Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly.example |
Provides a anomaly data generator used for testing implementations.
|
org.tribuo.anomaly.liblinear |
Provides an interface to LibLinear-java for anomaly detection problems.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
org.tribuo.classification.baseline |
Provides simple baseline multiclass classifiers.
|
org.tribuo.classification.dtree |
Provides implementations of decision trees for classification problems.
|
org.tribuo.classification.dtree.impl |
Provides internal implementation classes for classification decision trees.
|
org.tribuo.classification.ensemble |
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
|
org.tribuo.classification.example |
Provides a multiclass data generator used for testing implementations.
|
org.tribuo.classification.experiments |
Provides a set of main methods for interacting with classification tasks.
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.mnb |
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
|
org.tribuo.classification.sgd.kernel |
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
|
org.tribuo.classification.xgboost |
Provides an interface to XGBoost for classification problems.
|
org.tribuo.clustering.example |
Provides a clustering data generator used for testing implementations.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.nearest |
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types. |
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.data |
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
|
org.tribuo.data.csv |
Provides classes which can load columnar data (using a
RowProcessor )
from a CSV (or other character delimited format) file. |
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.datasource |
Simple data sources for ingesting or aggregating data.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.evaluation |
Evaluation base classes, along with code for train/test splits and cross validation.
|
org.tribuo.evaluation.metrics |
This package contains the infrastructure classes for building evaluation metrics.
|
org.tribuo.hash |
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model. |
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.multilabel.baseline | |
org.tribuo.multilabel.example |
Provides a multi-label data generator for testing implementations.
|
org.tribuo.provenance |
Provides Tribuo specific infrastructure for the
Provenance system which
tracks models and datasets. |
org.tribuo.regression.baseline |
Provides simple baseline regression predictors.
|
org.tribuo.regression.example |
Provides some example regression data generators for testing implementations.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
org.tribuo.regression.xgboost |
Provides an interface to XGBoost for regression problems.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
org.tribuo.transform |
Provides infrastructure for applying transformations to a
Dataset . |
Modifier and Type | Class and Description |
---|---|
class |
ImmutableDataset<T extends Output<T>>
This is a
Dataset which has an ImmutableFeatureMap to store the feature information. |
class |
MutableDataset<T extends Output<T>>
A MutableDataset is a
Dataset with a MutableFeatureMap which grows over time. |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
static <T extends Output<T>> |
MutableDataset.createDeepCopy(Dataset<T> other)
Creates a deep copy of the supplied
Dataset which is mutable. |
static <T extends Output<T>> |
ImmutableDataset.hashFeatureMap(Dataset<T> dataset,
Hasher hasher)
Creates an immutable shallow copy of the supplied dataset, using the hasher to generate a
HashedFeatureMap which transparently maps from the feature name to the hashed variant. |
U |
IncrementalTrainer.incrementalTrain(Dataset<T> newData,
U model)
Incrementally trains the supplied model with the new data.
|
List<Prediction<T>> |
Model.predict(Dataset<T> examples)
Uses the model to predict the outputs for multiple examples contained in
a data set.
|
default Model<T> |
Trainer.train(Dataset<T> examples)
Trains a predictive model using the examples in the given data set.
|
default SparseModel<T> |
SparseTrainer.train(Dataset<T> examples)
Trains a sparse predictive model using the examples in the given data set.
|
Model<T> |
Trainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a predictive model using the examples in the given data set.
|
SparseModel<T> |
SparseTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a sparse predictive model using the examples in the given data set.
