Uses of Class
org.tribuo.Model
Package
Description
Provides the core interfaces and classes for using Tribuo.
Evaluation classes for anomaly detection.
Provides an interface to LibLinear-java for anomaly detection problems.
Provides an interface to LibSVM for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides simple baseline multiclass classifiers.
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
Evaluation classes for multi-class classification.
Provides a set of main methods for interacting with classification tasks.
Provides core infrastructure for local model based explanations.
Provides an implementation of LIME (Locally Interpretable Model Explanations).
Provides an interface to LibLinear-java for classification problems.
Provides an interface to LibSVM for classification problems.
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
Provides an implementation of Viterbi for generating structured outputs, which can sit on top of any
Label
based classification model.Provides an implementation of a classification factorization machine using Stochastic Gradient Descent.
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
Evaluation classes for clustering.
Provides an implementation of HDBSCAN*.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output
types.Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective
of the predicted
Output
.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
Provides classes for processing columnar data and generating
Example
s.Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Evaluation base classes, along with code for train/test splits and cross validation.
This package contains the infrastructure classes for building evaluation metrics.
Provides the base interface and implementations of the
Model
hashing
which obscures the feature names stored in a model.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
ModelCard feature to allow more transparent model reporting.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around ONNX Runtime.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides implementations of binary relevance based multi-label classification
algorithms.
Evaluation classes for multi-label classification using
MultiLabel
.Provides an implementation of a multi-label classification factorization machine model using Stochastic Gradient Descent.
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
Provides simple baseline regression predictors.
Evaluation classes for single or multi-dimensional regression.
Provides an interface to liblinear for regression problems.
Provides an interface to LibSVM for regression problems.
Provides an implementation of decision trees for regression problems.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides implementations of sparse linear regression using various forms of regularisation penalty.
Reproducibility utility based on Tribuo's provenance objects.
Provides infrastructure for applying transformations to a
Dataset
.-
Uses of Model in org.tribuo
Modifier and TypeInterfaceDescriptioninterface
IncrementalTrainer<T extends Output<T>,
U extends Model<T>> An interface for incremental training ofModel
s.Modifier and TypeClassDescriptionclass
SparseModel<T extends Output<T>>
A model which uses a subset of the features it knows about to make predictions.Modifier and TypeMethodDescriptionCasts the model to the specified output type, assuming it is valid.Model.copy()
Copies a model, returning a deep copy of any mutable state, and a shallow copy otherwise.Model.copy
(String newName, ModelProvenance newProvenance) Copies a model, replacing its provenance and name with the supplied values.static Model<?>
Model.deserialize
(org.tribuo.protos.core.ModelProto proto) Deserializes the model from the supplied protobuf.static Model<?>
Model.deserializeFromFile
(Path path) Reads an instance ofModelProto
from the supplied path and deserializes it.static Model<?>
Model.deserializeFromStream
(InputStream is) Reads an instance ofModelProto
from the supplied input stream and deserializes it.Trains a predictive model using the examples in the given data set.Trainer.train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a predictive model using the examples in the given data set.Trainer.train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.ModifierConstructorDescriptionImmutableDataset
(DataSource<T> dataSource, Model<T> model, boolean dropInvalidExamples) Creates a dataset from a data source. -
Uses of Model in org.tribuo.anomaly.evaluation
Modifier and TypeMethodDescriptionprotected org.tribuo.anomaly.evaluation.AnomalyMetric.Context
AnomalyEvaluator.createContext
(Model<Event> model, List<Prediction<Event>> predictions) org.tribuo.anomaly.evaluation.AnomalyMetric.Context
AnomalyMetric.createContext
(Model<Event> model, List<Prediction<Event>> predictions) protected Set<AnomalyMetric>
AnomalyEvaluator.createMetrics
(Model<Event> model) -
Uses of Model in org.tribuo.anomaly.liblinear
