.classification.mnb that return ModelModifier and TypeMethodDescriptionMultinomialNaiveBayesTrainer.train(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) MultinomialNaiveBayesTrainer.train(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) -
Uses of Model in org.tribuo.classification.sequence.viterbi
Methods in org.tribuo.classification.sequence.viterbi that return ModelModifier and TypeMethodDescriptionViterbiModel.getInnerModel()Returns the inner model used for sequence element predictions. -
Uses of Model in org.tribuo.classification.sgd.fm
Subclasses of Model in org.tribuo.classification.sgd.fmModifier and TypeClassDescriptionclassThe inference time version of a factorization machine trained using SGD. -
Uses of Model in org.tribuo.classification.sgd.kernel
Subclasses of Model in org.tribuo.classification.sgd.kernelModifier and TypeClassDescriptionclassThe inference time version of a kernel model trained using Pegasos. -
Uses of Model in org.tribuo.classification.sgd.linear
Subclasses of Model in org.tribuo.classification.sgd.linearModifier and TypeClassDescriptionclassThe inference time version of a linear model trained using SGD. -
Uses of Model in org.tribuo.clustering.evaluation
Methods in org.tribuo.clustering.evaluation with parameters of type ModelModifier and TypeMethodDescriptionprotected org.tribuo.clustering.evaluation.ClusteringMetric.ContextClusteringEvaluator.createContext(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.ContextClusteringMetric.createContext(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected Set<ClusteringMetric> ClusteringEvaluator.createMetrics(Model<ClusterID> model) -
Uses of Model in org.tribuo.clustering.hdbscan
Subclasses of Model in org.tribuo.clustering.hdbscanModifier and TypeClassDescriptionfinal classA trained HDBSCAN* model which provides the cluster assignment labels and outlier scores for every data point. -
Uses of Model in org.tribuo.clustering.kmeans
Subclasses of Model in org.tribuo.clustering.kmeansModifier and TypeClassDescriptionclassA K-Means model with a selectable distance function. -
Uses of Model in org.tribuo.common.liblinear
Subclasses of Model in org.tribuo.common.liblinearModifier and TypeClassDescriptionclassLibLinearModel<T extends Output<T>>AModelwhich wraps a LibLinear-java model. -
Uses of Model in org.tribuo.common.libsvm
Subclasses of Model in org.tribuo.common.libsvmModifier and TypeClassDescriptionclassLibSVMModel<T extends Output<T>>A model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.common.nearest
Subclasses of Model in org.tribuo.common.nearestModifier and TypeClassDescriptionclassA k-nearest neighbours model.Methods in org.tribuo.common.nearest that return Model -
Uses of Model in org.tribuo.common.sgd
Classes in org.tribuo.common.sgd with type parameters of type ModelModifier and TypeClassDescriptionclassAbstractSGDTrainer<T extends Output<T>, U, V extends Model<T>, X extends FeedForwardParameters>A trainer for a model which uses SGD.Subclasses of Model in org.tribuo.common.sgdModifier and TypeClassDescriptionclassAbstractFMModel<T extends Output<T>>A quadratic factorization machine model trained using SGD.classAbstractLinearSGDModel<T extends Output<T>>A linear model trained using SGD.classAbstractSGDModel<T extends Output<T>>A model trained using SGD. -
Uses of Model in org.tribuo.common.tree
Subclasses of Model in org.tribuo.common.tree -
Uses of Model in org.tribuo.common.xgboost
Subclasses of Model in org.tribuo.common.xgboostModifier and TypeClassDescriptionfinal classXGBoostExternalModel<T extends Output<T>>AModelwhich wraps around a XGBoost.Booster which was trained by a system other than Tribuo.final classXGBoostModel<T extends Output<T>>AModelwhich wraps around a XGBoost.Booster.Methods in org.tribuo.common.xgboost that return ModelModifier and TypeMethodDescriptionXGBoostModel.copy(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.data
Methods in org.tribuo.data with parameters of type ModelModifier and TypeMethodDescription<T extends Output<T>>
voidSaves the model out to the path inDataOptions.outputPath. -