|
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.denseTrainTest()
Makes a simple dataset for training and testing.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.denseTrainTest()
Makes a simple dataset for training and testing.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.gaussianAnomaly()
Generates two datasets, one without anomalies drawn from a single gaussian
and the second drawn from a mixture of two gaussians, with the second tagged
anomalous.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.gaussianAnomaly()
Generates two datasets, one without anomalies drawn from a single gaussian
and the second drawn from a mixture of two gaussians, with the second tagged
anomalous.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.gaussianAnomaly(long size,
double fractionAnomalous)
Generates two datasets, one without anomalies drawn from a single gaussian
and the second drawn from a mixture of two gaussians, with the second tagged
anomalous.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.gaussianAnomaly(long size,
double fractionAnomalous)
Generates two datasets, one without anomalies drawn from a single gaussian
and the second drawn from a mixture of two gaussians, with the second tagged
anomalous.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.sparseTrainTest()
Makes a simple dataset for training and testing.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.sparseTrainTest()
Makes a simple dataset for training and testing.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Event>,Dataset<Event>> |
AnomalyDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
LibSVMModel<Event> |
LibSVMAnomalyTrainer.train(Dataset<Event> dataset,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
Modifier and Type | Method and Description |
---|---|
Model<Label> |
DummyClassifierTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
Modifier and Type | Method and Description |
---|---|
protected AbstractTrainingNode<Label> |
CARTClassificationTrainer.mkTrainingNode(Dataset<Label> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Constructor and Description |
---|
ClassifierTrainingNode(LabelImpurity impurity,
Dataset<Label> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer)
Constructor which creates the inverted file.
|
Modifier and Type | Method and Description |
---|---|
Model<Label> |
AdaBoostTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
If the trainer implements
WeightedExamples then do boosting by weighting,
otherwise do boosting by sampling. |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.binarySparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.binarySparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.binarySparseTrainTest(double negate)
Generates a pair of datasets with sparse features and unknown features
in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.binarySparseTrainTest(double negate)
Generates a pair of datasets with sparse features and unknown features
in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 classes,
{Foo,Bar,Baz,Quux}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 classes,
{Foo,Bar,Baz,Quux}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Label>,Dataset<Label>> |
LabelledDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Model<Label>,Dataset<Label>> |
Test.load(Test.ConfigurableTestOptions o) |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
Model<Label> |
MultinomialNaiveBayesTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
KernelSVMModel |
KernelSVMTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
XGBoostModel<Label> |
XGBoostClassificationTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static Dataset<ClusterID> |
ClusteringDataGenerator.gaussianClusters(long size,
long seed)
Generates a dataset drawn from a mixture of 5 2d gaussians.
|
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}, and there are 4 clusters,
{0,1,2,3}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<ClusterID>,Dataset<ClusterID>> |
ClusteringDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
Modifier and Type | Method and Description |
---|---|
KMeansModel |
KMeansTrainer.train(Dataset<ClusterID> dataset) |
KMeansModel |
KMeansTrainer.train(Dataset<ClusterID> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibLinear's format. |
LibLinearModel<T> |
LibLinearTrainer.train(Dataset<T> examples) |
LibLinearModel<T> |
LibLinearTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibSVM's format. |
LibSVMModel<T> |
LibSVMTrainer.train(Dataset<T> examples) |
LibSVMModel<T> |
LibSVMTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
Model<T> |
KNNTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
V |
AbstractSGDTrainer.train(Dataset<T> examples) |
V |
AbstractSGDTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected abstract AbstractTrainingNode<T> |
AbstractCARTTrainer.mkTrainingNode(Dataset<T> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
TreeModel<T> |
AbstractCARTTrainer.train(Dataset<T> examples) |
TreeModel<T> |
AbstractCARTTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
XGBoostTrainer.convertDataset(Dataset<T> examples) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertDataset(Dataset<T> examples,
Function<T,Float> responseExtractor) |
List<Prediction<T>> |
XGBoostModel.predict(Dataset<T> examples)
Uses the model to predict the labels for multiple examples contained in
a data set.
|
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
DataOptions.load(OutputFactory<T> outputFactory) |
<T extends Output<T>> |
DataOptions.load(OutputFactory<T> outputFactory) |
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
CSVSaver.save(Path csvPath,
Dataset<T> dataset,
Set<String> responseNames)
Saves the dataset to the specified path.
