Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly.evaluation |
Evaluation classes for anomaly detection.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
org.tribuo.classification |
Provides classes and infrastructure for multiclass classification problems.
|
org.tribuo.classification.baseline |
Provides simple baseline multiclass classifiers.
|
org.tribuo.classification.ensemble |
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
|
org.tribuo.classification.evaluation |
Evaluation classes for multi-class classification.
|
org.tribuo.classification.experiments |
Provides a set of main methods for interacting with classification tasks.
|
org.tribuo.classification.explanations |
Provides core infrastructure for local model based explanations.
|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.mnb |
Provides an implementation of multinomial naive bayes (i.e., naive bayes for non-negative count data).
|
org.tribuo.classification.sgd.kernel |
Provides a SGD implementation of a Kernel SVM using the Pegasos algorithm.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.clustering.evaluation |
Evaluation classes for clustering.
|
org.tribuo.clustering.kmeans |
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.nearest |
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types. |
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.data |
Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
|
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.evaluation |
Evaluation base classes, along with code for train/test splits and cross validation.
|
org.tribuo.evaluation.metrics |
This package contains the infrastructure classes for building evaluation metrics.
|
org.tribuo.hash |
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model. |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.tensorflow |
Provides an interface to Tensorflow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.multilabel.baseline | |
org.tribuo.multilabel.evaluation |
Evaluation classes for multi-label classification using
MultiLabel . |
org.tribuo.regression.baseline |
Provides simple baseline regression predictors.
|
org.tribuo.regression.evaluation |
Evaluation classes for single or multi-dimensional regression.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree |
Provides an implementation of decision trees for regression problems.
|
org.tribuo.regression.slm |
Provides implementations of sparse linear regression using various forms of regularisation penalty.
|
org.tribuo.transform |
Provides infrastructure for applying transformations to a
Dataset . |
Modifier and Type | Interface and Description |
---|---|
interface |
IncrementalTrainer<T extends Output<T>,U extends Model<T>>
An interface for incremental training of
Model s. |
Modifier and Type | Class and Description |
---|---|
class |
SparseModel<T extends Output<T>>
A model which uses a subset of the features it knows about to make predictions.
|
Modifier and Type | Method and Description |
---|---|
Model<T> |
Model.copy()
Copies a model, returning a deep copy of any mutable state, and a shallow copy otherwise.
|
protected abstract Model<T> |
Model.copy(String newName,
ModelProvenance newProvenance)
Copies a model, replacing it's provenance and name with the supplied values.
|
default Model<T> |
Trainer.train(Dataset<T> examples)
Trains a predictive model using the examples in the given data set.
|
Model<T> |
Trainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
Trains a predictive model using the examples in the given data set.
|
Constructor and Description |
---|
ImmutableDataset(DataSource<T> dataSource,
Model<T> model,
boolean dropInvalidExamples)
Creates a dataset from a data source.
|
Modifier and Type | Method and Description |
---|---|
org.tribuo.anomaly.evaluation.AnomalyMetric.Context |
AnomalyMetric.createContext(Model<Event> model,
List<Prediction<Event>> predictions) |
protected org.tribuo.anomaly.evaluation.AnomalyMetric.Context |
AnomalyEvaluator.createContext(Model<Event> model,
List<Prediction<Event>> predictions) |
protected Set<AnomalyMetric> |
AnomalyEvaluator.createMetrics(Model<Event> model) |
Modifier and Type | Class and Description |
---|---|
class |
LibSVMAnomalyModel
A anomaly detection model that uses an underlying libSVM model to make the
predictions.
|
Modifier and Type | Method and Description |
---|---|
static Model<Label> |
TrainTestHelper.run(com.oracle.labs.mlrg.olcut.config.ConfigurationManager cm,
DataOptions dataOptions,
Trainer<Label> trainer)
This method trains a model on the specified training data, and evaluates it
on the specified test data.
|
Modifier and Type | Class and Description |
---|---|
class |
DummyClassifierModel
A model which performs dummy classifications (e.g., constant output, uniform sampled labels, stratified sampled labels).
|
Modifier and Type | Method and Description |
---|---|
Model<Label> |
DummyClassifierTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) |
Modifier and Type | Method and Description |
---|---|
Model<Label> |
AdaBoostTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance)
If the trainer implements
WeightedExamples then do boosting by weighting,
otherwise do boosting by sampling. |
Modifier and Type | Method and Description |
---|---|
LabelMetric.Context |
LabelMetric.createContext(Model<Label> model,
List<Prediction<Label>> predictions) |
protected LabelMetric.Context |
LabelEvaluator.createContext(Model<Label> model,
List<Prediction<Label>> predictions) |
protected Set<LabelMetric> |
LabelEvaluator.createMetrics(Model<Label> model) |
Constructor and Description |
---|
Context(Model<Label> model,
List<Prediction<Label>> predictions) |
LabelConfusionMatrix(Model<Label> model,
List<Prediction<Label>> predictions)
Creates a confusion matrix from the supplied predictions, using the label info
from the supplied model.
