Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly |
Provides classes and infrastructure for anomaly detection problems.
|
org.tribuo.anomaly.liblinear |
Provides an interface to LibLinear-java for anomaly detection problems.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
org.tribuo.classification |
Provides classes and infrastructure for multiclass classification problems.
|
org.tribuo.classification.ensemble |
Provides majority vote ensemble combiners for classification
along with an implementation of multiclass Adaboost.
|
org.tribuo.classification.evaluation |
Evaluation classes for multi-class classification.
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.sequence |
Provides infrastructure for
SequenceModel s which
emit Label s at each step of the sequence. |
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.classification.xgboost |
Provides an interface to XGBoost for classification problems.
|
org.tribuo.clustering |
Provides classes and infrastructure for working with clustering problems.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.onnx |
This package contains a Tribuo wrapper around the ONNX Runtime.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.interop.tensorflow.sequence |
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel abstraction. |
org.tribuo.multilabel |
Provides classes and infrastructure for working with multi-label classification problems.
|
org.tribuo.multilabel.evaluation |
Evaluation classes for multi-label classification using
MultiLabel . |
org.tribuo.multilabel.sgd.linear |
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
|
org.tribuo.regression |
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
|
org.tribuo.regression.ensemble |
Provides
EnsembleCombiner implementations
for working with multi-output regression problems. |
org.tribuo.regression.evaluation |
Evaluation classes for single or multi-dimensional regression.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.regression.xgboost |
Provides an interface to XGBoost for regression problems.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
Modifier and Type | Field and Description |
---|---|
protected ImmutableOutputInfo<T> |
Model.outputIDInfo
The outputs this model predicts.
|
protected ImmutableOutputInfo<T> |
ImmutableDataset.outputIDInfo
Output information, and id numbers for outputs found in this dataset.
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<T> |
OutputFactory.constructInfoForExternalModel(Map<T,Integer> mapping)
Creates an
ImmutableOutputInfo from the supplied mapping. |
ImmutableOutputInfo<T> |
OutputInfo.generateImmutableOutputInfo()
Generates an
ImmutableOutputInfo which has a copy of the data
in this OutputInfo , but also has id values and is immutable. |
ImmutableOutputInfo<T> |
MutableDataset.getOutputIDInfo() |
ImmutableOutputInfo<T> |
Model.getOutputIDInfo()
Gets the output domain.
|
ImmutableOutputInfo<T> |
ImmutableDataset.getOutputIDInfo() |
abstract ImmutableOutputInfo<T> |
Dataset.getOutputIDInfo()
Returns or generates an
ImmutableOutputInfo . |
ImmutableOutputInfo<T> |
ImmutableDataset.getOutputInfo() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
Constructor and Description |
---|
ImmutableDataset(DataProvenance description,
OutputFactory<T> outputFactory,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
This is dangerous, and should not be used unless you've overridden everything in ImmutableDataset.
|
ImmutableDataset(Iterable<Example<T>> dataSource,
DataProvenance description,
OutputFactory<T> outputFactory,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean dropInvalidExamples)
Creates a dataset from a data source.
|
Model(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities)
Constructs a new model, storing the supplied fields.
|
SparseModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,List<String>> activeFeatures)
Constructs a sparse model from the supplied arguments.
|
Modifier and Type | Class and Description |
---|---|
class |
ImmutableAnomalyInfo
An
ImmutableOutputInfo object for Event s. |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Event> |
AnomalyFactory.constructInfoForExternalModel(Map<Event,Integer> mapping) |
ImmutableOutputInfo<Event> |
AnomalyInfo.generateImmutableOutputInfo() |
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Event> |
LibLinearAnomalyTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Event> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
protected de.bwaldvogel.liblinear.Parameter |
LibLinearAnomalyTrainer.setupParameters(ImmutableOutputInfo<Event> labelIDMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Event> |
LibSVMAnomalyTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Event> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Class and Description |
---|---|
class |
ImmutableLabelInfo
An ImmutableOutputInfo object for Labels.