|
<T extends Output<T>> |
CSVSaver.save(Path csvPath,
Dataset<T> dataset,
String responseName)
Saves the dataset to the specified path.
|
Modifier and Type | Class and Description |
---|---|
class |
DatasetView<T extends Output<T>>
DatasetView provides an immutable view on another
Dataset that only exposes selected examples. |
class |
MinimumCardinalityDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that
occur less than the provided minimum cardinality have been removed.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createView(Dataset<T> dataset,
Predicate<Example<T>> predicate,
String tag)
Creates a view from the supplied dataset, using the specified predicate to
test if each example should be in this view.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
Constructor and Description |
---|
DatasetView(Dataset<T> dataset,
int[] exampleIndices,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
String tag)
Creates a DatasetView which includes the supplied indices from the dataset.
|
DatasetView(Dataset<T> dataset,
int[] exampleIndices,
String tag)
Creates a DatasetView which includes the supplied indices from the dataset.
|
MinimumCardinalityDataset(Dataset<T> dataset,
int minCardinality) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
LibSVMDataSource.writeLibSVMFormat(Dataset<T> dataset,
PrintStream out,
boolean zeroIndexed,
Function<T,Number> transformationFunc)
Writes out a dataset in LibSVM format.
|
Modifier and Type | Method and Description |
---|---|
Model<T> |
BaggingTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
protected Model<T> |
BaggingTrainer.trainSingleModel(Dataset<T> examples,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
SplittableRandom localRNG,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).
|
E |
Evaluator.evaluate(Model<T> model,
Dataset<T> dataset)
Evaluates the dataset using the supplied model, returning an immutable
Evaluation of the appropriate type. |
E |
AbstractEvaluator.evaluate(Model<T> model,
Dataset<T> dataset)
Produces an evaluation for the supplied model and dataset, by calling
Model.predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. |
Iterator<KFoldSplitter.TrainTestFold<T>> |
KFoldSplitter.split(Dataset<T> dataset,
boolean shuffle)
Splits a dataset into k consecutive folds; for each fold, the remaining k-1 folds form the training set.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance w.r.t.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance using the supplied evaluator across several models on one dataset.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(List<? extends EvaluationMetric<T,C>> metrics,
Model<T> model,
Dataset<T> dataset)
Summarize model performance on dataset across several metrics.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Calculates the argmax of a metric across the supplied datasets.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize a model's performance w.r.t.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize performance according to evaluator for a single model across several datasets.
|
Constructor and Description |
---|
CrossValidation(Trainer<T> trainer,
Dataset<T> data,
Evaluator<T,E> evaluator,
int k)
Builds a k-fold cross-validation loop.
|
CrossValidation(Trainer<T> trainer,
Dataset<T> data,
Evaluator<T,E> evaluator,
int k,
long seed)
Builds a k-fold cross-validation loop.
