Uses of Interface
org.tribuo.Output
Packages that use Output
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides classes and infrastructure for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides core infrastructure for local model based explanations.
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides classes and infrastructure for working with clustering problems.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output types.Provides common functionality for building decision trees, irrespective
of the predicted
Output.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
Provides classes for processing columnar data and generating
Examples.Provides implementations of
ResponseProcessor.Provides classes which can load columnar data (using a
RowProcessor)
from a CSV (or other character delimited format) file.Provides classes which can load columnar data (using a
RowProcessor)
from a SQL source.Provides implementations of text data processors.
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
Simple data sources for ingesting or aggregating data.
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Evaluation base classes, along with code for train/test splits and cross validation.
This package contains the infrastructure classes for building evaluation metrics.
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model.Provides implementations of base classes and interfaces from
org.tribuo.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
This package contains a Tribuo wrapper around the ONNX Runtime.
Provides an interface to Tensorflow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides an interface for working with Tensorflow sequence models, using Tribuo's
SequenceModel abstraction.Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides classes and infrastructure for working with multi-label classification problems.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Provides core classes for working with sequences of
Examples.Provides infrastructure for applying transformations to a
Dataset.-
Uses of Output in org.tribuo
Classes in org.tribuo with type parameters of type OutputModifier and TypeInterfaceDescriptioninterfaceConfigurableDataSource<T extends Output<T>>It's aDataSourcethat's alsoConfigurable.classA class for sets of data, which are used to train and evaluate classifiers.interfaceDataSource<T extends Output<T>>A interface for things that can be given to a Dataset's constructor.classAn example used for training and evaluation.classHolds anExample, aPredictionand a Map from String to List of Pairs that contains the per output explanation.classImmutableDataset<T extends Output<T>>This is aDatasetwhich has anImmutableFeatureMapto store the feature information.interfaceImmutableOutputInfo<T extends Output<T>>AnOutputInfothat is fixed, and contains an id number for each valid output.interfaceIncrementalTrainer<T extends Output<T>, U extends Model<T>>An interface for incremental training ofModels.classA prediction model, which is used to predict outputs for unseen instances.classMutableDataset<T extends Output<T>>A MutableDataset is aDatasetwith aMutableFeatureMapwhich grows over time.interfaceMutableOutputInfo<T extends Output<T>>A mutable OutputInfo that can record observed output values.interfaceOutput is the root interface for the supported prediction types.interfaceOutputFactory<T extends Output<T>>An interface associated with a specificOutput, which can generate the appropriate Output subclass, andOutputInfosubclass.interfaceOutputInfo<T extends Output<T>>Tracks relevant properties of the appropriateOutputsubclass.classPrediction<T extends Output<T>>A prediction made by aModel.classSparseModel<T extends Output<T>>A model which uses a subset of the features it knows about to make predictions.interfaceSparseTrainer<T extends Output<T>>Denotes this trainer emits aSparseModel.interfaceAn interface for things that can train predictive models.Fields in org.tribuo declared as OutputModifier and TypeFieldDescriptionprotected final TExample.outputThe output associated with this example.Methods in org.tribuo with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
ImmutableDataset<T> ImmutableDataset.copyDataset(Dataset<T> dataset) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
ImmutableDataset<T> ImmutableDataset.copyDataset(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableDataset<T> ImmutableDataset.copyDataset(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
MutableDataset<T> MutableDataset.createDeepCopy(Dataset<T> other) Creates a deep copy of the suppliedDatasetwhich is mutable.static <T extends Output<T>>
