public enum RegressionMetrics extends Enum<RegressionMetrics>
RegressionMetric
s supported by the multi-dimensional regression
evaluation package.
The metrics treat each regressed dimension independently.
Enum Constant and Description |
---|
EV
Calculates the Explained Variance of the predictions.
|
MAE
Calculates the Mean Absolute Error of the predictions.
|
R2
Calculates the R^2 of the predictions.
|
RMSE
Calculates the Root Mean Squared Error of the predictions.
|
Modifier and Type | Method and Description |
---|---|
static double |
explainedVariance(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the explained variance based on the supplied statistics.
|
static double |
explainedVariance(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the explained variance based on the supplied statistics for a single dimension.
|
static double |
mae(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the Mean Absolute Error based on the supplied statistics.
|
static double |
mae(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the Mean Absolute Error based on the supplied statistics for a single dimension.
|
static double |
r2(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates R^2 based on the supplied statistics.
|
static double |
r2(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates R^2 based on the supplied statistics for a single dimension.
|
static double |
rmse(MetricTarget<Regressor> target,
RegressionSufficientStatistics sufficientStats)
Calculates the RMSE based on the supplied statistics.
|
static double |
rmse(Regressor variable,
RegressionSufficientStatistics sufficientStats)
Calculates the RMSE based on the supplied statistics for a single dimension.
|
static RegressionMetrics |
valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static RegressionMetrics[] |
values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
public static final RegressionMetrics R2
public static final RegressionMetrics RMSE
public static final RegressionMetrics MAE
public static final RegressionMetrics EV
public static RegressionMetrics[] values()
for (RegressionMetrics c : RegressionMetrics.values()) System.out.println(c);
public static RegressionMetrics valueOf(String name)
name
- the name of the enum constant to be returned.IllegalArgumentException
- if this enum type has no constant with the specified nameNullPointerException
- if the argument is nullpublic static double r2(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats)
target
- The regression dimension or average to target.sufficientStats
- The sufficient statistics.public static double r2(Regressor variable, RegressionSufficientStatistics sufficientStats)
variable
- The regression dimension.sufficientStats
- The sufficient statistics.public static double rmse(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats)
target
- The regression dimension or average to target.sufficientStats
- The sufficient statistics.public static double rmse(Regressor variable, RegressionSufficientStatistics sufficientStats)
variable
- The regression dimension to target.sufficientStats
- The sufficient statistics.public static double mae(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats)
target
- The regression dimension or average to target.sufficientStats
- The sufficient statistics.public static double mae(Regressor variable, RegressionSufficientStatistics sufficientStats)
variable
- The regression dimension to target.sufficientStats
- The sufficient statistics.public static double explainedVariance(MetricTarget<Regressor> target, RegressionSufficientStatistics sufficientStats)
target
- The regression dimension or average to target.sufficientStats
- The sufficient statistics.public static double explainedVariance(Regressor variable, RegressionSufficientStatistics sufficientStats)
variable
- The regression dimension to target.sufficientStats
- The sufficient statistics.Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.