Uses of Class
org.tribuo.math.la.DenseVector
Packages that use DenseVector
Package
Description
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides a multithreaded implementation of K-Means, with a
configurable distance function.
Provides the base classes for models trained with stochastic gradient descent.
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides some utility tensors for use in gradient optimisers.
Provides classes and infrastructure for working with multi-label classification problems.
Provides infrastructure for Stochastic Gradient Descent based regression models.
Provides an implementation of linear regression using Stochastic Gradient Descent.
Provides regression loss functions for Stochastic Gradient Descent.
-
Uses of DenseVector in org.tribuo.classification.sgd.crf
Fields in org.tribuo.classification.sgd.crf declared as DenseVectorModifier and TypeFieldDescriptionfinal DenseVector[]
ChainHelper.ChainBPResults.alphas
final DenseVector[]
ChainHelper.ChainBPResults.betas
final DenseVector[]
ChainHelper.ChainCliqueValues.localValues
Methods in org.tribuo.classification.sgd.crf that return DenseVectorModifier and TypeMethodDescriptionCRFModel.getFeatureWeights
(int featureID) Get a copy of the weights for featurefeatureID
.CRFModel.getFeatureWeights
(String featureName) Get a copy of the weights for feature namedfeatureName
.CRFParameters.getFeatureWeights
(int id) Gets a copy of the weights for the specified label id.CRFParameters.getLocalScores
(SGDVector[] features) Generate the local scores (i.e., the linear classifier for each token).CRFParameters.predictMarginals
(SGDVector[] features) Generate a prediction using Belief Propagation.Methods in org.tribuo.classification.sgd.crf with parameters of type DenseVectorModifier and TypeMethodDescriptionstatic double
ChainHelper.sumLogProbs
(DenseVector input) Sums the log probabilities. -
Uses of DenseVector in org.tribuo.clustering.kmeans
Methods in org.tribuo.clustering.kmeans that return DenseVectorModifier and TypeMethodDescriptionKMeansModel.getCentroidVectors()
Returns a copy of the centroids.Methods in org.tribuo.clustering.kmeans with parameters of type DenseVectorModifier and TypeMethodDescriptionprotected void
KMeansTrainer.mStep
(ForkJoinPool fjp, DenseVector[] centroidVectors, Map<Integer, List<Integer>> clusterAssignments, SparseVector[] data, double[] weights) Runs the mStep, writing to thecentroidVectors
array. -
Uses of DenseVector in org.tribuo.common.sgd
Fields in org.tribuo.common.sgd declared as DenseVector -
Uses of DenseVector in org.tribuo.math
Methods in org.tribuo.math that return DenseVectorModifier and TypeMethodDescriptionGenerates an un-normalized prediction by feeding the features through the parameters.Generates an unnormalised prediction by leftMultiply'ing the weights with the incoming features. -
Uses of DenseVector in org.tribuo.math.la
Methods in org.tribuo.math.la that return DenseVectorModifier and TypeMethodDescriptionAddsother
to this vector, producing a newDenseVector
.DenseMatrix.columnSum()
Returns the dense vector containing each column sum.DenseVector.copy()
static DenseVector
DenseVector.createDenseVector
(double[] values) Defensively copies the values before construction.static <T extends Output<T>>
DenseVectorDenseVector.createDenseVector
(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aDenseVector
from anExample
.SparseVector.densify()
Returns a dense vector copying this sparse vector.DenseMatrix.gatherAcrossDim1
(int[] elements) DenseMatrix.gatherAcrossDim2
(int[] elements) DenseMatrix.getColumn
(int index) Returns a copy of the specified column.DenseMatrix.getRow
(int i) DenseMatrix.leftMultiply
(SGDVector input) DenseSparseMatrix.leftMultiply
(SGDVector input) DenseMatrix.rightMultiply
(SGDVector input) DenseSparseMatrix.rightMultiply
(SGDVector input) rightMultiply is very inefficient on DenseSparseMatrix due to the storage format.DenseMatrix.rowSum()
