public class JointRegressorTrainingNode extends AbstractTrainingNode<Regressor>
AbstractTrainingNode.LeafDeterminer
DEFAULT_SIZE, depth, greaterThan, impurityScore, leafDeterminer, lessThanOrEqual, numExamples, split, splitID, splitValue
Constructor and Description |
---|
JointRegressorTrainingNode(RegressorImpurity impurity,
Dataset<Regressor> examples,
boolean normalize,
AbstractTrainingNode.LeafDeterminer leafDeterminer)
Constructor which creates the inverted file.
|
Modifier and Type | Method and Description |
---|---|
List<AbstractTrainingNode<Regressor>> |
buildTree(int[] featureIDs,
SplittableRandom rng,
boolean useRandomSplitPoints)
Builds a tree according to CART (as it does not do multi-way splits on categorical values like C4.5).
|
Node<Regressor> |
convertTree()
|
double |
getImpurity()
The impurity score of this node.
|
float |
getWeightSum()
The sum of the weights associated with this node's examples.
|
copy, createSplitNode, getDepth, getNextNode, getNumExamples, isLeaf, shouldMakeLeaf
public JointRegressorTrainingNode(RegressorImpurity impurity, Dataset<Regressor> examples, boolean normalize, AbstractTrainingNode.LeafDeterminer leafDeterminer)
impurity
- The impurity function to use.examples
- The training data.normalize
- Normalizes the leaves so each leaf has a distribution which sums to 1.0.leafDeterminer
- Contains parameters needed to determine whether a node is a leaf.public double getImpurity()
Node
public float getWeightSum()
AbstractTrainingNode
getWeightSum
in class AbstractTrainingNode<Regressor>
public List<AbstractTrainingNode<Regressor>> buildTree(int[] featureIDs, SplittableRandom rng, boolean useRandomSplitPoints)
buildTree
in class AbstractTrainingNode<Regressor>
featureIDs
- Indices of the features available in this split.rng
- Splittable random number generator.useRandomSplitPoints
- Whether to choose split points for features at random.public Node<Regressor> convertTree()
convertTree
in class AbstractTrainingNode<Regressor>
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.