Uses of Class
org.tribuo.math.la.DenseVector
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides the base classes for models trained with stochastic gradient descent.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides some utility tensors for use in gradient optimisers.
Provides classes and infrastructure for working with multi-label classification problems.
Provides infrastructure for Stochastic Gradient Descent based regression models.
Provides an implementation of factorization machines for regression using Stochastic Gradient Descent.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides regression loss functions for Stochastic Gradient Descent.
-
Uses of DenseVector in org.tribuo.classification.sgd.crf
Modifier and TypeFieldDescriptionfinal DenseVector[]
ChainHelper.ChainBPResults.alphas
The alpha values array from forward propagation.final DenseVector[]
ChainHelper.ChainBPResults.betas
The beta values array from backward propagation.final DenseVector[]
ChainHelper.ChainCliqueValues.localValues
The per element values.Modifier and TypeMethodDescriptionCRFModel.getFeatureWeights
(int featureID) Get a copy of the weights for featurefeatureID
.CRFModel.getFeatureWeights
(String featureName) Get a copy of the weights for feature namedfeatureName
.CRFParameters.getFeatureWeights
(int id) Gets a copy of the weights for the specified label id.CRFParameters.getLocalScores
(SGDVector[] features) Generate the local scores (i.e., the linear classifier for each token).CRFParameters.predictMarginals
(SGDVector[] features) Generate a prediction using Belief Propagation.Modifier and TypeMethodDescriptionstatic double
ChainHelper.sumLogProbs
(DenseVector input) Sums the log probabilities. -
Uses of DenseVector in org.tribuo.clustering.kmeans
Modifier and TypeMethodDescriptionKMeansModel.getCentroidVectors()
Returns a copy of the centroids.Modifier and TypeMethodDescriptionprotected void
KMeansTrainer.mStep
(ForkJoinPool fjp, DenseVector[] centroidVectors, Map<Integer, List<Integer>> clusterAssignments, SGDVector[] data, double[] weights) Runs the mStep, writing to thecentroidVectors
array. -
Uses of DenseVector in org.tribuo.common.sgd
Modifier and TypeFieldDescriptionfinal DenseVector
AbstractSGDModel.PredAndActive.prediction
The vector prediction.Modifier and TypeMethodDescriptionAbstractFMModel.getBiasesCopy()
Returns a copy of the output dimension biases.Generates an unnormalised prediction by multiplying the weights with the incoming features, adding the bias and adding the feature factors. -
Uses of DenseVector in org.tribuo.interop.oci
Modifier and TypeMethodDescriptionOCILabelConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Label> example, ImmutableOutputInfo<Label> outputIDInfo) OCIMultiLabelConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<MultiLabel> example, ImmutableOutputInfo<MultiLabel> outputIDInfo) OCIOutputConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<T> example, ImmutableOutputInfo<T> outputIDInfo) Converts a dense vector into a single prediction of the appropriate type.OCIRegressorConverter.convertOutput
(DenseVector scores, int numValidFeature, Example<Regressor> example, ImmutableOutputInfo<Regressor> outputIDInfo) -
Uses of DenseVector in org.tribuo.math
Modifier and TypeMethodDescriptionGenerates an un-normalized prediction by feeding the features through the parameters.Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features. -
Uses of DenseVector in org.tribuo.math.la
Modifier and TypeMethodDescriptionAddsother
to this vector, producing a newDenseVector
.DenseMatrix.columnSum()
Returns the dense vector containing each column sum.DenseVector.copy()
static DenseVector
DenseVector.createDenseVector
(double[] values) Defensively copies the values before construction.static <T extends Output<T>>
DenseVectorDenseVector.createDenseVector