DenseSparseMatrix.rowSum()
Matrix.rowSum()
Generates aDenseVector
representing the sum of each row.DenseVector.scale
(double coefficient) Subtractsother
from this vector, producing a newDenseVector
.Methods in org.tribuo.math.la with parameters of type DenseVectorModifier and TypeMethodDescriptionvoid
DenseMatrix.rowScaleInPlace
(DenseVector scalingCoefficients) void
DenseSparseMatrix.rowScaleInPlace
(DenseVector scalingCoefficients) void
Matrix.rowScaleInPlace
(DenseVector scalingCoefficients) Scales each row by the appropriate value in theDenseVector
.void
DenseVector.setElements
(DenseVector other) Sets all the elements of this vector to be the same asother
.Constructors in org.tribuo.math.la with parameters of type DenseVector -
Uses of DenseVector in org.tribuo.math.optimisers.util
Subclasses of DenseVector in org.tribuo.math.optimisers.utilModifier and TypeClassDescriptionclass
A subclass ofDenseVector
which shrinks the value every time a new value is added.Methods in org.tribuo.math.optimisers.util that return DenseVectorModifier and TypeMethodDescriptionShrinkingVector.convertToDense()
ShrinkingMatrix.leftMultiply
(SGDVector input) Constructors in org.tribuo.math.optimisers.util with parameters of type DenseVectorModifierConstructorDescriptionShrinkingVector
(DenseVector v, double baseRate, boolean scaleShrinking) ShrinkingVector
(DenseVector v, double baseRate, double lambda) -
Uses of DenseVector in org.tribuo.multilabel
Methods in org.tribuo.multilabel that return DenseVectorModifier and TypeMethodDescriptionMultiLabel.convertToDenseVector
(ImmutableOutputInfo<MultiLabel> info) Converts this MultiLabel into a DenseVector using the indices from the output info. -
Uses of DenseVector in org.tribuo.regression.sgd
Subinterfaces with type arguments of type DenseVector in org.tribuo.regression.sgdModifier and TypeInterfaceDescriptioninterface
An interface for regression objectives.Methods in org.tribuo.regression.sgd with parameters of type DenseVectorModifier and TypeMethodDescriptionRegressionObjective.loss
(DenseVector truth, SGDVector prediction) Deprecated.In 4.1 to move to the new name, lossAndGradient.RegressionObjective.lossAndGradient
(DenseVector truth, SGDVector prediction) static void
Util.shuffleInPlace
(SparseVector[] features, DenseVector[] regressors, double[] weights, int[] indices, SplittableRandom rng) In place shuffle of the features, labels and weights.static void
Util.shuffleInPlace
(SparseVector[] features, DenseVector[] regressors, double[] weights, SplittableRandom rng) In place shuffle of the features, labels and weights. -
Uses of DenseVector in org.tribuo.regression.sgd.linear
Subclasses with type arguments of type DenseVector in org.tribuo.regression.sgd.linearModifier and TypeClassDescriptionclass
A trainer for a linear regression model which uses SGD.Methods in org.tribuo.regression.sgd.linear that return DenseVectorModifier and TypeMethodDescriptionprotected DenseVector
LinearSGDTrainer.getTarget
(ImmutableOutputInfo<Regressor> outputInfo, Regressor output) Methods in org.tribuo.regression.sgd.linear that return types with arguments of type DenseVectorModifier and TypeMethodDescriptionprotected SGDObjective
<DenseVector> LinearSGDTrainer.getObjective()
-
Uses of DenseVector in org.tribuo.regression.sgd.objectives
Methods in org.tribuo.regression.sgd.objectives with parameters of type DenseVectorModifier and TypeMethodDescriptionAbsoluteLoss.loss
(DenseVector truth, SGDVector prediction) Deprecated.Huber.loss
(DenseVector truth, SGDVector prediction) Deprecated.SquaredLoss.loss
(DenseVector truth, SGDVector prediction) Deprecated.AbsoluteLoss.lossAndGradient
(DenseVector truth, SGDVector prediction) Huber.lossAndGradient
(DenseVector truth, SGDVector prediction) SquaredLoss.lossAndGradient
(DenseVector truth, SGDVector prediction)