Uses of Model in org.tribuo.data.columnar
Methods in org.tribuo.data.columnar with parameters of type ModelModifier and TypeMethodDescriptionvoidRowProcessor.expandRegexMapping(Model<T> model) Uses similar logic toTransformationMap.validateTransformations(org.tribuo.FeatureMap)to check the regexes against theImmutableFeatureMapcontained in the suppliedModel. -
Uses of Model in org.tribuo.ensemble
Subclasses of Model in org.tribuo.ensembleModifier and TypeClassDescriptionclassEnsembleModel<T extends Output<T>>A model which contains a list of otherModels.final classWeightedEnsembleModel<T extends Output<T>>An ensemble model that uses weights to combine the ensemble member predictions.Fields in org.tribuo.ensemble with type parameters of type ModelMethods in org.tribuo.ensemble that return ModelModifier and TypeMethodDescriptionEnsembleModel.copy(String name, ModelProvenance newProvenance) BaggingTrainer.trainSingleModel(Dataset<T> examples, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> labelIDs, int randInt, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a single model.Methods in org.tribuo.ensemble that return types with arguments of type ModelModifier and TypeMethodDescriptionEnsembleModel.getModels()Returns an unmodifiable view on the ensemble members.Method parameters in org.tribuo.ensemble with type arguments of type ModelModifier and TypeMethodDescriptionprotected abstract EnsembleModel<T> Copies this ensemble model.protected EnsembleModel<T> WeightedEnsembleModel.copy(String name, EnsembleModelProvenance newProvenance, List<Model<T>> newModels) static <T extends Output<T>>
WeightedEnsembleModel<T> WeightedEnsembleModel.createEnsembleFromExistingModels(String name, List<Model<T>> models, EnsembleCombiner<T> combiner) Creates an ensemble from existing models.static <T extends Output<T>>
WeightedEnsembleModel<T> WeightedEnsembleModel.createEnsembleFromExistingModels(String name, List<Model<T>> models, EnsembleCombiner<T> combiner, float[] weights) Creates an ensemble from existing models.Constructor parameters in org.tribuo.ensemble with type arguments of type ModelModifierConstructorDescriptionprotectedEnsembleModel(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels) Builds an EnsembleModel from the supplied model list.WeightedEnsembleModel(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner) Unless you are implementing aTraineryou should not use this constructor directly.WeightedEnsembleModel(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner, float[] weights) Unless you are implementing aTraineryou should not use this constructor directly. -
Uses of Model in org.tribuo.evaluation
Methods in org.tribuo.evaluation that return types with arguments of type ModelModifier and TypeMethodDescriptionCrossValidation.evaluate()Performs k fold cross validation, returning the k evaluations.Methods in org.tribuo.evaluation with parameters of type ModelModifier and TypeMethodDescriptionstatic <T extends Output<T>, C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer, Double> EvaluationAggregator.argmax(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Calculates the argmax of a metric across the supplied datasets.protected abstract CAbstractEvaluator.createContext(Model<T> model, List<Prediction<T>> predictions) Create the context needed for evaluation.AbstractEvaluator.createMetrics(Model<T> model) Creates the appropriate set of metrics for this model, by querying for it'sOutputInfo.default OnlineEvaluator<T, E> Evaluator.createOnlineEvaluator(Model<T> model, DataProvenance provenance) Creates an online evaluator that maintains a list of all the predictions it has seen and can evaluate them upon request.final EAbstractEvaluator.evaluate(Model<T> model, List<Prediction<T>> predictions, DataProvenance dataProvenance) Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.final EProduces an evaluation for the supplied model and dataset, by callingpredict(org.tribuo.Example<T>)to create the predictions, then aggregating the appropriate statistics.final EAbstractEvaluator.evaluate(Model<T> model, DataSource<T> datasource) Produces an