Class SparseLinearModel
java.lang.Object
org.tribuo.Model<Regressor>
org.tribuo.SparseModel<Regressor>
org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
org.tribuo.regression.slm.SparseLinearModel
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.provenance.Provenancable<ModelProvenance>,Serializable,ONNXExportable,ProtoSerializable<org.tribuo.protos.core.ModelProto>
public class SparseLinearModel
extends SkeletalIndependentRegressionSparseModel
implements ONNXExportable
The inference time version of a sparse linear regression model.
The type of the model depends on the trainer used.
- See Also:
-
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final intProtobuf serialization version.Fields inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
dimensionsFields inherited from class org.tribuo.Model
ALL_OUTPUTS, BIAS_FEATURE, featureIDMap, generatesProbabilities, name, outputIDInfo, provenance, provenanceOutputFields inherited from interface org.tribuo.ONNXExportable
PROVENANCE_METADATA_FIELD, SERIALIZERFields inherited from interface org.tribuo.protos.ProtoSerializable
DESERIALIZATION_METHOD_NAME, PROVENANCE_SERIALIZER -
Method Summary
Modifier and TypeMethodDescriptioncopy(String newName, ModelProvenance newProvenance) Copies a model, replacing its provenance and name with the supplied values.protected SparseVectorcreateFeatures(Example<Regressor> example) Creates the feature vector.static SparseLinearModeldeserializeFromProto(int version, String className, com.google.protobuf.Any message) Deserialization factory.ai.onnx.proto.OnnxMl.ModelProtoexportONNXModel(String domain, long modelVersion) Exports thisModelas an ONNX protobuf.Generates an excuse for an example.getTopFeatures(int n) Gets the topnfeatures associated with this model.Gets a copy of the model parameters.protected Regressor.DimensionTuplescoreDimension(int dimensionIdx, SparseVector features) Makes a prediction for a single dimension.org.tribuo.protos.core.ModelProtoSerializes this object to a protobuf.writeONNXGraph(ONNXRef<?> input) Methods inherited from class org.tribuo.regression.impl.SkeletalIndependentRegressionSparseModel
predictMethods inherited from class org.tribuo.SparseModel
copy, getActiveFeaturesMethods inherited from class org.tribuo.Model
castModel, createDataCarrier, deserialize, deserializeFromFile, deserializeFromStream, generatesProbabilities, getExcuses, getFeatureIDMap, getName, getOutputIDInfo, getProvenance, innerPredict, predict, predict, serializeToFile, serializeToStream, setName, toString, validateMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.tribuo.ONNXExportable
saveONNXModel, serializeProvenance
-
Field Details
-
CURRENT_VERSION
public static final int CURRENT_VERSIONProtobuf serialization version.- See Also:
-
-
Method Details
-
deserializeFromProto
public static SparseLinearModel deserializeFromProto(int version, String className, com.google.protobuf.Any message) throws com.google.protobuf.InvalidProtocolBufferException Deserialization factory.- Parameters:
version- The serialized object version.className- The class name.message- The serialized data.- Returns:
- The deserialized object.
- Throws:
com.google.protobuf.InvalidProtocolBufferException- If the protobuf could not be parsed from themessage.
-
createFeatures
Creates the feature vector. Includes a bias term if the model requires it.- Overrides:
createFeaturesin classSkeletalIndependentRegressionSparseModel- Parameters:
example- The example to convert.- Returns:
- The feature vector.
-
scoreDimension
Description copied from class:SkeletalIndependentRegressionSparseModelMakes a prediction for a single dimension.- Specified by:
scoreDimensionin classSkeletalIndependentRegressionSparseModel- Parameters:
dimensionIdx- The dimension index to predict.features- The features to use.- Returns:
- A single dimension prediction.
-
getTopFeatures
Description copied from class:ModelGets the topnfeatures associated with this model.If the model does not produce per output feature lists, it returns a map with a single element with key Model.ALL_OUTPUTS.
If the model cannot describe it's top features then it returns
Collections.emptyMap().- Specified by:
getTopFeaturesin classModel<Regressor>- Parameters:
n- the number of features to return. If this value is less than 0, all features should be returned for each class, unless the model cannot score it's features.- Returns:
- a map from string outputs to an ordered list of pairs of feature names and weights associated with that feature in the model
-
getExcuse
Description copied from class:ModelGenerates an excuse for an example.This attempts to explain a classification result. Generating an excuse may be quite an expensive operation.
This excuse either contains per class information or an entry with key Model.ALL_OUTPUTS.
The optional is empty if the model does not provide excuses.
-
copy
Description copied from class:ModelCopies a model, replacing its provenance and name with the supplied values.Used to provide the provenance removal functionality.
-
getWeights
Gets a copy of the model parameters.- Returns:
- A map from the dimension name to the model parameters.
-
serialize
public org.tribuo.protos.core.ModelProto serialize()Description copied from interface:ProtoSerializableSerializes this object to a protobuf.- Specified by:
serializein interfaceProtoSerializable<org.tribuo.protos.core.ModelProto>- Overrides:
serializein classModel<Regressor>- Returns:
- The protobuf.
-
exportONNXModel
Description copied from interface:ONNXExportableExports thisModelas an ONNX protobuf.- Specified by:
exportONNXModelin interfaceONNXExportable- Parameters:
domain- A reverse-DNS name to namespace the model (e.g., org.tribuo.classification.sgd.linear).modelVersion- A version number for this model.- Returns:
- The ONNX ModelProto representing this Tribuo Model.
-
writeONNXGraph
Description copied from interface:ONNXExportable- Specified by:
writeONNXGraphin interfaceONNXExportable- Parameters:
input- The input to the model graph.- Returns:
- the output node of the model graph.
-