Package | Description |
---|---|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.regression |
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
|
org.tribuo.regression.baseline |
Provides simple baseline regression predictors.
|
org.tribuo.regression.ensemble |
Provides
EnsembleCombiner implementations
for working with multi-output regression problems. |
org.tribuo.regression.evaluation |
Evaluation classes for single or multi-dimensional regression.
|
org.tribuo.regression.example |
Provides some example regression data generators for testing implementations.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
org.tribuo.regression.xgboost |
Provides an interface to XGBoost for regression problems.
|
Modifier and Type | Field and Description |
---|---|
protected SparseTrainer<Regressor> |
LIMEBase.explanationTrainer |
protected static OutputFactory<Regressor> |
LIMEBase.regressionFactory |
Modifier and Type | Method and Description |
---|---|
static Regressor |
LIMEBase.transformOutput(Prediction<Label> prediction)
Transforms a
Prediction for a multiclass problem into a Regressor
output which represents the probability for each class. |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,List<Example<Regressor>>> |
LIMEBase.explainWithSamples(Example<Label> example) |
protected com.oracle.labs.mlrg.olcut.util.Pair<LIMEExplanation,List<Example<Regressor>>> |
LIMEColumnar.explainWithSamples(Map<String,String> input) |
SparseModel<Regressor> |
LIMEExplanation.getModel() |
protected List<Example<Regressor>> |
LIMEText.sampleData(String inputText,
List<Token> tokens)
Samples a new dataset from the input text.
|
protected SparseModel<Regressor> |
LIMEBase.trainExplainer(Example<Regressor> target,
List<Example<Regressor>> samples)
Trains the explanation model using the supplied sampled data and the input example.
|
Modifier and Type | Method and Description |
---|---|
protected SparseModel<Regressor> |
LIMEBase.trainExplainer(Example<Regressor> target,
List<Example<Regressor>> samples)
Trains the explanation model using the supplied sampled data and the input example.
|
protected SparseModel<Regressor> |
LIMEBase.trainExplainer(Example<Regressor> target,
List<Example<Regressor>> samples)
Trains the explanation model using the supplied sampled data and the input example.
|
Constructor and Description |
---|
LIMEBase(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples)
Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).
|
LIMEColumnar(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples,
RowProcessor<Label> exampleGenerator,
Tokenizer tokenizer)
Constructs a LIME explainer for a model which uses the columnar data processing system.
|
LIMEExplanation(SparseModel<Regressor> model,
Prediction<Label> prediction,
RegressionEvaluation evaluation) |
LIMEText(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples,
TextFeatureExtractor<Label> extractor,
Tokenizer tokenizer)
Constructs a LIME explainer for a model which uses text data.
|
Modifier and Type | Method and Description |
---|---|
Regressor |
RegressorTransformer.transformToOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Modifier and Type | Method and Description |
---|---|
List<Regressor> |
RegressorTransformer.transformToBatchOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<Prediction<Regressor>> |
RegressorTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
Prediction<Regressor> |
RegressorTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
List<Regressor> |
RegressorTransformer.transformToBatchOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<Prediction<Regressor>> |
RegressorTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<Regressor>> |
RegressorTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
Regressor |
RegressorTransformer.transformToOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Prediction<Regressor> |
RegressorTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<Regressor> |
RegressorTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Regressor |
RegressorConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Modifier and Type | Method and Description |
---|---|
List<Regressor> |
RegressorConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<Prediction<Regressor>> |
RegressorConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
Prediction<Regressor> |
RegressorConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(Regressor example,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Modifier and Type | Method and Description |
---|---|
List<Regressor> |
RegressorConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<Prediction<Regressor>> |
RegressorConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<Regressor>> |
RegressorConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
Regressor |
RegressorConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Prediction<Regressor> |
RegressorConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<Regressor> |
RegressorConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(List<Example<Regressor>> examples,
ImmutableOutputInfo<Regressor> outputIDInfo) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(List<Example<Regressor>> examples,
ImmutableOutputInfo<Regressor> outputIDInfo) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(Regressor example,
ImmutableOutputInfo<Regressor> outputIDInfo) |
Modifier and Type | Class and Description |
---|---|
static class |
Regressor.DimensionTuple
A
Regressor which contains a single dimension, used internally
when the model implementation doesn't natively support multi-dimensional
regression outputs. |
Modifier and Type | Field and Description |
---|---|
static Regressor |
RegressionFactory.UNKNOWN_MULTIPLE_REGRESSOR
Deprecated.