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Label> |
LabelFactory.constructInfoForExternalModel(Map<Label,Integer> mapping) |
ImmutableOutputInfo<Label> |
LabelInfo.generateImmutableOutputInfo() |
Modifier and Type | Method and Description |
---|---|
Prediction<Label> |
VotingCombiner.combine(ImmutableOutputInfo<Label> outputInfo,
List<Prediction<Label>> predictions) |
Prediction<Label> |
FullyWeightedVotingCombiner.combine(ImmutableOutputInfo<Label> outputInfo,
List<Prediction<Label>> predictions) |
Prediction<Label> |
VotingCombiner.combine(ImmutableOutputInfo<Label> outputInfo,
List<Prediction<Label>> predictions,
float[] weights) |
Prediction<Label> |
FullyWeightedVotingCombiner.combine(ImmutableOutputInfo<Label> outputInfo,
List<Prediction<Label>> predictions,
float[] weights) |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Label> |
LabelConfusionMatrix.getDomain() |
ImmutableOutputInfo<T> |
ConfusionMatrix.getDomain()
Returns the classification domain that this confusion matrix operates over.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Classifiable<T>> |
ConfusionMatrix.sumOverOutputs(ImmutableOutputInfo<T> domain,
ToDoubleFunction<T> getter)
Sums the supplied getter over the domain.
|
Constructor and Description |
---|
LabelConfusionMatrix(ImmutableOutputInfo<Label> domain,
List<Prediction<Label>> predictions)
Creates a confusion matrix from the supplied predictions and label info.
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Label> |
LibLinearClassificationTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
protected de.bwaldvogel.liblinear.Parameter |
LibLinearClassificationTrainer.setupParameters(ImmutableOutputInfo<Label> labelIDMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Label> |
LibSVMClassificationTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
protected libsvm.svm_parameter |
LibSVMClassificationTrainer.setupParameters(ImmutableOutputInfo<Label> outputIDInfo) |
Constructor and Description |
---|
ConfidencePredictingSequenceModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap) |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<int[],SparseVector[]> |
CRFModel.convert(SequenceExample<Label> example,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap)
Deprecated.
As it's replaced with
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap) which is more flexible. |
static com.oracle.labs.mlrg.olcut.util.Pair<int[],SGDVector[]> |
CRFModel.convertToVector(SequenceExample<Label> example,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap)
Converts a
SequenceExample into an array of SGDVector s and labels suitable for CRF prediction. |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Label> outputInfo,
LinearParameters parameters) |
protected Integer |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<Label> outputInfo,
Label output) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Label>> |
XGBoostClassificationConverter.convertBatchOutput(ImmutableOutputInfo<Label> info,
List<float[][]> probabilitiesList,
int[] numValidFeatures,
Example<Label>[] examples) |
Prediction<Label> |
XGBoostClassificationConverter.convertOutput(ImmutableOutputInfo<Label> info,
List<float[]> probabilitiesList,
int numValidFeatures,
Example<Label> example) |
Modifier and Type | Class and Description |
---|---|
class |
ImmutableClusteringInfo
An
ImmutableOutputInfo object for ClusterIDs. |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<ClusterID> |
ClusteringFactory.constructInfoForExternalModel(Map<ClusterID,Integer> mapping)
Unlike the other info types, clustering directly uses the integer IDs as the stored value,
so this mapping discards the cluster IDs and just uses the supplied integers.
|
ImmutableOutputInfo<ClusterID> |
ClusteringInfo.generateImmutableOutputInfo() |
Modifier and Type | Method and Description |
---|---|
protected abstract LibLinearModel<T> |
LibLinearTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models)
Construct the appropriate subtype of LibLinearModel for the prediction task.
|
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibLinear's format. |
protected de.bwaldvogel.liblinear.Parameter |
LibLinearTrainer.setupParameters(ImmutableOutputInfo<T> info)
Constructs the parameters.
|
Constructor and Description |
---|
LibLinearModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> labelIDMap,
boolean generatesProbabilities,
List<de.bwaldvogel.liblinear.Model> models)
Constructs a LibLinear model from the supplied arguments.
|
Modifier and Type | Method and Description |
---|---|
protected abstract LibSVMModel<T> |
LibSVMTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<libsvm.svm_model> models)
Construct the appropriate subtype of LibSVMModel for the prediction task.
|
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibSVM's format. |
protected libsvm.svm_parameter |
LibSVMTrainer.setupParameters(ImmutableOutputInfo<T> info)
Constructs the svm_parameter.
|
Constructor and Description |
---|
LibSVMModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
List<libsvm.svm_model> models)
Constructs a LibSVMModel from the supplied arguments.