|
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<Model<Label>,Dataset<Label>> |
Test.load(Test.ConfigurableTestOptions o) |
Modifier and Type | Method and Description |
---|---|
Model<T> |
Explanation.getModel()
Returns the explanining model.
|
Modifier and Type | Field and Description |
---|---|
protected Model<Label> |
LIMEBase.innerModel |
Constructor and Description |
---|
LIMEBase(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples)
Constructs a LIME explainer for a model which uses tabular data (i.e., no special treatment for text features).
|
LIMEColumnar(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples,
RowProcessor<Label> exampleGenerator,
Tokenizer tokenizer)
Constructs a LIME explainer for a model which uses the columnar data processing system.
|
LIMEText(SplittableRandom rng,
Model<Label> innerModel,
SparseTrainer<Regressor> explanationTrainer,
int numSamples,
TextFeatureExtractor<Label> extractor,
Tokenizer tokenizer)
Constructs a LIME explainer for a model which uses text data.
|
Modifier and Type | Class and Description |
---|---|
class |
LibLinearClassificationModel
A
Model which wraps a LibLinear-java classification model. |
Modifier and Type | Class and Description |
---|---|
class |
LibSVMClassificationModel
A classification model that uses an underlying LibSVM model to make the
predictions.
|
Modifier and Type | Class and Description |
---|---|
class |
MultinomialNaiveBayesModel
A
Model for multinomial Naive Bayes with Laplace smoothing. |
Modifier and Type | Method and Description |
---|---|
Model<Label> |
MultinomialNaiveBayesTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Class and Description |
---|---|
class |
KernelSVMModel
The inference time version of a kernel model trained using Pegasos.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearSGDModel
The inference time version of a linear model trained using SGD.
|
Modifier and Type | Method and Description |
---|---|
Model<Label> |
LinearSGDTrainer.train(Dataset<Label> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringMetric.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
protected org.tribuo.clustering.evaluation.ClusteringMetric.Context |
ClusteringEvaluator.createContext(Model<ClusterID> model,
List<Prediction<ClusterID>> predictions) |
protected Set<ClusteringMetric> |
ClusteringEvaluator.createMetrics(Model<ClusterID> model) |
Modifier and Type | Class and Description |
---|---|
class |
KMeansModel
A K-Means model with a selectable distance function.
|
Modifier and Type | Class and Description |
---|---|
class |
LibLinearModel<T extends Output<T>>
A
Model which wraps a LibLinear-java model. |
Modifier and Type | Class and Description |
---|---|
class |
LibSVMModel<T extends Output<T>>
A model that uses an underlying libSVM model to make the
predictions.
|
Modifier and Type | Class and Description |
---|---|
class |
KNNModel<T extends Output<T>>
A k-nearest neighbours model.
|
Modifier and Type | Method and Description |
---|---|
Model<T> |
KNNTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Class and Description |
---|---|
class |
TreeModel<T extends Output<T>>
|
Modifier and Type | Class and Description |
---|---|
class |
XGBoostExternalModel<T extends Output<T>>
A
Model which wraps around a XGBoost.Booster which was trained by a system other than Tribuo. |
class |
XGBoostModel<T extends Output<T>>
A
Model which wraps around a XGBoost.Booster. |
Modifier and Type | Method and Description |
---|---|
protected Model<T> |
XGBoostModel.copy(String newName,
ModelProvenance newProvenance) |
Modifier and Type | Method and Description |
---|---|
<T extends Output<T>> |
DataOptions.saveModel(Model<T> model) |
Modifier and Type | Method and Description |
---|---|
void |
RowProcessor.expandRegexMapping(Model<T> model)
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap) to check the regexes
against the ImmutableFeatureMap contained in the supplied Model . |
Modifier and Type | Class and Description |
---|---|
class |
EnsembleModel<T extends Output<T>>
A model which contains a list of other
Model s. |
class |
WeightedEnsembleModel<T extends Output<T>>
An ensemble model that uses weights to combine the ensemble member predictions.
|
Modifier and Type | Field and Description |
---|---|
protected List<Model<T>> |
EnsembleModel.models |
Modifier and Type | Method and Description |
---|---|
protected Model<T> |
EnsembleModel.copy(String name,
ModelProvenance newProvenance) |
Model<T> |
BaggingTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
protected Model<T> |
BaggingTrainer.trainSingleModel(Dataset<T> examples,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
SplittableRandom localRNG,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
List<Model<T>> |
EnsembleModel.getModels()
Returns an unmodifiable view on the ensemble members.