evaluation for the supplied model and datasource, by callingpredict(org.tribuo.Example<T>)to create the predictions, then aggregating the appropriate statistics.default EEvaluator.evaluate(Model<T> model, List<Prediction<T>> predictions, List<T> groundTruth, DataProvenance dataProvenance) Evaluates the model performance using the supplied predictions, returning an immutableEvaluationof the appropriate type.Evaluator.evaluate(Model<T> model, List<Prediction<T>> predictions, DataProvenance dataProvenance) Evaluates the model performance using the supplied predictions, returning an immutableEvaluationof the appropriate type.Evaluates the dataset using the supplied model, returning an immutableEvaluationof the appropriate type.Evaluator.evaluate(Model<T> model, DataSource<T> datasource) Evaluates the dataset using the supplied model, returning an immutableEvaluationof the appropriate type.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, List<Prediction<T>> predictions) Summarize model performance on dataset across several metrics.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, Dataset<T> dataset) Summarize model performance on dataset across several metrics.static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> EvaluationAggregator.summarize(Evaluator<T, R> evaluator, Model<T> model, List<? extends Dataset<T>> datasets) Summarize performance according to evaluator for a single model across several datasets.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Summarize a model's performance w.r.t.Method parameters in org.tribuo.evaluation with type arguments of type ModelModifier and TypeMethodDescriptionstatic <T extends Output<T>, C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer, Double> EvaluationAggregator.argmax(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> EvaluationAggregator.summarize(Evaluator<T, R> evaluator, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance using the supplied evaluator across several models on one dataset.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance w.r.t.static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> EvaluationAggregator.summarizeCrossValidation(List<com.oracle.labs.mlrg.olcut.util.Pair<R, Model<T>>> evaluations) Summarize all fields of a list of evaluations produced byCrossValidation.Constructors in org.tribuo.evaluation with parameters of type ModelModifierConstructorDescriptionOnlineEvaluator(Evaluator<T, E> evaluator, Model<T> model, DataProvenance provenance) Constructs anOnlineEvaluatorwhich accumulates predictions. -
Uses of Model in org.tribuo.evaluation.metrics
Methods in org.tribuo.evaluation.metrics that return ModelMethods in org.tribuo.evaluation.metrics with parameters of type ModelModifier and TypeMethodDescriptionEvaluationMetric.createContext(Model<T> model, List<Prediction<T>> predictions) Creates the context this metric uses to compute it's value.default CEvaluationMetric.createContext(Model<T> model, Dataset<T> dataset) Creates the metric context used to compute this metric's value, generatingPredictions for eachExamplein the supplied dataset.Constructors in org.tribuo.evaluation.metrics with parameters of type ModelModifierConstructorDescriptionprotectedMetricContext(Model<T> model, List<Prediction<T>> predictions) Constructs a metric context. -
Uses of Model in org.tribuo.hash
Methods in org.tribuo.hash that return ModelModifier and TypeMethodDescriptionHashingTrainer.train(Dataset<T> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) This clones theDataset, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer.HashingTrainer.train(Dataset<T> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance, int invocationCount) -
Uses of Model in org.tribuo.interop
Subclasses of Model in org.tribuo.interopModifier and TypeClassDescriptionclassExternalModel<T extends Output<T>, U, V>This is the base class for third party models which are trained externally and loaded into Tribuo for prediction. -
Uses of Model in org.tribuo.interop.modelcard