ImmutableDataset<T> ImmutableDataset.hashFeatureMap(Dataset<T> dataset, Hasher hasher) Creates an immutable shallow copy of the supplied dataset, using the hasher to generate aHashedFeatureMapwhich transparently maps from the feature name to the hashed variant.static <T extends Output<T>>
voidOutputFactory.validateMapping(Map<T, Integer> mapping) Validates that the mapping can be used as an output info, i.e.Method parameters in org.tribuo with type arguments of type Output -
Uses of Output in org.tribuo.anomaly
Classes in org.tribuo.anomaly that implement OutputModifier and TypeClassDescriptionfinal class -
Uses of Output in org.tribuo.classification
Subinterfaces of Output in org.tribuo.classificationModifier and TypeInterfaceDescriptioninterfaceClassifiable<T extends Classifiable<T>>A tag interface for multi-class and multi-label classification tasks.Classes in org.tribuo.classification that implement OutputModifier and TypeClassDescriptionfinal classAn immutable multi-class classification label. -
Uses of Output in org.tribuo.classification.explanations
Classes in org.tribuo.classification.explanations with type parameters of type OutputModifier and TypeInterfaceDescriptioninterfaceColumnarExplainer<T extends Output<T>>An explainer for data using Tribuo's columnar data package.interfaceExplanation<T extends Output<T>>An explanation knows what features are used, what the explaining Model is and what the original Model's prediction is.interfaceTabularExplainer<T extends Output<T>>An explainer for tabular data.interfaceTextExplainer<T extends Output<T>>An explainer for text data. -
Uses of Output in org.tribuo.classification.sgd.crf
Methods in org.tribuo.classification.sgd.crf with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
SparseVector[]CRFModel.convert(SequenceExample<T> example, ImmutableFeatureMap featureIDMap) Converts aSequenceExampleinto an array ofSparseVectors suitable for CRF prediction. -
Uses of Output in org.tribuo.clustering
Classes in org.tribuo.clustering that implement Output -
Uses of Output in org.tribuo.common.liblinear
Classes in org.tribuo.common.liblinear with type parameters of type OutputModifier and TypeClassDescriptionclassLibLinearModel<T extends Output<T>>AModelwhich wraps a LibLinear-java model.classLibLinearTrainer<T extends Output<T>>ATrainerwhich wraps a liblinear-java trainer.interfaceLibLinearType<T extends Output<T>>A carrier type for the liblinear algorithm type.Methods in org.tribuo.common.liblinear with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
de.bwaldvogel.liblinear.FeatureNode[]LibLinearTrainer.exampleToNodes(Example<T> example, ImmutableFeatureMap featureIDMap, List<de.bwaldvogel.liblinear.FeatureNode> features) Converts a TribuoExampleinto a liblinearFeatureNodearray, including a bias feature. -
Uses of Output in org.tribuo.common.libsvm
Classes in org.tribuo.common.libsvm with type parameters of type OutputModifier and TypeClassDescriptionclassLibSVMModel<T extends Output<T>>A model that uses an underlying libSVM model to make the predictions.classLibSVMTrainer<T extends Output<T>>A trainer that will train using libsvm's Java implementation.classSVMParameters<T extends Output<T>>A container for SVM parameters and the kernel.interfaceA carrier type for the SVM type.Methods in org.tribuo.common.libsvm with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
libsvm.svm_node[]LibSVMTrainer.exampleToNodes(Example<T> example, ImmutableFeatureMap featureIDMap, List<libsvm.svm_node> features) Convert the example into an array of svm_node which represents a sparse feature vector. -
Uses of Output in org.tribuo.common.nearest
Classes in org.tribuo.common.nearest with type parameters of type OutputModifier and TypeClassDescriptionclassA k-nearest neighbours model.classKNNTrainer<T extends Output<T>>ATrainerfor k-nearest neighbour models. -
Uses of Output in org.tribuo.common.tree
Classes in org.tribuo.common.tree with type parameters of type OutputModifier and TypeClassDescriptionclassAbstractCARTTrainer<T extends Output<T>>Base class forTrainer's that use an approximation of the CART algorithm to build a decision tree.classAbstractTrainingNode<T extends Output<T>>Base class for decision tree nodes used at training time.interfaceDecisionTreeTrainer<T extends Output<T>>A tag interface for aTrainerso the random forests trainer can check if it's actually a tree.classAn immutable leafNodethat can create a prediction.interfaceA node in a decision tree.classRandomForestTrainer<T extends Output<T>>A trainer which produces a random forest.classAn immutableNodewith a split and two child nodes.class -