|
Modifier and Type | Method and Description |
---|---|
default C |
EvaluationMetric.createContext(Model<T> model,
Dataset<T> dataset)
Creates the metric context used to compute this metric's value,
generating
Prediction s for each Example in
the supplied dataset. |
Modifier and Type | Method and Description |
---|---|
Model<T> |
HashingTrainer.train(Dataset<T> dataset,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance)
This clones the
Dataset , hashes each of the examples
and rewrites their feature ids before passing it to the inner trainer. |
Modifier and Type | Method and Description |
---|---|
TensorFlowModel<T> |
TensorFlowTrainer.train(Dataset<T> examples) |
TensorFlowModel<T> |
TensorFlowTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset,
ImmutableFeatureMap fMap)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
Modifier and Type | Method and Description |
---|---|
Model<MultiLabel> |
IndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static Dataset<MultiLabel> |
MultiLabelDataGenerator.generateTestData() |
static Dataset<MultiLabel> |
MultiLabelDataGenerator.generateTrainData() |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<MultiLabel>,Dataset<MultiLabel>> |
MultiLabelDataGenerator.generateDataset() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<MultiLabel>,Dataset<MultiLabel>> |
MultiLabelDataGenerator.generateDataset() |
Constructor and Description |
---|
DatasetProvenance(DataProvenance sourceProvenance,
com.oracle.labs.mlrg.olcut.provenance.ListProvenance<com.oracle.labs.mlrg.olcut.provenance.ObjectProvenance> transformationProvenance,
Dataset<T> dataset) |
Modifier and Type | Method and Description |
---|---|
DummyRegressionModel |
DummyRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
Modifier and Type | Method and Description |
---|---|
static Dataset<Regressor> |
NonlinearGaussianDataSource.generateDataset(int numSamples,
float[] weights,
float intercept,
float variance,
float xZeroMin,
float xZeroMax,
float xOneMin,
float xOneMax,
long seed)
Generates a single dimensional output drawn from
N(w_0*x_0 + w_1*x_1 + w_2*x_1*x_0 + w_3*x_1*x_1*x_1 + intercept,variance).
|
static Dataset<Regressor> |
GaussianDataSource.generateDataset(int numSamples,
float slope,
float intercept,
float variance,
float xMin,
float xMax,
long seed)
Generates a single dimensional output drawn from N(slope*x + intercept,variance).
|
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.denseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimDenseTrainTest(double negate)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest()
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.multiDimSparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest() |
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.sparseTrainTest(double negate)
Generates a pair of datasets, where the features are sparse,
and unknown features appear in the test data.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.threeDimDenseTrainTest(double negate,
boolean remapIndices)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
static com.oracle.labs.mlrg.olcut.util.Pair<Dataset<Regressor>,Dataset<Regressor>> |
RegressionDataGenerator.threeDimDenseTrainTest(double negate,
boolean remapIndices)
Generates a train/test dataset pair which is dense in the features,
each example has 4 features,{A,B,C,D}.
|
Modifier and Type | Method and Description |
---|---|
SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.train(Dataset<Regressor> examples) |
SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.train(Dataset<Regressor> examples) |
SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected AbstractTrainingNode<Regressor> |
CARTRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
protected AbstractTrainingNode<Regressor> |
CARTJointRegressionTrainer.mkTrainingNode(Dataset<Regressor> examples,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
TreeModel<Regressor> |
CARTRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static RegressorTrainingNode.InvertedData |
RegressorTrainingNode.invertData(Dataset<Regressor> examples)
Inverts a training dataset from row major to column major.
|
Constructor and Description |
---|
JointRegressorTrainingNode(RegressorImpurity impurity,
Dataset<Regressor> examples,
boolean normalize,
AbstractTrainingNode.LeafDeterminer leafDeterminer)
Constructor which creates the inverted file.
|
Modifier and Type | Method and Description |
---|---|
SparseLinearModel |
SLMTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a sparse linear model.
|
SparseModel<Regressor> |
ElasticNetCDTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
XGBoostModel<Regressor> |
XGBoostRegressionTrainer.train(Dataset<Regressor> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
Dataset<T> |
SequenceDataset.getFlatDataset()
Returns a view on this SequenceDataset which aggregates all
the examples and ignores the sequence structure.
|
Modifier and Type | Method and Description |
---|---|
List<Prediction<T>> |
TransformedModel.predict(Dataset<T> examples) |
TransformedModel<T> |
TransformTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
<T extends Output<T>> |
TransformerMap.transformDataset(Dataset<T> dataset)
Copies the supplied dataset and applies the transformers to each example in it.
|
<T extends Output<T>> |
TransformerMap.transformDataset(Dataset<T> dataset,
boolean densify)
Copies the supplied dataset and applies the transformers to each example in it.
|
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.