Deprecated when regression was made multidimensional by default.
Use
RegressionFactory.UNKNOWN_REGRESSOR instead. |
static Regressor |
RegressionFactory.UNKNOWN_REGRESSOR
The sentinel unknown regressor, used when there is no ground truth regressor value.
|
Modifier and Type | Method and Description |
---|---|
Regressor |
Regressor.copy() |
static Regressor |
Regressor.createFromPairList(List<com.oracle.labs.mlrg.olcut.util.Pair<String,Double>> dimensions)
Creates a Regressor from a list of dimension tuples.
|
<V> Regressor |
RegressionFactory.generateOutput(V label)
Parses the Regressor value either by toStringing the input and calling
parseString(java.lang.String)
or if it's a collection iterating over the elements calling toString on each element in turn and using
parseElement(int, java.lang.String) . |
Regressor |
ImmutableRegressionInfo.getOutput(int id) |
Regressor |
RegressionFactory.getUnknownOutput() |
static Regressor |
Regressor.parseString(String s)
Parses a string of the form:
|
static Regressor |
Regressor.parseString(String s,
char splitChar)
Parses a string of the form:
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Regressor> |
RegressionFactory.constructInfoForExternalModel(Map<Regressor,Integer> mapping) |
ImmutableOutputInfo<Regressor> |
RegressionInfo.generateImmutableOutputInfo() |
MutableOutputInfo<Regressor> |
RegressionFactory.generateInfo() |
MutableOutputInfo<Regressor> |
RegressionInfo.generateMutableOutputInfo() |
Set<Regressor> |
RegressionInfo.getDomain()
Returns a set containing a Regressor for each dimension with the minimum value observed.
|
Set<Regressor> |
ImmutableRegressionInfo.getDomain() |
Evaluator<Regressor,RegressionEvaluation> |
RegressionFactory.getEvaluator() |
Iterator<com.oracle.labs.mlrg.olcut.util.Pair<Integer,Regressor>> |
ImmutableRegressionInfo.iterator() |
Modifier and Type | Method and Description |
---|---|
boolean |
Regressor.fullEquals(Regressor other) |
boolean |
Regressor.DimensionTuple.fullEquals(Regressor other) |
int |
ImmutableRegressionInfo.getID(Regressor output) |
void |
MutableRegressionInfo.observe(Regressor output) |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Regressor> |
RegressionFactory.constructInfoForExternalModel(Map<Regressor,Integer> mapping) |
static String[] |
Regressor.extractNames(OutputInfo<Regressor> info)
Extracts the names from the supplied Regressor domain in their canonical order.
|
Modifier and Type | Method and Description |
---|---|
protected Model<Regressor> |
DummyRegressionModel.copy(String newName,
ModelProvenance newProvenance) |
Optional<Excuse<Regressor>> |
DummyRegressionModel.getExcuse(Example<Regressor> example) |
Prediction<Regressor> |
DummyRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Regressor>> |
DummyRegressionModel.getExcuse(Example<Regressor> example) |
Prediction<Regressor> |
DummyRegressionModel.predict(Example<Regressor> example) |
DummyRegressionModel |
DummyRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions) |
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions,
float[] weights) |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions) |
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions) |
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions,
float[] weights) |
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions,
float[] weights) |
Modifier and Type | Method and Description |
---|---|
Map<Regressor,Double> |
RegressionEvaluation.explainedVariance()
Calculatest the explained variance for all dimensions.