Uses of Output in org.tribuo.common.xgboost
Classes in org.tribuo.common.xgboost with type parameters of type OutputModifier and TypeClassDescriptionfinal classXGBoostExternalModel<T extends Output<T>>AModelwhich wraps around a XGBoost.Booster which was trained by a system other than Tribuo.final classXGBoostModel<T extends Output<T>>AModelwhich wraps around a XGBoost.Booster.interfaceXGBoostOutputConverter<T extends Output<T>>Converts the output of XGBoost into the appropriate prediction type.classXGBoostTrainer<T extends Output<T>>ATrainerwhich wraps the XGBoost training procedure.protected static classXGBoostTrainer.DMatrixTuple<T extends Output<T>>Tuple of a DMatrix, the number of valid features in each example, and the examples themselves.Methods in org.tribuo.common.xgboost with type parameters of type OutputModifier and TypeMethodDescriptionprotected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertDataset(Dataset<T> examples) protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertDataset(Dataset<T> examples, Function<T, Float> responseExtractor) protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertExample(Example<T> example, ImmutableFeatureMap featureMap) protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertExample(Example<T> example, ImmutableFeatureMap featureMap, Function<T, Float> responseExtractor) Converts an examples into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertExamples(Iterable<Example<T>> examples, ImmutableFeatureMap featureMap) protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T> XGBoostTrainer.convertExamples(Iterable<Example<T>> examples, ImmutableFeatureMap featureMap, Function<T, Float> responseExtractor) Converts an iterable of examples into a DMatrix.protected static <T extends Output<T>>
longXGBoostTrainer.convertSingleExample(Example<T> example, ImmutableFeatureMap featureMap, ArrayList<Float> dataList, ArrayList<Integer> indicesList, ArrayList<Long> headersList, long header) Writes out the features from an example into the three suppliedArrayLists.static <T extends Output<T>>
XGBoostExternalModel<T> XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, String path) Creates anXGBoostExternalModelfrom the supplied model on disk.static <T extends Output<T>>
XGBoostExternalModel<T> XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, Path path) Creates anXGBoostExternalModelfrom the supplied model on disk.static <T extends Output<T>>
XGBoostExternalModel<T> XGBoostExternalModel.createXGBoostModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, ml.dmlc.xgboost4j.java.Booster model, URL provenanceLocation) Creates anXGBoostExternalModelfrom the supplied model. -
Uses of Output in org.tribuo.data
Fields in org.tribuo.data with type parameters of type OutputModifier and TypeFieldDescriptionConfigurableDataSource<? extends Output<?>> PreprocessAndSerialize.PreprocessAndSerializeOptions.dataSourceMethods in org.tribuo.data with type parameters of type OutputModifier and TypeMethodDescriptionDataOptions.load(OutputFactory<T> outputFactory) static <T extends Output<T>>
voidstatic <T extends Output<T>>
void<T extends Output<T>>
void -
Uses of Output in org.tribuo.data.columnar
Classes in org.tribuo.data.columnar with type parameters of type OutputModifier and TypeClassDescriptionclassColumnarDataSource<T extends Output<T>>AConfigurableDataSourcebase class which takes columnar data (e.g., csv or DB table rows) and generatesExamples.interfaceResponseProcessor<T extends Output<T>>An interface that will take the response field and produce anOutput.classRowProcessor<T extends Output<T>>A processor which takes a Map of String to String and returns anExample. -
Uses of Output in org.tribuo.data.columnar.processors.response
Classes in org.tribuo.data.columnar.processors.response with type parameters of type OutputModifier and TypeClassDescriptionclassBinaryResponseProcessor<T extends Output<T>>AResponseProcessorthat takes a single value of the field as the positive class and all other values as the negative class.classFieldResponseProcessor<T extends Output<T>>A response processor that returns the value in a given field.classQuartileResponseProcessor<T extends Output<T>>Processes the response into quartiles and emits them as classification outputs. -
Uses of Output in org.tribuo.data.csv