Modifier and TypeClassDescriptionclass
AModel
which wraps a LibLinear-java anomaly detection model. -
Uses of Model in org.tribuo.anomaly.libsvm
Modifier and TypeClassDescriptionclass
An anomaly detection model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.classification
-
Uses of Model in org.tribuo.classification.baseline
Modifier and TypeClassDescriptionclass
A model which performs dummy classifications (e.g., constant output, uniform sampled labels, stratified sampled labels).Modifier and TypeMethodDescriptionDummyClassifierTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) DummyClassifierTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance, int invocationCount) -
Uses of Model in org.tribuo.classification.ensemble
Modifier and TypeMethodDescriptionAdaBoostTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) If the trainer implementsWeightedExamples
then do boosting by weighting, otherwise do boosting by sampling.AdaBoostTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) -
Uses of Model in org.tribuo.classification.evaluation
Modifier and TypeMethodDescriptionprotected LabelMetric.Context
LabelEvaluator.createContext
(Model<Label> model, List<Prediction<Label>> predictions) LabelMetric.createContext
(Model<Label> model, List<Prediction<Label>> predictions) protected Set<LabelMetric>
LabelEvaluator.createMetrics
(Model<Label> model) ModifierConstructorDescriptionConstructs a context and compute the confusion matrix using the specified model and predictions.LabelConfusionMatrix
(Model<Label> model, List<Prediction<Label>> predictions) Creates a confusion matrix from the supplied predictions, using the label info from the supplied model. -
Uses of Model in org.tribuo.classification.experiments
-
Uses of Model in org.tribuo.classification.explanations
-
Uses of Model in org.tribuo.classification.explanations.lime
ModifierConstructorDescriptionLIMEBase
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples) Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).LIMEColumnar
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, RowProcessor<Label> exampleGenerator, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses the columnar data processing system.LIMEText
(SplittableRandom rng, Model<Label> innerModel, SparseTrainer<Regressor> explanationTrainer, int numSamples, TextFeatureExtractor<Label> extractor, Tokenizer tokenizer) Constructs a LIME explainer for a model which uses text data. -
Uses of Model in org.tribuo.classification.liblinear
Modifier and TypeClassDescriptionclass
AModel
which wraps a LibLinear-java classification model. -
Uses of Model in org.tribuo.classification.libsvm
Modifier and TypeClassDescriptionclass
A classification model that uses an underlying LibSVM model to make the predictions. -
Uses of Model in org.tribuo.classification.mnb
Modifier and TypeClassDescriptionclass
AModel
for multinomial Naive Bayes with Laplace smoothing.Modifier and TypeMethodDescriptionMultinomialNaiveBayesTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) MultinomialNaiveBayesTrainer.train
(Dataset<Label> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) -
Uses of Model in org.tribuo.classification.sequence.viterbi
Modifier and TypeMethodDescriptionViterbiModel.getInnerModel()
Returns the inner model used for sequence element predictions. -
Uses of Model in org.tribuo.classification.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time version of a factorization machine trained using SGD. -
Uses of Model in org.tribuo.classification.sgd.kernel
Modifier and TypeClassDescriptionclass
The inference time version of a kernel model trained using Pegasos. -
Uses of Model in org.tribuo.classification.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a linear model trained using SGD. -
Uses of Model in org.tribuo.clustering.evaluation
Modifier and TypeMethodDescriptionprotected org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringEvaluator.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) org.tribuo.clustering.evaluation.ClusteringMetric.Context
ClusteringMetric.createContext
(Model<ClusterID> model, List<Prediction<ClusterID>> predictions) protected Set<ClusteringMetric>
ClusteringEvaluator.createMetrics
(Model<ClusterID> model) -
Uses of Model in org.tribuo.clustering.hdbscan
Modifier and TypeClassDescriptionfinal class
A trained HDBSCAN* model which provides the cluster assignment labels and outlier scores for every data point. -
Uses of Model in org.tribuo.clustering.kmeans
Modifier and TypeClassDescriptionclass
A K-Means model with a selectable distance function. -
Uses of Model in org.tribuo.common.liblinear
Modifier and TypeClassDescriptionclass
LibLinearModel<T extends Output<T>>
AModel
which wraps a LibLinear-java model. -
Uses of Model in org.tribuo.common.libsvm
Modifier and TypeClassDescriptionclass
LibSVMModel<T extends Output<T>>
A model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.common.nearest