|
MetricTarget<Regressor> |
RegressionMetric.getTarget() |
Map<Regressor,Double> |
RegressionEvaluation.mae()
Calculates the Mean Absolute Error for all dimensions.
|
Map<Regressor,Double> |
RegressionEvaluation.r2()
Calculates R2 for all dimensions.
|
Map<Regressor,Double> |
RegressionEvaluation.rmse()
Calculates the RMSE for all dimensions.
|
Modifier and Type | Method and Description |
---|---|
double |
RegressionEvaluation.explainedVariance(Regressor variable)
Calculates the explained variance of the ground truth using the predictions for the supplied dimension.
|
static double |
RegressionMetrics.explainedVariance(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the explained variance based on the supplied statistics for a single dimension.
|
double |
RegressionEvaluation.mae(Regressor variable)
Calculates the Mean Absolute Error for that dimension.
|
static double |
RegressionMetrics.mae(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the Mean Absolute Error based on the supplied statistics for a single dimension.
|
double |
RegressionEvaluation.r2(Regressor variable)
Calculates R2 for the supplied dimension.
|
static double |
RegressionMetrics.r2(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates R^2 based on the supplied statistics for a single dimension.
|
double |
RegressionEvaluation.rmse(Regressor variable)
Calculates the Root Mean Squared Error (i.e., the square root of the average squared errors across all data points) for the supplied dimension.
|
static double |
RegressionMetrics.rmse(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the RMSE based on the supplied statistics for a single dimension.
|
Modifier and Type | Method and Description |
---|---|
org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionMetric.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionMetric.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
protected org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionEvaluator.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
protected org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionEvaluator.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
protected RegressionEvaluation |
RegressionEvaluator.createEvaluation(org.tribuo.regression.evaluation.RegressionMetric.Context context,
Map<MetricID<Regressor>,Double> results,
EvaluationProvenance provenance) |
protected Set<RegressionMetric> |
RegressionEvaluator.createMetrics(Model<Regressor> model) |
static double |
RegressionMetrics.explainedVariance(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the explained variance based on the supplied statistics.
|
static double |
RegressionMetrics.mae(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the Mean Absolute Error based on the supplied statistics.
|
static double |
RegressionMetrics.r2(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates R^2 based on the supplied statistics.
|
static double |
RegressionMetrics.rmse(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the RMSE based on the supplied statistics.
|
Constructor and Description |
---|
RegressionMetric(MetricTarget<Regressor> tgt,
String name,
ToDoubleBiFunction<MetricTarget<Regressor>,org.tribuo.regression.evaluation.RegressionMetric.Context> impl)
Construct a new
RegressionMetric for the supplied metric target,
using the supplied function. |
RegressionMetric(MetricTarget<Regressor> tgt,
String name,
ToDoubleBiFunction<MetricTarget<Regressor>,org.tribuo.regression.evaluation.RegressionMetric.Context> impl)
Construct a new
RegressionMetric for the supplied metric target,
using the supplied function. |
RegressionMetric(MetricTarget<Regressor> tgt,
String name,
ToDoubleBiFunction<MetricTarget<Regressor>,org.tribuo.regression.evaluation.RegressionMetric.Context> impl,
boolean useExampleWeights)
Construct a new
RegressionMetric for the supplied metric target,
using the supplied function. |
RegressionMetric(MetricTarget<Regressor> tgt,
String name,
ToDoubleBiFunction<MetricTarget<Regressor>,org.tribuo.regression.evaluation.RegressionMetric.Context> impl,
boolean useExampleWeights)
Construct a new
RegressionMetric for the supplied metric target,
using the supplied function. |
RegressionSufficientStatistics(ImmutableOutputInfo<Regressor> domain,
List<Prediction<Regressor>> predictions,
boolean useExampleWeights) |
RegressionSufficientStatistics(ImmutableOutputInfo<Regressor> domain,
List<Prediction<Regressor>> predictions,
boolean useExampleWeights) |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static Example<Regressor> |
RegressionDataGenerator.emptyExample()
Generates an example with no features.