Classes in org.tribuo.data.csv with type parameters of type OutputModifier and TypeClassDescriptionclassCSVDataSource<T extends Output<T>>ADataSourcefor loading separable data from a text file (e.g., CSV, TSV) and applyingFieldProcessors to it.classLoad a DataSource/Dataset from a CSV file.Methods in org.tribuo.data.csv with type parameters of type Output -
Uses of Output in org.tribuo.data.sql
Classes in org.tribuo.data.sql with type parameters of type OutputModifier and TypeClassDescriptionclassSQLDataSource<T extends Output<T>>ADataSourcefor loading columnar data from a database and applyingFieldProcessors to it. -
Uses of Output in org.tribuo.data.text
Classes in org.tribuo.data.text with type parameters of type OutputModifier and TypeClassDescriptionclassDirectoryFileSource<T extends Output<T>>A data source for a somewhat-common format for text classification datasets: a top level directory that contains a number of subdirectories.classTextDataSource<T extends Output<T>>A base class for textual data sets.interfaceTextFeatureExtractor<T extends Output<T>>An interface for things that take text and turn them into examples that we can use to train or evaluate a classifier. -
Uses of Output in org.tribuo.data.text.impl
Classes in org.tribuo.data.text.impl with type parameters of type OutputModifier and TypeClassDescriptionclassSimpleStringDataSource<T extends Output<T>>A version ofSimpleTextDataSourcethat accepts anIterableof Strings.classSimpleTextDataSource<T extends Output<T>>A dataset for a simple data format for text classification experiments.classTextFeatureExtractorImpl<T extends Output<T>> -
Uses of Output in org.tribuo.dataset
Classes in org.tribuo.dataset with type parameters of type OutputModifier and TypeClassDescriptionfinal classDatasetView<T extends Output<T>>DatasetView provides an immutable view on anotherDatasetthat only exposes selected examples.classMinimumCardinalityDataset<T extends Output<T>>This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.Methods in org.tribuo.dataset with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
DatasetView<T> DatasetView.createBootstrapView(Dataset<T> dataset, int size, long seed) Generates a DatasetView bootstrapped from the supplied Dataset.static <T extends Output<T>>
DatasetView<T> DatasetView.createBootstrapView(Dataset<T> dataset, int size, long seed, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset.static <T extends Output<T>>
DatasetView<T> DatasetView.createView(Dataset<T> dataset, Predicate<Example<T>> predicate, String tag) Creates a view from the supplied dataset, using the specified predicate to test if each example should be in this view.static <T extends Output<T>>
DatasetView<T> DatasetView.createWeightedBootstrapView(Dataset<T> dataset, int size, long seed, float[] exampleWeights) Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.static <T extends Output<T>>
DatasetView<T> DatasetView.createWeightedBootstrapView(Dataset<T> dataset, int size, long seed, float[] exampleWeights, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights. -
Uses of Output in org.tribuo.datasource
Classes in org.tribuo.datasource with type parameters of type OutputModifier and TypeClassDescriptionclassAggregateDataSource<T extends Output<T>>Aggregates multipleDataSources, and round-robins the iterators.final classIDXDataSource<T extends Output<T>>A DataSource which can read IDX formatted data (i.e., MNIST).final classLibSVMDataSource<T extends Output<T>>A DataSource which can read LibSVM formatted data.classListDataSource<T extends Output<T>>A data source which wraps up a list ofExamples along with theirDataSourceProvenanceand anOutputFactory.Methods in org.tribuo.datasource with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
voidLibSVMDataSource.writeLibSVMFormat(Dataset<T> dataset, PrintStream out, boolean zeroIndexed, Function<T, Number> transformationFunc) Writes out a dataset in LibSVM format. -
Uses of Output in org.tribuo.ensemble
Classes in org.tribuo.ensemble with type parameters of type OutputModifier and TypeClassDescriptionclassBaggingTrainer<T extends Output<T>>A Trainer that wraps another trainer and produces a bagged ensemble.interfaceEnsembleCombiner<T extends Output<T>>An interface for combining predictions.classEnsembleExcuse<T extends Output<T>>AnExcusewhich has a List of excuses for each of the ensemble members.classEnsembleModel<T extends Output<T>>A model which contains a list of otherModels.final classWeightedEnsembleModel<T extends Output<T>>An ensemble model that uses weights to combine the ensemble member predictions. -
Uses of Output in org.tribuo.evaluation