Modifier and TypeClassDescriptionclass
A k-nearest neighbours model. -
Uses of Model in org.tribuo.common.sgd
Modifier and TypeClassDescriptionclass
AbstractSGDTrainer<T extends Output<T>,
U, V extends Model<T>, X extends FeedForwardParameters> A trainer for a model which uses SGD.Modifier and TypeClassDescriptionclass
AbstractFMModel<T extends Output<T>>
A quadratic factorization machine model trained using SGD.class
AbstractLinearSGDModel<T extends Output<T>>
A linear model trained using SGD.class
AbstractSGDModel<T extends Output<T>>
A model trained using SGD. -
Uses of Model in org.tribuo.common.tree
-
Uses of Model in org.tribuo.common.xgboost
Modifier and TypeClassDescriptionfinal class
XGBoostExternalModel<T extends Output<T>>
AModel
which wraps around a XGBoost.Booster which was trained by a system other than Tribuo.final class
XGBoostModel<T extends Output<T>>
AModel
which wraps around a XGBoost.Booster.Modifier and TypeMethodDescriptionXGBoostModel.copy
(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.data
Modifier and TypeMethodDescription<T extends Output<T>>
voidSaves the model out to the path inDataOptions.outputPath
. -
Uses of Model in org.tribuo.data.columnar
Modifier and TypeMethodDescriptionvoid
RowProcessor.expandRegexMapping
(Model<T> model) Uses similar logic toTransformationMap.validateTransformations(org.tribuo.FeatureMap)
to check the regexes against theImmutableFeatureMap
contained in the suppliedModel
. -
Uses of Model in org.tribuo.ensemble
Modifier and TypeClassDescriptionclass
EnsembleModel<T extends Output<T>>
A model which contains a list of otherModel
s.final class
WeightedEnsembleModel<T extends Output<T>>
An ensemble model that uses weights to combine the ensemble member predictions.Modifier and TypeMethodDescriptionEnsembleModel.copy
(String name, ModelProvenance newProvenance) BaggingTrainer.trainSingleModel
(Dataset<T> examples, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> labelIDs, int randInt, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a single model.Modifier and TypeMethodDescriptionEnsembleModel.getModels()
Returns an unmodifiable view on the ensemble members.Modifier and TypeMethodDescriptionprotected abstract EnsembleModel<T>
Copies this ensemble model.protected EnsembleModel<T>
WeightedEnsembleModel.copy
(String name, EnsembleModelProvenance newProvenance, List<Model<T>> newModels) static <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner) Creates an ensemble from existing models.static <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner, float[] weights) Creates an ensemble from existing models.ModifierConstructorDescriptionprotected
EnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels) Builds an EnsembleModel from the supplied model list.WeightedEnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner) Unless you are implementing aTrainer
you should not use this constructor directly.WeightedEnsembleModel
(String name, EnsembleModelProvenance provenance, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, List<Model<T>> newModels, EnsembleCombiner<T> combiner, float[] weights) Unless you are implementing aTrainer
you should not use this constructor directly. -
Uses of Model in org.tribuo.evaluation
Modifier and TypeMethodDescriptionCrossValidation.evaluate()
Performs k fold cross validation, returning the k evaluations.Modifier and TypeMethodDescriptionstatic <T extends Output<T>,
C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer,Double> EvaluationAggregator.argmax
(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Calculates the argmax of a metric across the supplied datasets.protected abstract C
AbstractEvaluator.createContext
(Model<T> model, List<Prediction<T>> predictions) Create the context needed for evaluation.AbstractEvaluator.createMetrics
(Model<T> model) Creates the appropriate set of metrics for this model, by querying for it'sOutputInfo
.default OnlineEvaluator<T,
E> Evaluator.createOnlineEvaluator
(Model<T> model, DataProvenance provenance) Creates an online evaluator that maintains a list of all the predictions it has seen and can evaluate them upon request.final E
AbstractEvaluator.evaluate
(Model<T> model, List<Prediction<T>> predictions, DataProvenance dataProvenance) Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.final E
Produces an evaluation for the supplied model and dataset, by callingpredict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics.final E
AbstractEvaluator.evaluate
(Model<T> model, DataSource<T> datasource) Produces an evaluation for the supplied model and datasource, by callingpredict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics.default E
Evaluator.evaluate
(Model<T> model, List<Prediction<T>> predictions, List<T> groundTruth, DataProvenance dataProvenance) Evaluates the model performance using the supplied predictions, returning an immutableEvaluation
of the appropriate type.Evaluator.evaluate
