Package org.tribuo.regression.slm
Class ElasticNetCDTrainer
java.lang.Object
org.tribuo.regression.slm.ElasticNetCDTrainer
- All Implemented Interfaces:
com.oracle.labs.mlrg.olcut.config.Configurable
,com.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
,SparseTrainer<Regressor>
,Trainer<Regressor>
An ElasticNet trainer that uses co-ordinate descent. Modelled after scikit-learn's sparse matrix implementation.
Each output dimension is trained independently.
See:
Friedman J, Hastie T, Tibshirani R. "Regularization Paths for Generalized Linear Models via Coordinate Descent" Journal of Statistical Software, 2010
-
Field Summary
Fields inherited from interface org.tribuo.Trainer
DEFAULT_SEED, INCREMENT_INVOCATION_COUNT
-
Constructor Summary
ConstructorDescriptionElasticNetCDTrainer
(double alpha, double l1Ratio) Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, randomising the feature choice and usingTrainer.DEFAULT_SEED
as the RNG seed.ElasticNetCDTrainer
(double alpha, double l1Ratio, double tolerance, int maxIterations, boolean randomise, long seed) Constructs an elastic net trainer using the supplied parameters.ElasticNetCDTrainer
(double alpha, double l1Ratio, long seed) Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, and randomising the feature choice. -
Method Summary
Modifier and TypeMethodDescriptionint
The number of times this trainer instance has had it's train method invoked.void
Used by the OLCUT configuration system, and should not be called by external code.void
setInvocationCount
(int invocationCount) Set the internal state of the trainer to the provided number of invocations of the train method.toString()
train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Trains a sparse predictive model using the examples in the given data set.train
(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Trains a predictive model using the examples in the given data set.Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.tribuo.SparseTrainer
train
-
Constructor Details
-
ElasticNetCDTrainer
public ElasticNetCDTrainer(double alpha, double l1Ratio) Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, randomising the feature choice and usingTrainer.DEFAULT_SEED
as the RNG seed.- Parameters:
alpha
- The regularisation strength.l1Ratio
- The ratio between the l1 and l2 penalties.
-
ElasticNetCDTrainer
public ElasticNetCDTrainer(double alpha, double l1Ratio, long seed) Constructs an elastic net trainer using the supplied parameters, with a tolerance of 1e-4, max iterations of 500, and randomising the feature choice.- Parameters:
alpha
- The regularisation strength.l1Ratio
- The ratio between the l1 and l2 penalties.seed
- The RNG seed.
-
ElasticNetCDTrainer
public ElasticNetCDTrainer(double alpha, double l1Ratio, double tolerance, int maxIterations, boolean randomise, long seed) Constructs an elastic net trainer using the supplied parameters.- Parameters:
alpha
- The regularisation strength.l1Ratio
- The ratio between the l1 and l2 penalties.tolerance
- The convergence tolerance.maxIterations
- The maximum number of iterations.randomise
- Randomise the feature choice order.seed
- The RNG seed.
-
-
Method Details
-
postConfig
public void postConfig()Used by the OLCUT configuration system, and should not be called by external code.- Specified by:
postConfig
in interfacecom.oracle.labs.mlrg.olcut.config.Configurable
-
train
public SparseModel<Regressor> train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) Description copied from interface:SparseTrainer
Trains a sparse predictive model using the examples in the given data set.- Specified by:
train
in interfaceSparseTrainer<Regressor>
- Specified by:
train
in interfaceTrainer<Regressor>
- Parameters:
examples
- the data set containing the examples.runProvenance
- Training run specific provenance (e.g., fold number).- Returns:
- a predictive model that can be used to generate predictions for new examples.
-
train
public SparseModel<Regressor> train(Dataset<Regressor> examples, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance, int invocationCount) Description copied from interface:SparseTrainer
Trains a predictive model using the examples in the given data set.- Specified by:
train
in interfaceSparseTrainer<Regressor>
- Specified by:
train
in interfaceTrainer<Regressor>
- Parameters:
examples
- the data set containing the examples.runProvenance
- Training run specific provenance (e.g., fold number).invocationCount
- The state of the RNG the trainer should be set to before training- Returns:
- a predictive model that can be used to generate predictions for new examples.
-
getInvocationCount
public int getInvocationCount()Description copied from interface:Trainer
The number of times this trainer instance has had it's train method invoked.This is used to determine how many times the trainer's RNG has been accessed to ensure replicability in the random number stream.
- Specified by:
getInvocationCount
in interfaceTrainer<Regressor>
- Returns:
- The number of train invocations.
-
setInvocationCount
public void setInvocationCount(int invocationCount) Description copied from interface:Trainer
Set the internal state of the trainer to the provided number of invocations of the train method.This is used when reproducing a Tribuo-trained model by setting the state of the RNG to what it was at when Tribuo trained the original model by simulating invocations of the train method. This method should ALWAYS be overridden, and the default method is purely for compatibility.
In a future major release this default implementation will be removed.
- Specified by:
setInvocationCount
in interfaceTrainer<Regressor>
- Parameters:
invocationCount
- the number of invocations of the train method to simulate
-
toString
-
getProvenance
- Specified by:
getProvenance
in interfacecom.oracle.labs.mlrg.olcut.provenance.Provenancable<TrainerProvenance>
-