|
Modifier and Type | Method and Description |
---|---|
protected abstract V |
AbstractSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<T> outputInfo,
X parameters)
Creates the appropriate model subclass for this subclass of AbstractSGDTrainer.
|
protected abstract U |
AbstractSGDTrainer.getTarget(ImmutableOutputInfo<T> outputInfo,
T output)
Extracts the appropriate training time representation from the supplied output.
|
Constructor and Description |
---|
AbstractLinearSGDModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
LinearParameters parameters,
boolean generatesProbabilities)
Constructs a linear model trained via SGD.
|
AbstractSGDModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
FeedForwardParameters weights,
boolean generatesProbabilities,
boolean addBias)
Constructs a linear model trained via SGD.
|
Constructor and Description |
---|
TreeModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,List<String>> activeFeatures)
Constructs a trained decision tree model.
|
Modifier and Type | Method and Description |
---|---|
List<Prediction<T>> |
XGBoostOutputConverter.convertBatchOutput(ImmutableOutputInfo<T> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<T>[] examples)
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction . |
Prediction<T> |
XGBoostOutputConverter.convertOutput(ImmutableOutputInfo<T> info,
List<float[]> probabilities,
int numValidFeatures,
Example<T> example)
Converts a list of float arrays from XGBoost Boosters into a Tribuo
Prediction . |
protected XGBoostModel<T> |
XGBoostTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<ml.dmlc.xgboost4j.java.Booster> models,
XGBoostOutputConverter<T> converter) |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<T> |
DatasetView.getOutputInfo() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
Constructor and Description |
---|
DatasetView(Dataset<T> dataset,
int[] exampleIndices,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
String tag)
Creates a DatasetView which includes the supplied indices from the dataset.
|
Modifier and Type | Method and Description |
---|---|
Prediction<T> |
EnsembleCombiner.combine(ImmutableOutputInfo<T> outputInfo,
List<Prediction<T>> predictions)
Combine the predictions.
|
Prediction<T> |
EnsembleCombiner.combine(ImmutableOutputInfo<T> outputInfo,
List<Prediction<T>> predictions,
float[] weights)
Combine the supplied predictions.
|
protected Model<T> |
BaggingTrainer.trainSingleModel(Dataset<T> examples,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
SplittableRandom localRNG,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Constructor and Description |
---|
EnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels)
Builds an EnsembleModel from the supplied model list.
|
WeightedEnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner)
Unless you are implementing a
Trainer you should
not use this constructor directly. |
WeightedEnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner,
float[] weights)
Unless you are implementing a
Trainer you should
not use this constructor directly. |
Constructor and Description |
---|
IndexedArrayExample(Example<T> other,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<T> outputMap)
This constructor removes unknown features.
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
ExternalModel.createOutputInfo(OutputFactory<T> factory,
Map<T,Integer> outputs)
Creates an output info from a set of outputs.
|
Constructor and Description |
---|
ExternalModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,Integer> featureMapping) |
ExternalModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
int[] featureForwardMapping,
int[] featureBackwardMapping,
boolean generatesProbabilities) |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LabelTransformer.transformToBatchOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo) |
List<Regressor> |
RegressorTransformer.transformToBatchOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<T> |
OutputTransformer.transformToBatchOutput(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo)
Converts a
OnnxValue containing multiple outputs into a list of Output s. |
List<Prediction<Label>> |
LabelTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int[] numValidFeatures,
List<Example<Label>> examples) |
List<Prediction<Regressor>> |
RegressorTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<T>> |
OutputTransformer.transformToBatchPrediction(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a
OnnxValue containing multiple outputs into a list of Prediction s. |
Label |
LabelTransformer.transformToOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo) |
Regressor |
RegressorTransformer.transformToOutput(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
T |
OutputTransformer.transformToOutput(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo)
Converts a
OnnxValue into the specified output type. |
Prediction<Label> |
LabelTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int numValidFeatures,
Example<Label> example) |
Prediction<Regressor> |
RegressorTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<T> |
OutputTransformer.transformToPrediction(List<ai.onnxruntime.OnnxValue> value,
ImmutableOutputInfo<T> outputIDInfo,
int numValidFeatures,
Example<T> example)
Converts a
OnnxValue into a Prediction . |
Modifier and Type | Method and Description |
---|---|
List<Label> |
LabelConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo) |
List<MultiLabel> |
MultiLabelConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
List<Regressor> |
RegressorConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
List<T> |
OutputConverter.convertToBatchOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo)
Converts a
Tensor containing multiple outputs into a list of Output s. |
List<Prediction<Label>> |
LabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int[] numValidFeatures,
List<Example<Label>> examples) |
List<Prediction<MultiLabel>> |
MultiLabelConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int[] numValidFeatures,
List<Example<MultiLabel>> examples) |
List<Prediction<Regressor>> |
RegressorConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int[] numValidFeatures,
List<Example<Regressor>> examples) |
List<Prediction<T>> |
OutputConverter.convertToBatchPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo,
int[] numValidFeatures,
List<Example<T>> examples)
Converts a
Tensor containing multiple outputs into a list of Prediction s. |
Label |
LabelConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo) |
MultiLabel |
MultiLabelConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
Regressor |
RegressorConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo) |
T |
OutputConverter.convertToOutput(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo)
Converts a
Tensor into the specified output type. |
Prediction<Label> |
LabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Label> outputIDInfo,
int numValidFeatures,
Example<Label> example) |
Prediction<MultiLabel> |
MultiLabelConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<MultiLabel> outputIDInfo,
int numValidFeatures,
Example<MultiLabel> example) |
Prediction<Regressor> |
RegressorConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<Regressor> outputIDInfo,
int numValidFeatures,
Example<Regressor> example) |
Prediction<T> |
OutputConverter.convertToPrediction(org.tensorflow.Tensor tensor,
ImmutableOutputInfo<T> outputIDInfo,
int numValidFeatures,
Example<T> example)
Converts a
Tensor into a Prediction . |
org.tensorflow.Tensor |
LabelConverter.convertToTensor(Label example,
ImmutableOutputInfo<Label> outputIDInfo) |
org.tensorflow.Tensor |
LabelConverter.convertToTensor(List<Example<Label>> examples,
ImmutableOutputInfo<Label> outputIDInfo) |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(List<Example<MultiLabel>> examples,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(List<Example<Regressor>> examples,
ImmutableOutputInfo<Regressor> outputIDInfo) |
org.tensorflow.Tensor |
OutputConverter.convertToTensor(List<Example<T>> examples,
ImmutableOutputInfo<T> outputIDInfo)
Converts a list of
Example into a Tensor representing all the outputs
in the list. |
org.tensorflow.Tensor |
MultiLabelConverter.convertToTensor(MultiLabel example,
ImmutableOutputInfo<MultiLabel> outputIDInfo) |
org.tensorflow.Tensor |
RegressorConverter.convertToTensor(Regressor example,
ImmutableOutputInfo<Regressor> outputIDInfo) |
org.tensorflow.Tensor |
OutputConverter.convertToTensor(T output,
ImmutableOutputInfo<T> outputIDInfo)
Converts an
Output into a Tensor representing it's output. |
Constructor and Description |
---|
TensorFlowModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
org.tensorflow.proto.framework.GraphDef trainedGraphDef,
int batchSize,
String outputName,
FeatureConverter featureConverter,
OutputConverter<T> outputConverter)
Builds a TFModel.
|
Modifier and Type | Method and Description |
---|---|
List<List<Prediction<T>>> |
SequenceOutputConverter.decode(org.tensorflow.Tensor outputs,
List<SequenceExample<T>> inputBatch,
ImmutableOutputInfo<T> labelMap)
Decode graph output tensors corresponding to a batch of input sequences.
|
List<Prediction<T>> |
SequenceOutputConverter.decode(org.tensorflow.Tensor output,
SequenceExample<T> input,
ImmutableOutputInfo<T> labelMap)
Decode a tensor of graph output into a list of predictions for the input sequence.
|
TensorMap |
SequenceOutputConverter.encode(List<SequenceExample<T>> batch,
ImmutableOutputInfo<T> labelMap)
Encodes a batch of labels as a feed dict.
|
TensorMap |
SequenceOutputConverter.encode(SequenceExample<T> example,
ImmutableOutputInfo<T> labelMap)
Encodes an example's label as a feed dict.
|
Modifier and Type | Class and Description |
---|---|
class |
ImmutableMultiLabelInfo
An ImmutableOutputInfo for working with multi-label tasks.