(Model<T> model, List<Prediction<T>> predictions, DataProvenance dataProvenance) Evaluates the model performance using the supplied predictions, returning an immutableEvaluation
of the appropriate type.Evaluates the dataset using the supplied model, returning an immutableEvaluation
of the appropriate type.Evaluator.evaluate
(Model<T> model, DataSource<T> datasource) Evaluates the dataset using the supplied model, returning an immutableEvaluation
of the appropriate type.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, List<Prediction<T>> predictions) Summarize model performance on dataset across several metrics.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, Dataset<T> dataset) Summarize model performance on dataset across several metrics.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarize
(Evaluator<T, R> evaluator, Model<T> model, List<? extends Dataset<T>> datasets) Summarize performance according to evaluator for a single model across several datasets.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Summarize a model's performance w.r.t.Modifier and TypeMethodDescriptionstatic <T extends Output<T>,
C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer,Double> EvaluationAggregator.argmax
(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarize
(Evaluator<T, R> evaluator, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance using the supplied evaluator across several models on one dataset.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance w.r.t.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarizeCrossValidation
(List<com.oracle.labs.mlrg.olcut.util.Pair<R, Model<T>>> evaluations) Summarize all fields of a list of evaluations produced byCrossValidation
.ModifierConstructorDescriptionOnlineEvaluator
(Evaluator<T, E> evaluator, Model<T> model, DataProvenance provenance) Constructs anOnlineEvaluator
which accumulates predictions. -
Uses of Model in org.tribuo.evaluation.metrics
Modifier and TypeMethodDescriptionEvaluationMetric.createContext
(Model<T> model, List<Prediction<T>> predictions) Creates the context this metric uses to compute it's value.default C
EvaluationMetric.createContext
(Model<T> model, Dataset<T> dataset) Creates the metric context used to compute this metric's value, generatingPrediction
s for eachExample
in the supplied dataset.ModifierConstructorDescriptionprotected
MetricContext
(Model<T> model, List<Prediction<T>> predictions) Constructs a metric context. -
Uses of Model in org.tribuo.hash
Modifier and TypeMethodDescriptionHashingTrainer.train
(Dataset<T> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) This clones theDataset
, hashes each of the examples and rewrites their feature ids before passing it to the inner trainer.HashingTrainer.train
(Dataset<T> dataset, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance, int invocationCount) -
Uses of Model in org.tribuo.interop
Modifier and TypeClassDescriptionclass
ExternalModel<T extends Output<T>,
U, V> This is the base class for third party models which are trained externally and loaded into Tribuo for prediction. -
Uses of Model in org.tribuo.interop.modelcard
ModifierConstructorDescriptionModelCard
(Model<?> model, Evaluation<?> evaluation) Creates an instance of ModelCard that does not include any extracted metrics and has itsUsageDetails
set to null.Creates an instance of ModelCard that has itsUsageDetails
set to null.ModelCard
(Model<?> model, Evaluation<?> evaluation, Map<String, Double> testingMetrics, UsageDetails usage) Creates an instance of ModelCard.ModelCard
(Model<?> model, Evaluation<?> evaluation, UsageDetails usage) Creates an instance of ModelCard that does not include any extracted metrics.ModelDetails
(Model<?> model) Creates an instance of ModelDetails.TrainingDetails
(Model<?> model) Creates an instance of TrainingDetails. -
Uses of Model in org.tribuo.interop.oci
Modifier and TypeClassDescriptionfinal class
A wrapper class around an OCI Data Science Model Deployment endpoint which sends off inputs for scoring and converts the output into a Tribuo prediction.Modifier and TypeMethodDescriptionstatic <T extends Output<T>,
U extends Model<T> & ONNXExportable>
StringOCIUtil.createModel
(U model, com.oracle.bmc.datascience.DataScienceClient client, com.fasterxml.jackson.databind.ObjectMapper mapper, OCIUtil.OCIModelArtifactConfig config) Creates an OCI DS model and uploads the model artifact. -
Uses of Model in org.tribuo.interop.onnx
Modifier and TypeClassDescriptionfinal class
ONNXExternalModel<T extends Output<T>>
A Tribuo wrapper around a ONNX model.Modifier and TypeMethodDescriptionONNXExternalModel.copy
(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.interop.tensorflow
Modifier and TypeClassDescriptionfinal class
TensorFlowCheckpointModel<T extends Output<T>>
This model encapsulates a simple model with an input feed dict, and produces a single output tensor.final class
TensorFlowFrozenExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow frozen model.class
TensorFlowModel<T extends Output<T>>
Base class for a TensorFlow model that operates onExample
s.final class
TensorFlowNativeModel<T extends Output<T>>
This model encapsulates a TensorFlow model running in graph mode with a single tensor output.final class
TensorFlowSavedModelExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow saved model bundle.Modifier and TypeMethodDescriptionTensorFlowFrozenExternalModel.copy
(String newName, ModelProvenance newProvenance) TensorFlowSavedModelExternalModel.copy
(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.multilabel.baseline
Modifier and TypeClassDescriptionfinal class
A Classifier Chain Model.class
AModel
which wraps n binary models, where n is the size of the MultiLabel domain.Modifier and TypeMethodDescriptionIndependentMultiLabelTrainer.train
(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) IndependentMultiLabelTrainer.train
(Dataset<MultiLabel> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) -
Uses of Model in org.tribuo.multilabel.evaluation
Modifier and TypeMethodDescriptionprotected org.tribuo.multilabel.evaluation.MultiLabelMetric.Context
MultiLabelEvaluator.createContext
(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) org.tribuo.multilabel.evaluation.MultiLabelMetric.Context
MultiLabelMetric.createContext
(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) protected Set<MultiLabelMetric>
MultiLabelEvaluator.createMetrics
(Model<MultiLabel> model) ModifierConstructorDescriptionMultiLabelConfusionMatrix
(Model<MultiLabel> model, List<Prediction<MultiLabel>> predictions) Constructs a multi-label confusion matrix for the specified model and predictions. -
Uses of Model in org.tribuo.multilabel.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time version of a multi-label factorization machine trained using SGD. -
Uses of Model in org.tribuo.multilabel.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a multi-label linear model trained using SGD. -
Uses of Model in org.tribuo.regression.baseline
Modifier and TypeClassDescriptionclass
A model which performs dummy regressions (e.g., constant output, gaussian sampled output, mean value, median, quartile).Modifier and TypeMethodDescriptionDummyRegressionModel.copy
(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.regression.evaluation
Modifier and TypeMethodDescriptionprotected org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionEvaluator.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) org.tribuo.regression.evaluation.RegressionMetric.Context
RegressionMetric.createContext
(Model<Regressor> model, List<Prediction<Regressor>> predictions) protected Set<RegressionMetric>
RegressionEvaluator.createMetrics
(Model<Regressor> model) -
Uses of Model in org.tribuo.regression.impl
Modifier and TypeClassDescriptionclass
AModel
which wraps n independent regression models, where n is the size of the MultipleRegressor domain.class
ASparseModel
which wraps n independent regression models, where n is the size of the MultipleRegressor domain. -
Uses of Model in org.tribuo.regression.liblinear
-
Uses of Model in org.tribuo.regression.libsvm
Modifier and TypeClassDescriptionclass
A regression model that uses an underlying libSVM model to make the predictions. -
Uses of Model in org.tribuo.regression.rtree
Modifier and TypeClassDescriptionfinal class
-
Uses of Model in org.tribuo.regression.sgd.fm
Modifier and TypeClassDescriptionclass
The inference time model of a regression factorization machine trained using SGD. -
Uses of Model in org.tribuo.regression.sgd.linear
Modifier and TypeClassDescriptionclass
The inference time version of a linear model trained using SGD. -
Uses of Model in org.tribuo.regression.slm
Modifier and TypeClassDescriptionclass
The inference time version of a sparse linear regression model.Modifier and TypeMethodDescriptionSparseLinearModel.copy
(String newName, ModelProvenance newProvenance) -
Uses of Model in org.tribuo.reproducibility
Modifier and TypeMethodDescriptionReproUtil.ModelReproduction.model()
Returns the value of themodel
record component.ReproUtil.reproduceFromProvenance()
Recreates a model object using theModelProvenance
supplied when the ReproUtil object was created.ModifierConstructorDescriptionModelReproduction
(Model<T> model, ReproUtil.FeatureDiff featureDiff, ReproUtil.OutputDiff<T> outputDiff, String provenanceDiff) Creates an instance of aModelReproduction
record class.Creates a ReproUtil instance. -
Uses of Model in org.tribuo.transform
Modifier and TypeClassDescriptionclass
TransformedModel<T extends Output<T>>
Wraps aModel
with it'sTransformerMap
so allExample
s are transformed appropriately before the model makes predictions.Modifier and TypeMethodDescriptionTransformedModel.getInnerModel()
Gets the inner model to allow access to any class specific methods that model contains (e.g., to examine cluster centroids).