Classes in org.tribuo.evaluation with type parameters of type OutputModifier and TypeClassDescriptionclassAbstractEvaluator<T extends Output<T>, C extends MetricContext<T>, E extends Evaluation<T>, M extends EvaluationMetric<T,C>> Base class for evaluators.classCrossValidation<T extends Output<T>, E extends Evaluation<T>>A class that does k-fold cross-validation.interfaceEvaluation<T extends Output<T>>An immutable evaluation of a specific model and dataset.interfaceEvaluationRenderer<T extends Output<T>, E extends Evaluation<T>>Renders anEvaluationinto a String.interfaceEvaluator<T extends Output<T>, E extends Evaluation<T>>An evaluation factory which produces immutableEvaluations of a givenDatasetusing the givenModel.classKFoldSplitter<T extends Output<T>>A k-fold splitter to be used in cross-validation.static classKFoldSplitter.TrainTestFold<T extends Output<T>>Stores a train/test split for a dataset.final classOnlineEvaluator<T extends Output<T>, E extends Evaluation<T>>An evaluator which aggregates predictions and producesEvaluations covering all thePredictions it has seen or created.classTrainTestSplitter<T extends Output<T>>Splits data into training and testing sets.Methods in org.tribuo.evaluation with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>, R extends Evaluation<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer, Double> Calculates the argmax of a metric across the supplied evaluations.static <T extends Output<T>, C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer, Double> EvaluationAggregator.argmax(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).static <T extends Output<T>, C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer, Double> EvaluationAggregator.argmax(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Calculates the argmax of a metric across the supplied datasets.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, List<Prediction<T>> predictions) Summarize model performance on dataset across several metrics.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, Dataset<T> dataset) Summarize model performance on dataset across several metrics.static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> Summarize all fields of a list of evaluations.static <T extends Output<T>, R extends Evaluation<T>>
DescriptiveStatsEvaluationAggregator.summarize(List<R> evaluations, ToDoubleFunction<R> fieldGetter) Summarize a single field of an evaluation across several evaluations.static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> EvaluationAggregator.summarize(Evaluator<T, R> evaluator, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance using the supplied evaluator across several models on one dataset.static <T extends Output<T>, R extends Evaluation<T>>
Map<MetricID<T>, DescriptiveStats> EvaluationAggregator.summarize(Evaluator<T, R> evaluator, Model<T> model, List<? extends Dataset<T>> datasets) Summarize performance according to evaluator for a single model across several datasets.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance w.r.t.static <T extends Output<T>, C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Summarize a model's performance w.r.t. -
Uses of Output in org.tribuo.evaluation.metrics
Classes in org.tribuo.evaluation.metrics with type parameters of type OutputModifier and TypeInterfaceDescriptioninterfaceEvaluationMetric<T extends Output<T>, C extends MetricContext<T>>A metric that can be calculated for the specified output type.classMetricContext<T extends Output<T>>The context for a metric or set of metrics.final classJust an easier-to-read alias forPair<MetricTarget<T>, String>.classMetricTarget<T extends Output<T>>Used by a givenEvaluationMetricto determine whether it should compute its value for a specificOutputvalue or whether it should average them.Methods in org.tribuo.evaluation.metrics with type parameters of type OutputModifier and TypeMethodDescriptionstatic <U extends Output<U>>
MetricTarget<U> MetricTarget.macroAverageTarget()Get the singletonMetricTargetwhich contains theEvaluationMetric.Average.MACRO.static <U extends Output<U>>
MetricTarget<U> MetricTarget.microAverageTarget()Get the singletonMetricTargetwhich contains theEvaluationMetric.Average.MICRO. -
Uses of Output in org.tribuo.hash
Classes in org.tribuo.hash with type parameters of type OutputMethods in org.tribuo.hash with type parameters of type OutputModifier and TypeMethodDescriptionHashingOptions.getHashedTrainer(Trainer<T> innerTrainer) Gets the trainer wrapped in a hashing trainer. -
Uses of Output in org.tribuo.impl