|
Modifier and Type | Method and Description |
---|---|
protected EnsembleModel<T> |
WeightedEnsembleModel.copy(String name,
EnsembleModelProvenance newProvenance,
List<Model<T>> newModels) |
protected abstract EnsembleModel<T> |
EnsembleModel.copy(String name,
EnsembleModelProvenance newProvenance,
List<Model<T>> newModels) |
Constructor and Description |
---|
EnsembleModel(String name,
EnsembleModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels) |
WeightedEnsembleModel(String name,
EnsembleModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner) |
WeightedEnsembleModel(String name,
EnsembleModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner,
float[] weights) |
Modifier and Type | Method and Description |
---|---|
List<com.oracle.labs.mlrg.olcut.util.Pair<E,Model<T>>> |
CrossValidation.evaluate()
Performs k fold cross validation, returning the k evaluations.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Calculates the argmax of a metric across the supplied datasets.
|
protected abstract C |
AbstractEvaluator.createContext(Model<T> model,
List<Prediction<T>> predictions)
Create the context needed for evaluation.
|
protected abstract Set<M> |
AbstractEvaluator.createMetrics(Model<T> model)
Creates the appropriate set of metrics for this model, by querying for it's
OutputInfo . |
default OnlineEvaluator<T,E> |
Evaluator.createOnlineEvaluator(Model<T> model,
DataProvenance provenance)
Creates an online evaluator that maintains a list of all the predictions it has seen and can evaluate
them upon request.
|
E |
Evaluator.evaluate(Model<T> model,
Dataset<T> dataset)
Evaluates the dataset using the supplied model, returning an immutable
Evaluation of the appropriate type. |
E |
AbstractEvaluator.evaluate(Model<T> model,
Dataset<T> dataset)
Produces an evaluation for the supplied model and dataset, by calling
predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. |
E |
Evaluator.evaluate(Model<T> model,
DataSource<T> datasource)
Evaluates the dataset using the supplied model, returning an immutable
Evaluation of the appropriate type. |
E |
AbstractEvaluator.evaluate(Model<T> model,
DataSource<T> datasource)
Produces an evaluation for the supplied model and datasource, by calling
predict(org.tribuo.Example<T>)
to create the predictions, then aggregating the appropriate statistics. |
E |
Evaluator.evaluate(Model<T> model,
List<Prediction<T>> predictions,
DataProvenance dataProvenance)
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. |
E |
AbstractEvaluator.evaluate(Model<T> model,
List<Prediction<T>> predictions,
DataProvenance dataProvenance)
Produces an evaluation for the supplied model and predictions by aggregating the appropriate statistics.
|
default E |
Evaluator.evaluate(Model<T> model,
List<Prediction<T>> predictions,
List<T> groundTruth,
DataProvenance dataProvenance)
Evaluates the model performance using the supplied predictions, returning an immutable
Evaluation
of the appropriate type. |
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize a model's performance w.r.t.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
Model<T> model,
List<? extends Dataset<T>> datasets)
Summarize performance according to evaluator for a single model across several datasets.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(List<? extends EvaluationMetric<T,C>> metrics,
Model<T> model,
Dataset<T> dataset)
Summarize model performance on dataset across several metrics.
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(List<? extends EvaluationMetric<T,C>> metrics,
Model<T> model,
List<Prediction<T>> predictions)
Summarize model performance on dataset across several metrics.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.argmax(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).
|
static <T extends Output<T>,C extends MetricContext<T>> |
EvaluationAggregator.summarize(EvaluationMetric<T,C> metric,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance w.r.t.
|
static <T extends Output<T>,R extends Evaluation<T>> |
EvaluationAggregator.summarize(Evaluator<T,R> evaluator,
List<? extends Model<T>> models,
Dataset<T> dataset)
Summarize performance using the supplied evaluator across several models on one dataset.
|
Constructor and Description |
---|
OnlineEvaluator(Evaluator<T,E> evaluator,
Model<T> model,
DataProvenance provenance)
Constructs an
OnlineEvaluator which accumulates predictions. |
Modifier and Type | Method and Description |
---|---|
Model<T> |
MetricContext.getModel()
Gets the Model used by this context.
|
Modifier and Type | Method and Description |
---|---|
default C |
EvaluationMetric.createContext(Model<T> model,
Dataset<T> dataset)
Creates the metric context used to compute this metric's value,
generating
Prediction s for each Example in
the supplied dataset. |
C |
EvaluationMetric.createContext(Model<T> model,
List<Prediction<T>> predictions)
Creates the context this metric uses to compute it's value.