Constructors in org.tribuo.interop.modelcard with parameters of type ModelModifierConstructorDescriptionModelCard(Model<?> model, Evaluation<?> evaluation) Creates an instance of ModelCard that does not include any extracted metrics and has itsUsageDetailsset to null.Creates an instance of ModelCard that has itsUsageDetailsset to null.ModelCard(Model<?> model, Evaluation<?> evaluation, Map<String, Double> testingMetrics, UsageDetails usage) Creates an instance of ModelCard.ModelCard(Model<?> model, Evaluation<?> evaluation, UsageDetails usage) Creates an instance of ModelCard that does not include any extracted metrics.ModelDetails(Model<?> model) Creates an instance of ModelDetails.TrainingDetails(Model<?> model) Creates an instance of TrainingDetails. -
Uses of Model in org.tribuo.interop.oci
Subclasses of Model in org.tribuo.interop.ociModifier and TypeClassDescriptionfinal classA wrapper class around an OCI Data Science Model Deployment endpoint which sends off inputs for scoring and converts the output into a Tribuo prediction.Methods in org.tribuo.interop.oci with type parameters of type ModelModifier and TypeMethodDescriptionstatic <T extends Output<T>, U extends Model<T> & ONNXExportable>
StringOCIUtil.createModel(U model, com.oracle.bmc.datascience.DataScienceClient client, com.fasterxml.jackson.databind.ObjectMapper mapper, OCIUtil.OCIModelArtifactConfig config) Creates an OCI DS model and uploads the model artifact.Methods in org.tribuo.interop.oci that return Model -
Uses of Model in org.tribuo.interop.onnx
Subclasses of Model in org.tribuo.interop.onnxModifier and TypeClassDescriptionfinal classONNXExternalModel<T extends Output<T>>A Tribuo wrapper around a ONNX model.Methods in org.tribuo.interop.onnx that return ModelModifier and TypeMethodDescriptionONNXExternalModel.copy(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.interop.tensorflow
Subclasses of Model in org.tribuo.interop.tensorflowModifier and TypeClassDescriptionfinal classTensorFlowCheckpointModel<T extends Output<T>>This model encapsulates a simple model with an input feed dict, and produces a single output tensor.final classTensorFlowFrozenExternalModel<T extends Output<T>>A Tribuo wrapper around a TensorFlow frozen model.classTensorFlowModel<T extends Output<T>>Base class for a TensorFlow model that operates onExamples.final classTensorFlowNativeModel<T extends Output<T>>This model encapsulates a TensorFlow model running in graph mode with a single tensor output.final classTensorFlowSavedModelExternalModel<T extends Output<T>>A Tribuo wrapper around a TensorFlow saved model bundle.Methods in org.tribuo.interop.tensorflow that return ModelModifier and TypeMethodDescriptionTensorFlowFrozenExternalModel.copy(String newName, ModelProvenance newProvenance) TensorFlowSavedModelExternalModel.copy(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.multilabel.baseline
Subclasses of Model in org.tribuo.multilabel.baselineModifier and TypeClassDescriptionfinal classA Classifier Chain Model.classAModelwhich wraps n binary models, where n is the size of the MultiLabel domain.Methods in org.tribuo.multilabel.baseline that return ModelModifier and TypeMethodDescriptionIndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) IndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Methods in org.tribuo.multilabel.baseline that return types with arguments of type Model -
Uses of Model in org.tribuo.multilabel.evaluation
Methods in org.tribuo.multilabel.evaluation with parameters of type ModelModifier and TypeMethodDescriptionprotected org.tribuo.multilabel.evaluation.MultiLabelMetric.ContextMultiLabelEvaluator.createContext(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) org.tribuo.multilabel.evaluation.MultiLabelMetric.ContextMultiLabelMetric.createContext(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) protected Set<MultiLabelMetric> MultiLabelEvaluator.createMetrics(Model<MultiLabel> model) Constructors in org.tribuo.multilabel.evaluation with parameters of type ModelModifierConstructorDescriptionMultiLabelConfusionMatrix(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) Constructs a multi-label confusion matrix for the specified model and predictions. -
