Package org.tribuo.common.tree
Interface DecisionTreeTrainer<T extends Output<T>>
- All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
,SparseTrainer<T>
,Trainer<T>
,WeightedExamples
- All Known Implementing Classes:
AbstractCARTTrainer
,CARTClassificationTrainer
,CARTJointRegressionTrainer
,CARTRegressionTrainer
public interface DecisionTreeTrainer<T extends Output<T>>
extends SparseTrainer<T>, WeightedExamples
A tag interface for a
Trainer
so the random forests trainer can check if it's actually a tree.-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT
-
Method Summary
Modifier and TypeMethodDescriptionfloat
Returns the feature subsampling rate.float
Returns the minimum decrease in impurity necessary to split a node.boolean
Returns whether to choose split points for features at random.Methods inherited from interface com.oracle.labs.mlrg.olcut.config.Configurable
postConfig
Methods inherited from interface com.oracle.labs.mlrg.olcut.provenance.Provenancable
getProvenance
Methods inherited from interface org.tribuo.SparseTrainer
train, train, train
Methods inherited from interface org.tribuo.Trainer
getInvocationCount, setInvocationCount
-
Method Details
-
getFractionFeaturesInSplit
float getFractionFeaturesInSplit()Returns the feature subsampling rate.- Returns:
- The feature subsampling rate.
-
getUseRandomSplitPoints
boolean getUseRandomSplitPoints()Returns whether to choose split points for features at random.- Returns:
- Whether to choose split points for features at random.
-
getMinImpurityDecrease
float getMinImpurityDecrease()Returns the minimum decrease in impurity necessary to split a node.- Returns:
- The minimum decrease in impurity necessary to split a node.
-