Package org.tribuo.regression.slm
Class LARSTrainer
java.lang.Object
org.tribuo.regression.slm.SLMTrainer
org.tribuo.regression.slm.LARSTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
,SparseTrainer<Regressor>
,Trainer<Regressor>
,WeightedExamples
A trainer for a linear regression model which uses least angle regression.
Each output dimension is trained independently.
See:
Efron B, Hastie T, Johnstone I, Tibshirani R. "Least Angle Regression" The Annals of Statistics, 2004.
-
Field Summary
Fields inherited from class org.tribuo.regression.slm.SLMTrainer
maxNumFeatures, normalize, trainInvocationCounter
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT
-
Constructor Summary
ConstructorDescriptionConstructs a least angle regression trainer that selects all the features.LARSTrainer
(int maxNumFeatures) Constructs a least angle regression trainer for a linear model. -
Method Summary
Modifier and TypeMethodDescriptionprotected DenseVector
newWeights
(org.tribuo.regression.slm.SLMTrainer.SLMState state) Computes the new feature weights.toString()
Methods inherited from class org.tribuo.regression.slm.SLMTrainer
getInvocationCount, getProvenance, setInvocationCount, train, train
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
Methods inherited from interface org.tribuo.SparseTrainer
train
-
Constructor Details
-
LARSTrainer
public LARSTrainer(int maxNumFeatures) Constructs a least angle regression trainer for a linear model.- Parameters:
maxNumFeatures
- The maximum number of features to select. Supply -1 to select all features.
-
LARSTrainer
public LARSTrainer()Constructs a least angle regression trainer that selects all the features.
-
-
Method Details
-
newWeights
Description copied from class:SLMTrainer
Computes the new feature weights.In this version it returns the ordinary least squares solution for the current state.
- Overrides:
newWeights
in classSLMTrainer
- Parameters:
state
- The SLM state to operate on.- Returns:
- The new feature weights.
-
toString
- Overrides:
toString
in classSLMTrainer
-