Classes in org.tribuo.impl with type parameters of type OutputModifier and TypeClassDescriptionclassArrayExample<T extends Output<T>>AnExamplebacked by two arrays, one of String and one of double.final classBinaryFeaturesExample<T extends Output<T>>AnExamplebacked by a single array of feature names.classIndexedArrayExample<T extends Output<T>>A version of ArrayExample which also has the id numbers.classListExample<T extends Output<T>>This class will not be performant until value types are available in Java. -
Uses of Output in org.tribuo.interop
Classes in org.tribuo.interop with type parameters of type OutputModifier and TypeClassDescriptionclassExternalModel<T extends Output<T>, U, V>This is the base class for third party models which are trained externally and loaded into Tribuo for prediction.Methods in org.tribuo.interop with type parameters of type OutputModifier and TypeMethodDescriptionprotected static <T extends Output<T>>
ImmutableOutputInfo<T> ExternalModel.createOutputInfo(OutputFactory<T> factory, Map<T, Integer> outputs) Creates an output info from a set of outputs. -
Uses of Output in org.tribuo.interop.onnx
Classes in org.tribuo.interop.onnx with type parameters of type OutputModifier and TypeClassDescriptionfinal classONNXExternalModel<T extends Output<T>>A Tribuo wrapper around a ONNX model.interfaceOutputTransformer<T extends Output<T>>Methods in org.tribuo.interop.onnx with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
ONNXExternalModel<T> ONNXExternalModel.createOnnxModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, ExampleTransformer featureTransformer, OutputTransformer<T> outputTransformer, ai.onnxruntime.OrtSession.SessionOptions opts, String filename, String inputName) Creates anONNXExternalModelby loading the model from disk.static <T extends Output<T>>
ONNXExternalModel<T> ONNXExternalModel.createOnnxModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, ExampleTransformer featureTransformer, OutputTransformer<T> outputTransformer, ai.onnxruntime.OrtSession.SessionOptions opts, Path path, String inputName) Creates anONNXExternalModelby loading the model from disk. -
Uses of Output in org.tribuo.interop.tensorflow
Classes in org.tribuo.interop.tensorflow with type parameters of type OutputModifier and TypeClassDescriptionclassDenseTransformer<T extends Output<T>>Converts a sparse example into a dense float vector, then wraps it in aTensor.interfaceExampleTransformer<T extends Output<T>>TensorFlow support is experimental, and may change without a major version bump.classImageTransformer<T extends Output<T>>Image transformer.interfaceOutputTransformer<T extends Output<T>>TensorFlow support is experimental, and may change without a major version bump.classTensorflowCheckpointModel<T extends Output<T>>TensorFlow support is experimental, and may change without a major version bump.final classTensorflowCheckpointTrainer<T extends Output<T>>Trainer for Tensorflow.final classTensorflowExternalModel<T extends Output<T>>A Tribuo wrapper around a Tensorflow frozen model.classTensorflowModel<T extends Output<T>>This model encapsulates a simple model with a single input tensor (labelledTensorflowModel.INPUT_NAME), and produces a single output tensor (labelledTensorflowModel.OUTPUT_NAME).final classTensorflowTrainer<T extends Output<T>>Trainer for Tensorflow.Methods in org.tribuo.interop.tensorflow with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
TensorflowExternalModel<T> TensorflowExternalModel.createTensorflowModel(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, String inputName, String outputName, ExampleTransformer<T> featureTransformer, OutputTransformer<T> outputTransformer, String filename) Creates a TensorflowExternalModel by loading in a frozen graph. -
Uses of Output in org.tribuo.interop.tensorflow.sequence
Classes in org.tribuo.interop.tensorflow.sequence with type parameters of type OutputModifier and TypeInterfaceDescriptioninterfaceSequenceExampleTransformer<T extends Output<T>>Converts a sequence example into a feed dict suitable for Tensorflow.interfaceSequenceOutputTransformer<T extends Output<T>>Converts a Tensorflow output tensor into a list of predictions, and a Tribuo sequence example into a Tensorflow tensor suitable for training.classTensorflowSequenceModel<T extends Output<T>>A Tensorflow model which implements SequenceModel, suitable for use in sequential prediction tasks.classTensorflowSequenceTrainer<T extends Output<T>>A trainer for SequenceModels which use an underlying Tensorflow graph. -
Uses of Output in org.tribuo.json