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<MultiLabel> |
MultiLabelFactory.constructInfoForExternalModel(Map<MultiLabel,Integer> mapping) |
ImmutableOutputInfo<MultiLabel> |
MultiLabelInfo.generateImmutableOutputInfo() |
Modifier and Type | Method and Description |
---|---|
DenseVector |
MultiLabel.convertToDenseVector(ImmutableOutputInfo<MultiLabel> info)
Converts this MultiLabel into a DenseVector using the indices from the output info.
|
SparseVector |
MultiLabel.convertToSparseVector(ImmutableOutputInfo<MultiLabel> info)
Converts this MultiLabel into a SparseVector using the indices from the output info.
|
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<MultiLabel> |
MultiLabelConfusionMatrix.getDomain() |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<MultiLabel> outputInfo,
LinearParameters parameters) |
protected SparseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<MultiLabel> outputInfo,
MultiLabel output) |
Modifier and Type | Class and Description |
---|---|
class |
ImmutableRegressionInfo
A
ImmutableOutputInfo for Regressor s. |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<Regressor> |
RegressionFactory.constructInfoForExternalModel(Map<Regressor,Integer> mapping) |
ImmutableOutputInfo<Regressor> |
RegressionInfo.generateImmutableOutputInfo() |
Modifier and Type | Method and Description |
---|---|
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions) |
Prediction<Regressor> |
AveragingCombiner.combine(ImmutableOutputInfo<Regressor> outputInfo,
List<Prediction<Regressor>> predictions,
float[] weights) |
Constructor and Description |
---|
RegressionSufficientStatistics(ImmutableOutputInfo<Regressor> domain,
List<Prediction<Regressor>> predictions,
boolean useExampleWeights) |
Modifier and Type | Method and Description |
---|---|
protected abstract SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
protected abstract SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
Constructor and Description |
---|
SkeletalIndependentRegressionModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
models.size() must equal labelInfo.getDomain().size()
|
SkeletalIndependentRegressionSparseModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
Map<String,List<String>> activeFeatures)
models.size() must equal labelInfo.getDomain().size()
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Regressor> |
LibLinearRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Regressor> |
LibSVMRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Constructor and Description |
---|
RegressorTrainingNode(RegressorImpurity impurity,
RegressorTrainingNode.InvertedData tuple,
int dimIndex,
String dimName,
int numExamples,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputInfo,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
LinearParameters parameters) |
protected DenseVector |
LinearSGDTrainer.getTarget(ImmutableOutputInfo<Regressor> outputInfo,
Regressor output) |
Modifier and Type | Method and Description |
---|---|
List<Prediction<Regressor>> |
XGBoostRegressionConverter.convertBatchOutput(ImmutableOutputInfo<Regressor> info,
List<float[][]> probabilities,
int[] numValidFeatures,
Example<Regressor>[] examples) |
Prediction<Regressor> |
XGBoostRegressionConverter.convertOutput(ImmutableOutputInfo<Regressor> info,
List<float[]> probabilities,
int numValidFeatures,
Example<Regressor> example) |
Modifier and Type | Field and Description |
---|---|
protected ImmutableOutputInfo<T> |
ImmutableSequenceDataset.outputIDInfo
A map from labels to IDs for the labels found in this dataset.
|
protected ImmutableOutputInfo<T> |
SequenceModel.outputIDMap |
Modifier and Type | Method and Description |
---|---|
ImmutableOutputInfo<T> |
SequenceModel.getOutputIDInfo()
Gets the output domain.
|
abstract ImmutableOutputInfo<T> |
SequenceDataset.getOutputIDInfo()
An immutable view on the output info in this dataset.
|
ImmutableOutputInfo<T> |
MutableSequenceDataset.getOutputIDInfo() |
ImmutableOutputInfo<T> |
ImmutableSequenceDataset.getOutputIDInfo() |
ImmutableOutputInfo<T> |
ImmutableSequenceDataset.getOutputInfo() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
Constructor and Description |
---|
ImmutableSequenceDataset(DataProvenance sourceProvenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
This is dangerous, and should not be used unless you've overridden everything in ImmutableSequenceDataset.
|
ImmutableSequenceDataset(Iterable<SequenceExample<T>> dataSource,
DataProvenance sourceProvenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
OutputFactory<T> outputFactory)
Creates a dataset from a data source.
|
SequenceModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDMap) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.