Class JointRegressorTrainingNode
java.lang.Object
org.tribuo.common.tree.AbstractTrainingNode<Regressor>
org.tribuo.regression.rtree.impl.JointRegressorTrainingNode
- All Implemented Interfaces:
Serializable,Node<Regressor>
A decision tree node used at training time.
Contains a list of the example indices currently found in this node,
the current impurity and a bunch of other statistics.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from class org.tribuo.common.tree.AbstractTrainingNode
AbstractTrainingNode.LeafDeterminer -
Field Summary
Fields inherited from class org.tribuo.common.tree.AbstractTrainingNode
DEFAULT_SIZE, depth, greaterThan, impurityScore, leafDeterminer, lessThanOrEqual, numExamples, split, splitID, splitValue -
Constructor Summary
ConstructorsConstructorDescriptionJointRegressorTrainingNode(RegressorImpurity impurity, Dataset<Regressor> examples, boolean normalize, AbstractTrainingNode.LeafDeterminer leafDeterminer) Constructor which creates the inverted file. -
Method Summary
Modifier and TypeMethodDescriptionbuildTree(int[] featureIDs, SplittableRandom rng, boolean useRandomSplitPoints) Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).doubleThe impurity score of this node.floatThe sum of the weights associated with this node's examples.Methods inherited from class org.tribuo.common.tree.AbstractTrainingNode
copy, createSplitNode, getDepth, getNextNode, getNumExamples, isLeaf, shouldMakeLeaf
-
Constructor Details
-
JointRegressorTrainingNode
public JointRegressorTrainingNode(RegressorImpurity impurity, Dataset<Regressor> examples, boolean normalize, AbstractTrainingNode.LeafDeterminer leafDeterminer) Constructor which creates the inverted file.- Parameters:
impurity- The impurity function to use.examples- The training data.normalize- Normalizes the leaves so each leaf has a distribution which sums to 1.0.leafDeterminer- Contains parameters needed to determine whether a node is a leaf.
-
-
Method Details
-
getImpurity
public double getImpurity()Description copied from interface:NodeThe impurity score of this node.- Returns:
- The node impurity.
-
getWeightSum
public float getWeightSum()Description copied from class:AbstractTrainingNodeThe sum of the weights associated with this node's examples.- Specified by:
getWeightSumin classAbstractTrainingNode<Regressor>- Returns:
- the sum of the weights associated with this node's examples.
-
buildTree
public List<AbstractTrainingNode<Regressor>> buildTree(int[] featureIDs, SplittableRandom rng, boolean useRandomSplitPoints) Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).- Specified by:
buildTreein classAbstractTrainingNode<Regressor>- Parameters:
featureIDs- Indices of the features available in this split.rng- Splittable random number generator.useRandomSplitPoints- Whether to choose split points for features at random.- Returns:
- A possibly empty list of TrainingNodes.
-
convertTree
- Specified by:
convertTreein classAbstractTrainingNode<Regressor>- Returns:
- A subtree using the SplitNode and LeafNode classes.
-