Interface DecisionTreeTrainer<T extends Output<T>>

All Superinterfaces:
com.oracle.labs.mlrg.olcut.config.Configurable, com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>, SparseTrainer<T>, Trainer<T>, WeightedExamples
All Known Implementing Classes:
AbstractCARTTrainer, CARTClassificationTrainer, CARTJointRegressionTrainer, CARTRegressionTrainer

public interface DecisionTreeTrainer<T extends Output<T>> extends SparseTrainer<T>, WeightedExamples
A tag interface for a Trainer so the random forests trainer can check if it's actually a tree.
  • Method Details

    • getFractionFeaturesInSplit

      float getFractionFeaturesInSplit()
      Returns the feature subsampling rate.
      Returns:
      The feature subsampling rate.
    • getUseRandomSplitPoints

      boolean getUseRandomSplitPoints()
      Returns whether to choose split points for features at random.
      Returns:
      Whether to choose split points for features at random.
    • getMinImpurityDecrease

      float getMinImpurityDecrease()
      Returns the minimum decrease in impurity necessary to split a node.
      Returns:
      The minimum decrease in impurity necessary to split a node.