Classes in org.tribuo.json with type parameters of type OutputModifier and TypeClassDescriptionclassJsonDataSource<T extends Output<T>>ADataSourcefor loading data from a JSON text file and applyingFieldProcessors to it.Methods in org.tribuo.json with type parameters of type Output -
Uses of Output in org.tribuo.math.la
Methods in org.tribuo.math.la with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
SparseVectorSparseVector.createSparseVector(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aSparseVectorfrom anExample.static <T extends Output<T>>
SparseVector[]Converts a dataset of row-major examples into an array of column-major sparse vectors.static <T extends Output<T>>
SparseVector[]SparseVector.transpose(Dataset<T> dataset, ImmutableFeatureMap fMap) Converts a dataset of row-major examples into an array of column-major sparse vectors. -
Uses of Output in org.tribuo.multilabel
Classes in org.tribuo.multilabel that implement Output -
Uses of Output in org.tribuo.regression
Classes in org.tribuo.regression that implement Output -
Uses of Output in org.tribuo.sequence
Classes in org.tribuo.sequence with type parameters of type OutputModifier and TypeClassDescriptionclassAbstractSequenceEvaluator<T extends Output<T>, C extends MetricContext<T>, E extends SequenceEvaluation<T>, M extends EvaluationMetric<T,C>> Base class for sequence evaluators.final classHashingSequenceTrainer<T extends Output<T>>A SequenceTrainer that hashes all the feature names on the way in.classImmutableSequenceDataset<T extends Output<T>>This is aSequenceDatasetwhich has anImmutableFeatureMapto store the feature information.classMinimumCardinalitySequenceDataset<T extends Output<T>>This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.classMutableSequenceDataset<T extends Output<T>>A MutableSequenceDataset is aSequenceDatasetwith aMutableFeatureMapwhich grows over time.classSequenceDataset<T extends Output<T>>A class for sets of data, which are used to train and evaluate classifiers.interfaceSequenceDataSource<T extends Output<T>>A interface for things that can be given to a SequenceDataset's constructor.interfaceSequenceEvaluation<T extends Output<T>>An immutable evaluation of a specific sequence model and dataset.interfaceSequenceEvaluator<T extends Output<T>, E extends SequenceEvaluation<T>>An evaluation factory which produces immutableSequenceEvaluations of a givenSequenceDatasetusing the givenSequenceModel.classSequenceExample<T extends Output<T>>A sequence of examples, used for sequence classification.classSequenceModel<T extends Output<T>>A prediction model, which is used to predict outputs for unseen instances.interfaceSequenceTrainer<T extends Output<T>>An interface for things that can train sequence prediction models.Methods in org.tribuo.sequence with type parameters of type OutputModifier and TypeMethodDescriptionstatic <T extends Output<T>>
ImmutableSequenceDataset<T> ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
ImmutableSequenceDataset<T> ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableSequenceDataset<T> ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
SequenceExample<T> SequenceExample.createWithEmptyOutputs(List<? extends List<? extends Feature>> features, OutputFactory<T> outputFactory) Creates a SequenceExample usingOutputFactory.getUnknownOutput()as the output for each sequence element.SequenceModel.toMaxLabels(List<Prediction<T>> predictions) Method parameters in org.tribuo.sequence with type arguments of type Output -
Uses of Output in org.tribuo.transform
Classes in org.tribuo.transform with type parameters of type OutputModifier and TypeClassDescriptionclassTransformedModel<T extends Output<T>>Wraps aModelwith it'sTransformerMapso allExamples are transformed appropriately before the model makes predictions.final classTransformTrainer<T extends Output<T>>ATrainerwhich encapsulates another trainer plus aTransformationMapobject to apply to eachDatasetbefore training eachModel.Methods in org.tribuo.transform with type parameters of type OutputModifier and TypeMethodDescription<T extends Output<T>>
MutableDataset<T> TransformerMap.transformDataset(Dataset<T> dataset) Copies the supplied dataset and applies the transformers to each example in it.<T extends Output<T>>
MutableDataset<T> TransformerMap.transformDataset(Dataset<T> dataset, boolean densify) Copies the supplied dataset and applies the transformers to each example in it.TransformerMap.transformExample(Example<T> example) Copies the supplied example and applies the transformers to it.TransformerMap.transformExample(Example<T> example, List<String> featureNames) Copies the supplied example and applies the transformers to it.