|
static Example<Regressor> |
RegressionDataGenerator.emptyMultiDimExample()
Generates an example with no features.
|
static Dataset<Regressor> |
NonlinearGaussianDataSource.generateDataset(int numSamples,
float[] weights,
float intercept,
float variance,
float xZeroMin,
float xZeroMax,
float xOneMin,
float xOneMax,
long seed)
Generates a single dimensional output drawn from
N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
|
static Dataset<Regressor> |
GaussianDataSource.generateDataset(int numSamples,
float slope,
float intercept,
float variance,
float xMin,
float xMax,
long seed)
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
|
OutputFactory<Regressor> |
NonlinearGaussianDataSource.getOutputFactory() |
OutputFactory<Regressor> |
GaussianDataSource.getOutputFactory() |
static Example<Regressor> |
RegressionDataGenerator.invalidMultiDimSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
static Example<Regressor> |
RegressionDataGenerator.invalidSparseExample()
Generates an example with the feature ids 1,5,8, which does not intersect with the
ids used elsewhere in this class.
|
Iterator<Example<Regressor>> |
NonlinearGaussianDataSource.iterator() |
Iterator<Example<Regressor>> |
GaussianDataSource.iterator() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.threeDimDenseTrainTest(double negate,
boolean remapIndices)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.threeDimDenseTrainTest(double negate,
boolean remapIndices)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
SkeletalIndependentRegressionSparseModel.predict(Example<Regressor> example) |
Prediction<Regressor> |
SkeletalIndependentRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SkeletalIndependentRegressionSparseModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
protected SparseVector |
SkeletalIndependentRegressionModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
protected abstract SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
protected abstract SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
Prediction<Regressor> |
SkeletalIndependentRegressionSparseModel.predict(Example<Regressor> example) |
Prediction<Regressor> |
SkeletalIndependentRegressionModel.predict(Example<Regressor> example) |
SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.train(Dataset<Regressor> examples) |
SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.train(Dataset<Regressor> examples) |
SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Constructor and Description |
---|
SkeletalIndependentRegressionModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
models.size() must equal labelInfo.getDomain().size()
|
SkeletalIndependentRegressionSparseModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
Map<String,List<String>> activeFeatures)
models.size() must equal labelInfo.getDomain().size()
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Regressor> |
LibLinearRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected Excuse<Regressor> |
LibLinearRegressionModel.innerGetExcuse(Example<Regressor> e,
double[][] allFeatureWeights)
The call to model.getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Prediction<Regressor> |
LibLinearRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Regressor> |
LibLinearRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
protected Excuse<Regressor> |
LibLinearRegressionModel.innerGetExcuse(Example<Regressor> e,
double[][] allFeatureWeights)
The call to model.getFeatureWeights in the public methods copies the
weights array so this inner method exists to save the copy in getExcuses.
|
Prediction<Regressor> |
LibLinearRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Regressor> |
LibSVMRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<libsvm.svm_model> models) |
Prediction<Regressor> |
LibSVMRegressionModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Regressor> |
LibSVMRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Prediction<Regressor> |
LibSVMRegressionModel.predict(Example<Regressor> example) |
Constructor and Description |
---|
LibSVMRegressionTrainer(SVMParameters<Regressor> parameters)
Constructs a LibSVMRegressionTrainer using the supplied parameters without standardizing the regression variables.
|
LibSVMRegressionTrainer(SVMParameters<Regressor> parameters,
boolean standardize)
Constructs a LibSVMRegressionTrainer using the supplied parameters and
Trainer.DEFAULT_SEED . |
LibSVMRegressionTrainer(SVMParameters<Regressor> parameters,
boolean standardize,
long seed)
Constructs a LibSVMRegressionTrainer using the supplied parameters and seed.
