Package org.tribuo
Interface SparseTrainer<T extends Output<T>>
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
,Trainer<T>
- All Known Subinterfaces:
DecisionTreeTrainer<T>
- All Known Implementing Classes:
AbstractCARTTrainer
,CARTClassificationTrainer
,CARTJointRegressionTrainer
,CARTRegressionTrainer
,ElasticNetCDTrainer
,LARSLassoTrainer
,LARSTrainer
,SkeletalIndependentRegressionSparseTrainer
,SLMTrainer
Denotes this trainer emits a
SparseModel
.-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT
-
Method Summary
Modifier and TypeMethodDescriptiondefault SparseModel<T>
Trains a sparse predictive model using the examples in the given data set.train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.default SparseModel<T>
train
(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
Methods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
Methods inherited from interface org.tribuo.Trainer
getInvocationCount, setInvocationCount
-
Method Details
-
train
Trains a sparse predictive model using the examples in the given data set. -
train
SparseModel<T> train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set. -
train
default SparseModel<T> train(Dataset<T> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.- Specified by:
train
in interfaceTrainer<T extends Output<T>>
- Parameters:
examples
- the data set containing the examples.runProvenance
- Training run specific provenance (e.g., fold number).invocationCount
- The state of the RNG the trainer should be set to before training- Returns:
- a predictive model that can be used to generate predictions for new examples.
-