Uses of Class
org.tribuo.math.la.DenseVector
Packages that use DenseVector
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides the base classes for models trained with stochastic gradient descent.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides some utility tensors for use in gradient optimisers.
Provides classes and infrastructure for working with multi-label classification problems.
Provides infrastructure for Stochastic Gradient Descent based regression models.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides regression loss functions for Stochastic Gradient Descent.
-
Uses of DenseVector in org.tribuo.classification.sgd.crf
Fields in org.tribuo.classification.sgd.crf declared as DenseVectorModifier and TypeFieldDescriptionfinal DenseVector[]ChainHelper.ChainBPResults.alphasfinal DenseVector[]ChainHelper.ChainBPResults.betasfinal DenseVector[]ChainHelper.ChainCliqueValues.localValuesMethods in org.tribuo.classification.sgd.crf that return DenseVectorModifier and TypeMethodDescriptionCRFModel.getFeatureWeights(int featureID) Get a copy of the weights for featurefeatureID.CRFModel.getFeatureWeights(String featureName) Get a copy of the weights for feature namedfeatureName.CRFParameters.getFeatureWeights(int id) Gets a copy of the weights for the specified label id.CRFParameters.getLocalScores(SGDVector[] features) Generate the local scores (i.e., the linear classifier for each token).CRFParameters.predictMarginals(SGDVector[] features) Generate a prediction using Belief Propagation.Methods in org.tribuo.classification.sgd.crf with parameters of type DenseVectorModifier and TypeMethodDescriptionstatic doubleChainHelper.sumLogProbs(DenseVector input) Sums the log probabilities. -
Uses of DenseVector in org.tribuo.clustering.kmeans
Methods in org.tribuo.clustering.kmeans that return DenseVectorModifier and TypeMethodDescriptionKMeansModel.getCentroidVectors()Returns a copy of the centroids.Methods in org.tribuo.clustering.kmeans with parameters of type DenseVectorModifier and TypeMethodDescriptionprotected voidKMeansTrainer.mStep(ForkJoinPool fjp, DenseVector[] centroidVectors, Map<Integer, List<Integer>> clusterAssignments, SparseVector[] data, double[] weights) Runs the mStep, writing to thecentroidVectorsarray. -
Uses of DenseVector in org.tribuo.common.sgd
Fields in org.tribuo.common.sgd declared as DenseVector -
Uses of DenseVector in org.tribuo.math
Methods in org.tribuo.math that return DenseVectorModifier and TypeMethodDescriptionGenerates an un-normalized prediction by feeding the features through the parameters.Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features. -
Uses of DenseVector in org.tribuo.math.la
Methods in org.tribuo.math.la that return DenseVectorModifier and TypeMethodDescriptionAddsotherto this vector, producing a newDenseVector.DenseMatrix.columnSum()Returns the dense vector containing each column sum.DenseVector.copy()static DenseVectorDenseVector.createDenseVector(double[] values) Defensively copies the values before construction.static <T extends Output<T>>
DenseVectorDenseVector.createDenseVector(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aDenseVectorfrom anExample.SparseVector.densify()Returns a dense vector copying this sparse vector.DenseMatrix.gatherAcrossDim1(int[] elements) DenseMatrix.gatherAcrossDim2(int[] elements) DenseMatrix.getColumn(int index) Returns a copy of the specified column.DenseMatrix.getRow(int i) DenseMatrix.leftMultiply(SGDVector input) DenseSparseMatrix.leftMultiply(SGDVector input) DenseMatrix.rightMultiply(SGDVector input) DenseSparseMatrix.rightMultiply(SGDVector input) rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.DenseMatrix.rowSum()DenseSparseMatrix.rowSum()Matrix.rowSum()Generates aDenseVectorrepresenting the sum of each row.DenseVector.scale(double coefficient) Subtractsotherfrom this vector, producing a newDenseVector.Methods in org.tribuo.math.la with parameters of type DenseVectorModifier and TypeMethodDescriptionvoidDenseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) voidDenseSparseMatrix.rowScaleInPlace(DenseVector scalingCoefficients) voidMatrix.rowScaleInPlace(DenseVector scalingCoefficients) Scales each row by the appropriate value in theDenseVector.voidDenseVector.setElements(DenseVector other) Sets all the elements of this vector to be the same asother.Constructors in org.tribuo.math.la with parameters of type DenseVector -
Uses of DenseVector in org.tribuo.math.optimisers.util
Subclasses of DenseVector in org.tribuo.math.optimisers.utilModifier and TypeClassDescriptionclassA subclass ofDenseVectorwhich shrinks the value every time a new value is added.Methods in org.tribuo.math.optimisers.util that return DenseVectorModifier and TypeMethodDescriptionShrinkingVector.convertToDense()ShrinkingMatrix.leftMultiply(SGDVector input) Constructors in org.tribuo.math.optimisers.util with parameters of type DenseVectorModifierConstructorDescriptionShrinkingVector(DenseVector v, double baseRate, boolean scaleShrinking) ShrinkingVector(DenseVector v, double baseRate, double lambda) -
Uses of DenseVector in org.tribuo.multilabel
Methods in org.tribuo.multilabel that return DenseVectorModifier and TypeMethodDescriptionMultiLabel.convertToDenseVector(ImmutableOutputInfo<MultiLabel> info) Converts this MultiLabel into a DenseVector using the indices from the output info. -
Uses of DenseVector in org.tribuo.regression.sgd
Subinterfaces with type arguments of type DenseVector in org.tribuo.regression.sgdModifier and TypeInterfaceDescriptioninterfaceAn interface for regression objectives.Methods in org.tribuo.regression.sgd with parameters of type DenseVectorModifier and TypeMethodDescriptionRegressionObjective.loss(DenseVector truth, SGDVector prediction) Deprecated.In 4.1 to move to the new name, lossAndGradient.RegressionObjective.lossAndGradient(DenseVector truth, SGDVector prediction) static voidUtil.shuffleInPlace(SparseVector[] features, DenseVector[] regressors, double[] weights, int[] indices, SplittableRandom rng) In place shuffle of the features, labels and weights.static voidUtil.shuffleInPlace(SparseVector[] features, DenseVector[] regressors, double[] weights, SplittableRandom rng) In place shuffle of the features, labels and weights. -
Uses of DenseVector in org.tribuo.regression.sgd.linear
Subclasses with type arguments of type DenseVector in org.tribuo.regression.sgd.linearModifier and TypeClassDescriptionclassA trainer for a linear regression model which uses SGD.Methods in org.tribuo.regression.sgd.linear that return DenseVectorModifier and TypeMethodDescriptionprotected DenseVectorLinearSGDTrainer.getTarget(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Methods in org.tribuo.regression.sgd.linear that return types with arguments of type DenseVectorModifier and TypeMethodDescriptionprotected SGDObjective<DenseVector> LinearSGDTrainer.getObjective() -
Uses of DenseVector in org.tribuo.regression.sgd.objectives
Methods in org.tribuo.regression.sgd.objectives with parameters of type DenseVectorModifier and TypeMethodDescriptionAbsoluteLoss.loss(DenseVector truth, SGDVector prediction) Deprecated.Huber.loss(DenseVector truth, SGDVector prediction) Deprecated.SquaredLoss.loss(DenseVector truth, SGDVector prediction) Deprecated.AbsoluteLoss.lossAndGradient(DenseVector truth, SGDVector prediction) Huber.lossAndGradient(DenseVector truth, SGDVector prediction) SquaredLoss.lossAndGradient(DenseVector truth, SGDVector prediction)