|
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Regressor>> |
IndependentRegressionTreeModel.getExcuse(Example<Regressor> example) |
protected AbstractTrainingNode<Regressor> |
CARTRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
protected AbstractTrainingNode<Regressor> |
CARTJointRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Prediction<Regressor> |
IndependentRegressionTreeModel.predict(Example<Regressor> example) |
TreeModel<Regressor> |
CARTRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
Optional<Excuse<Regressor>> |
IndependentRegressionTreeModel.getExcuse(Example<Regressor> example) |
protected AbstractTrainingNode<Regressor> |
CARTRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
protected AbstractTrainingNode<Regressor> |
CARTJointRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Prediction<Regressor> |
IndependentRegressionTreeModel.predict(Example<Regressor> example) |
TreeModel<Regressor> |
CARTRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
List<AbstractTrainingNode<Regressor>> |
RegressorTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
List<AbstractTrainingNode<Regressor>> |
JointRegressorTrainingNode.buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
Node<Regressor> |
RegressorTrainingNode.convertTree()
|
Node<Regressor> |
JointRegressorTrainingNode.convertTree()
|
Modifier and Type | Method and Description |
---|---|
static RegressorTrainingNode.InvertedData |
RegressorTrainingNode.invertData(Dataset<Regressor> examples)
Inverts a training dataset from row major to column major.
|
Constructor and Description |
---|
JointRegressorTrainingNode(RegressorImpurity impurity,
Dataset<Regressor> examples,
boolean normalize,
AbstractTrainingNode.LeafDeterminer leafDeterminer)
Constructor which creates the inverted file.
|
RegressorTrainingNode(RegressorImpurity impurity,
RegressorTrainingNode.InvertedData tuple,
int dimIndex,
String dimName,
int numExamples,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputInfo,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
LinearSGDModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected DenseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<Regressor> outputInfo,
Regressor output) |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
LinearParameters parameters) |
protected DenseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<Regressor> outputInfo,
Regressor output) |
Prediction<Regressor> |
LinearSGDModel.predict(Example<Regressor> example) |
Modifier and Type | Method and Description |
---|---|
protected Model<Regressor> |
SparseLinearModel.copy(String newName,
ModelProvenance newProvenance) |
Optional<Excuse<Regressor>> |
SparseLinearModel.getExcuse(Example<Regressor> example) |
SparseModel<Regressor> |
ElasticNetCDTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected SparseVector |
SparseLinearModel.createFeatures(Example<Regressor> example)
Creates the feature vector.
|
Optional<Excuse<Regressor>> |
SparseLinearModel.getExcuse(Example<Regressor> example) |
SparseLinearModel |
SLMTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a sparse linear model.
|
SparseModel<Regressor> |
ElasticNetCDTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Regressor>> |
XGBoostRegressionConverter.convertBatchOutput(ImmutableOutputInfo<Regressor> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<Regressor>[] examples) |
Prediction<Regressor> |
XGBoostRegressionConverter.convertOutput(ImmutableOutputInfo<Regressor> info,
List<float[]> probabilities,
int numValidFeatures,
Example<Regressor> example) |
XGBoostModel<Regressor> |
XGBoostRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Regressor>> |
XGBoostRegressionConverter.convertBatchOutput(ImmutableOutputInfo<Regressor> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<Regressor>[] examples) |
Prediction<Regressor> |
XGBoostRegressionConverter.convertOutput(ImmutableOutputInfo<Regressor> info,
List<float[]> probabilities,
int numValidFeatures,
Example<Regressor> example) |
Prediction<Regressor> |
XGBoostRegressionConverter.convertOutput(ImmutableOutputInfo<Regressor> info,
List<float[]> probabilities,
int numValidFeatures,
Example<Regressor> example) |
XGBoostModel<Regressor> |
XGBoostRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.