(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aDenseVector
from anExample
.SparseVector.densify()
Returns a dense vector copying this sparse vector.DenseMatrix.gatherAcrossDim1
(int[] elements) Constructs a dense vector by gathering values across dimension 1.DenseMatrix.gatherAcrossDim2
(int[] elements) Constructs a dense vector by gathering values across dimension 2.DenseMatrix.getColumn
(int index) Returns a copy of the specified column.DenseMatrix.getRow
(int i) DenseMatrix.leftMultiply
(SGDVector input) DenseSparseMatrix.leftMultiply
(SGDVector input) DenseMatrix.rightMultiply
(SGDVector input) DenseSparseMatrix.rightMultiply
(SGDVector input) rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.DenseMatrix.rowSum()
DenseSparseMatrix.rowSum()
Matrix.rowSum()
Generates aDenseVector
representing the sum of each row.DenseVector.scale
(double coefficient) Subtractsother
from this vector, producing a newDenseVector
.Modifier and TypeMethodDescriptionvoid
DenseMatrix.rowScaleInPlace
(DenseVector scalingCoefficients) void
DenseSparseMatrix.rowScaleInPlace
(DenseVector scalingCoefficients) void
Matrix.rowScaleInPlace
(DenseVector scalingCoefficients) Scales each row by the appropriate value in theDenseVector
.void
DenseVector.setElements
(DenseVector other) Sets all the elements of this vector to be the same asother
. -
Uses of DenseVector in org.tribuo.math.optimisers.util
Modifier and TypeClassDescriptionclass
A subclass ofDenseVector
which shrinks the value every time a new value is added.Modifier and TypeMethodDescriptionShrinkingVector.convertToDense()
ShrinkingMatrix.leftMultiply
(SGDVector input) ModifierConstructorDescriptionShrinkingVector
(DenseVector v, double baseRate, boolean scaleShrinking) Constructs a shrinking vector copy of the supplied dense matrix.ShrinkingVector
(DenseVector v, double baseRate, double lambda) Constructs a shrinking vector copy of the supplied dense vector. -
Uses of DenseVector in org.tribuo.multilabel
Modifier and TypeMethodDescriptionMultiLabel.convertToDenseVector
(ImmutableOutputInfo<MultiLabel> info) Converts this MultiLabel into a DenseVector using the indices from the output info. -
Uses of DenseVector in org.tribuo.regression.sgd
Modifier and TypeMethodDescriptionRegressionObjective.loss
(DenseVector truth, SGDVector prediction) Deprecated.In 4.1 to move to the new name, lossAndGradient.RegressionObjective.lossAndGradient
(DenseVector truth, SGDVector prediction) static void
Util.shuffleInPlace
(SparseVector[] features, DenseVector[] regressors, double[] weights, int[] indices, SplittableRandom rng) In place shuffle of the features, labels and weights.static void
Util.shuffleInPlace
(SparseVector[] features, DenseVector[] regressors, double[] weights, SplittableRandom rng) In place shuffle of the features, labels and weights. -
Uses of DenseVector in org.tribuo.regression.sgd.fm
Modifier and TypeMethodDescriptionprotected DenseVector
FMRegressionTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Modifier and TypeMethodDescriptionprotected SGDObjective<DenseVector>
FMRegressionTrainer.getObjective()
-
Uses of DenseVector in org.tribuo.regression.sgd.linear
Modifier and TypeMethodDescriptionprotected DenseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Modifier and TypeMethodDescriptionprotected SGDObjective<DenseVector>
LinearSGDTrainer.getObjective()
-
Uses of DenseVector in org.tribuo.regression.sgd.objectives
Modifier and TypeMethodDescriptionAbsoluteLoss.loss
(DenseVector truth, SGDVector prediction) Deprecated.Huber.loss
(DenseVector truth, SGDVector prediction) Deprecated.SquaredLoss.loss
(DenseVector truth, SGDVector prediction) Deprecated.AbsoluteLoss.lossAndGradient
(DenseVector truth, SGDVector prediction) Huber.lossAndGradient
(DenseVector truth, SGDVector prediction) SquaredLoss.lossAndGradient
(DenseVector truth, SGDVector prediction)