|
Constructor and Description |
---|
MetricContext(Model<T> model,
List<Prediction<T>> predictions) |
Modifier and Type | Method and Description |
---|---|
Model<T> |
HashingTrainer.train(Dataset<T> dataset,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance)
This clones the
Dataset , hashes each of the examples
and rewrites their feature ids before passing it to the inner trainer. |
Modifier and Type | Class and Description |
---|---|
class |
ExternalModel<T extends Output<T>,U,V>
This is the base class for third party models which are trained externally and
loaded into Tribuo for prediction.
|
Modifier and Type | Class and Description |
---|---|
class |
ONNXExternalModel<T extends Output<T>>
A Tribuo wrapper around a ONNX model.
|
Modifier and Type | Method and Description |
---|---|
protected Model<T> |
ONNXExternalModel.copy(String newName,
ModelProvenance newProvenance) |
Modifier and Type | Class and Description |
---|---|
class |
TensorflowCheckpointModel<T extends Output<T>>
TensorFlow support is experimental, and may change without a major version bump.
|
class |
TensorflowExternalModel<T extends Output<T>>
A Tribuo wrapper around a Tensorflow frozen model.
|
class |
TensorflowModel<T extends Output<T>>
This model encapsulates a simple model with a single input tensor (labelled
TensorflowModel.INPUT_NAME ),
and produces a single output tensor (labelled TensorflowModel.OUTPUT_NAME ). |
Modifier and Type | Method and Description |
---|---|
protected Model<T> |
TensorflowExternalModel.copy(String newName,
ModelProvenance newProvenance) |
Model<T> |
TensorflowTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Model<T> |
TensorflowCheckpointTrainer.train(Dataset<T> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
static void |
TrainTest.saveModel(Path outputPath,
Model<Label> model) |
Modifier and Type | Class and Description |
---|---|
class |
IndependentMultiLabelModel
A
Model which wraps n binary models, where n is the
size of the MultiLabel domain. |
Modifier and Type | Method and Description |
---|---|
Model<MultiLabel> |
IndependentMultiLabelTrainer.train(Dataset<MultiLabel> examples,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Modifier and Type | Method and Description |
---|---|
org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelMetric.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
protected org.tribuo.multilabel.evaluation.MultiLabelMetric.Context |
MultiLabelEvaluator.createContext(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
protected Set<MultiLabelMetric> |
MultiLabelEvaluator.createMetrics(Model<MultiLabel> model) |
Constructor and Description |
---|
MultiLabelConfusionMatrix(Model<MultiLabel> model,
List<Prediction<MultiLabel>> predictions) |
Modifier and Type | Class and Description |
---|---|
class |
DummyRegressionModel
A model which performs dummy regressions (e.g., constant output, gaussian sampled output, mean value, median, quartile).
|
Modifier and Type | Method and Description |
---|---|
protected Model<Regressor> |
DummyRegressionModel.copy(String newName,
ModelProvenance newProvenance) |
Modifier and Type | Method and Description |
---|---|
org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionMetric.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
protected org.tribuo.regression.evaluation.RegressionMetric.Context |
RegressionEvaluator.createContext(Model<Regressor> model,
List<Prediction<Regressor>> predictions) |
protected Set<RegressionMetric> |
RegressionEvaluator.createMetrics(Model<Regressor> model) |
Modifier and Type | Class and Description |
---|---|
class |
SkeletalIndependentRegressionModel
A
Model which wraps n independent regression models, where n is the
size of the MultipleRegressor domain. |
class |
SkeletalIndependentRegressionSparseModel
A
SparseModel which wraps n independent regression models, where n is the
size of the MultipleRegressor domain. |
Modifier and Type | Class and Description |
---|---|
class |
LibLinearRegressionModel
A
Model which wraps a LibLinear-java model. |
Modifier and Type | Class and Description |
---|---|
class |
LibSVMRegressionModel
A regression model that uses an underlying libSVM model to make the
predictions.
|
Modifier and Type | Class and Description |
---|---|
class |
IndependentRegressionTreeModel
|
Modifier and Type | Class and Description |
---|---|
class |
SparseLinearModel
The inference time version of a sparse linear regression model.
|
Modifier and Type | Method and Description |
---|---|
protected Model<Regressor> |
SparseLinearModel.copy(String newName,
ModelProvenance newProvenance) |
Modifier and Type | Class and Description |
---|---|
class |
TransformedModel<T extends Output<T>>
Wraps a
Model with it's TransformerMap so all Example s are transformed
appropriately before the model makes predictions. |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.