Uses of Model in org.tribuo.multilabel.sgd.fm
Subclasses of Model in org.tribuo.multilabel.sgd.fmModifier and TypeClassDescriptionclassThe inference time version of a multi-label factorization machine trained using SGD. -
Uses of Model in org.tribuo.multilabel.sgd.linear
Subclasses of Model in org.tribuo.multilabel.sgd.linearModifier and TypeClassDescriptionclassThe inference time version of a multi-label linear model trained using SGD. -
Uses of Model in org.tribuo.regression.baseline
Subclasses of Model in org.tribuo.regression.baselineModifier and TypeClassDescriptionclassA model which performs dummy regressions (e.g., constant output, gaussian sampled output, mean value, median, quartile).Methods in org.tribuo.regression.baseline that return ModelModifier and TypeMethodDescriptionDummyRegressionModel.copy(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.regression.evaluation
Methods in org.tribuo.regression.evaluation with parameters of type ModelModifier and TypeMethodDescriptionprotected org.tribuo.regression.evaluation.RegressionMetric.ContextRegressionEvaluator.createContext(Model<Regressor> model, List<Prediction<Regressor>> predictions) org.tribuo.regression.evaluation.RegressionMetric.ContextRegressionMetric.createContext(Model<Regressor> model, List<Prediction<Regressor>> predictions) protected Set<RegressionMetric> RegressionEvaluator.createMetrics(Model<Regressor> model) -
Uses of Model in org.tribuo.regression.impl
Subclasses of Model in org.tribuo.regression.implModifier and TypeClassDescriptionclassAModelwhich wraps n independent regression models, where n is the size of the MultipleRegressor domain.classASparseModelwhich wraps n independent regression models, where n is the size of the MultipleRegressor domain. -
Uses of Model in org.tribuo.regression.liblinear
Subclasses of Model in org.tribuo.regression.liblinear -
Uses of Model in org.tribuo.regression.libsvm
Subclasses of Model in org.tribuo.regression.libsvmModifier and TypeClassDescriptionclassA regression model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.regression.rtree
Subclasses of Model in org.tribuo.regression.rtreeModifier and TypeClassDescriptionfinal class -
Uses of Model in org.tribuo.regression.sgd.fm
Subclasses of Model in org.tribuo.regression.sgd.fmModifier and TypeClassDescriptionclassThe inference time model of a regression factorization machine trained using SGD. -
Uses of Model in org.tribuo.regression.sgd.linear
Subclasses of Model in org.tribuo.regression.sgd.linearModifier and TypeClassDescriptionclassThe inference time version of a linear model trained using SGD. -
Uses of Model in org.tribuo.regression.slm
Subclasses of Model in org.tribuo.regression.slmModifier and TypeClassDescriptionclassThe inference time version of a sparse linear regression model.Methods in org.tribuo.regression.slm that return ModelModifier and TypeMethodDescriptionSparseLinearModel.copy(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.reproducibility
Methods in org.tribuo.reproducibility that return ModelModifier and TypeMethodDescriptionReproUtil.ModelReproduction.model()Returns the value of themodelrecord component.ReproUtil.reproduceFromProvenance()Recreates a model object using theModelProvenancesupplied when the ReproUtil object was created.Constructors in org.tribuo.reproducibility with parameters of type ModelModifierConstructorDescriptionModelReproduction(Model<T> model, ReproUtil.FeatureDiff featureDiff, ReproUtil.OutputDiff<T> outputDiff, String provenanceDiff) Creates an instance of aModelReproductionrecord class.Creates a ReproUtil instance. -
Uses of Model in org.tribuo.transform
Subclasses of Model in org.tribuo.transformModifier and TypeClassDescriptionclassTransformedModel<T extends Output<T>>Wraps aModelwith it'sTransformerMapso allExamples are transformed appropriately before the model makes predictions.Methods in org.tribuo.transform that return ModelModifier and TypeMethodDescriptionTransformedModel.getInnerModel()Gets the inner model to allow access to any class specific methods that model contains (e.g., to examine cluster centroids).