Uses of Interface
org.tribuo.Output
Package
Description
Provides the core interfaces and classes for using Tribuo.
Provides classes and infrastructure for anomaly detection problems.
Provides classes and infrastructure for multiclass classification problems.
Provides core infrastructure for local model based explanations.
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
Provides classes and infrastructure for working with clustering problems.
Provides base classes for using liblinear from Tribuo.
The base interface to LibSVM.
Provides a K-Nearest Neighbours implementation which works across
all Tribuo
Output
types.Provides the base classes for models trained with stochastic gradient descent.
Provides common functionality for building decision trees, irrespective
of the predicted
Output
.Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts.Provides classes for loading in data from disk, processing it into examples, and splitting datasets for
things like cross-validation and train-test splits.
Provides classes for processing columnar data and generating
Example
s.Provides implementations of
ResponseProcessor
.Provides classes which can load columnar data (using a
RowProcessor
)
from a CSV (or other character delimited format) file.Provides classes which can load columnar data (using a
RowProcessor
)
from a SQL source.Provides implementations of text data processors.
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
Simple data sources for ingesting or aggregating data.
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
Evaluation base classes, along with code for train/test splits and cross validation.
This package contains the infrastructure classes for building evaluation metrics.
Provides the base interface and implementations of the
Model
hashing
which obscures the feature names stored in a model.Provides implementations of base classes and interfaces from
org.tribuo
.This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
Code for uploading models to Oracle Cloud Infrastructure Data Science, and also for scoring models deployed
in Oracle Cloud Infrastructure Data Science.
This package contains a Tribuo wrapper around ONNX Runtime.
Provides feature extraction implementations which use ONNX models.
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel
abstraction.Provides interop with JSON formatted data, along with tools for interacting with JSON provenance objects.
Provides a linear algebra system used for numerical operations in Tribuo.
Provides classes and infrastructure for working with multi-label classification problems.
Provides classes and infrastructure for regression problems with single or multiple output dimensions.
Reproducibility utility based on Tribuo's provenance objects.
Provides core classes for working with sequences of
Example
s.Provides infrastructure for applying transformations to a
Dataset
.-
Uses of Output in org.tribuo
Modifier and TypeInterfaceDescriptioninterface
ConfigurableDataSource<T extends Output<T>>
It's aDataSource
that's alsoConfigurable
.class
A class for sets of data, which are used to train and evaluate classifiers.interface
DataSource<T extends Output<T>>
A interface for things that can be given to a Dataset's constructor.class
An example used for training and evaluation.class
Holds anExample
, aPrediction
and a Map from String to List of Pairs that contains the per output explanation.interface
FeatureSelector<T extends Output<T>>
An interface for feature selection algorithms.class
ImmutableDataset<T extends Output<T>>
This is aDataset
which has anImmutableFeatureMap
to store the feature information.interface
ImmutableOutputInfo<T extends Output<T>>
AnOutputInfo
that is fixed, and contains an id number for each valid output.interface
IncrementalTrainer<T extends Output<T>,
U extends Model<T>> An interface for incremental training ofModel
s.class
A prediction model, which is used to predict outputs for unseen instances.class
MutableDataset<T extends Output<T>>
A MutableDataset is aDataset
with aMutableFeatureMap
which grows over time.interface
MutableOutputInfo<T extends Output<T>>
A mutable OutputInfo that can record observed output values.interface
Output is the root interface for the supported prediction types.interface
OutputFactory<T extends Output<T>>
An interface associated with a specificOutput
, which can generate the appropriate Output subclass, andOutputInfo
subclass.interface
OutputInfo<T extends Output<T>>
Tracks relevant properties of the appropriateOutput
subclass.class
Prediction<T extends Output<T>>
A prediction made by aModel
.class
SparseModel<T extends Output<T>>
A model which uses a subset of the features it knows about to make predictions.interface
SparseTrainer<T extends Output<T>>
Denotes this trainer emits aSparseModel
.interface
An interface for things that can train predictive models.Modifier and TypeFieldDescriptionprotected final T
Example.output
The output associated with this example.Modifier and TypeMethodDescriptionDataset.castDataset
(Dataset<?> inputDataset, Class<T> outputType) Casts the dataset to the specified output type, assuming it is valid.Casts the model to the specified output type, assuming it is valid.static <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.copyDataset
(Dataset<T> dataset) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.copyDataset
(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.copyDataset
(Dataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
MutableDataset<T>MutableDataset.createDeepCopy
(Dataset<T> other) Creates a deep copy of the suppliedDataset
which is mutable.static <T extends Output<T>>
ImmutableDataset<T>ImmutableDataset.hashFeatureMap
(Dataset<T> dataset, Hasher hasher) Creates an immutable shallow copy of the supplied dataset, using the hasher to generate aHashedFeatureMap
which transparently maps from the feature name to the hashed variant.static <T extends Output<T>>
voidOutputFactory.validateMapping
(Map<T, Integer> mapping) Validates that the mapping can be used as an output info, i.e.Modifier and TypeMethodDescriptionstatic Output<?>
Output.deserialize
(org.tribuo.protos.core.OutputProto proto) Deserializes aOutputProto
into aOutput
subclass.Modifier and TypeMethodDescriptionboolean
Validates that this Dataset does in fact contain the supplied output type.boolean
Validates that this Model does in fact support the supplied output type. -
Uses of Output in org.tribuo.anomaly
Modifier and TypeClassDescriptionfinal class
-
Uses of Output in org.tribuo.classification
Modifier and TypeInterfaceDescriptioninterface
Classifiable<T extends Classifiable<T>>
A tag interface for multi-class and multi-label classification tasks.Modifier and TypeClassDescriptionfinal class
An immutable multi-class classification label. -
Uses of Output in org.tribuo.classification.explanations
Modifier and TypeInterfaceDescriptioninterface
ColumnarExplainer<T extends Output<T>>
An explainer for data using Tribuo's columnar data package.interface
Explanation<T extends Output<T>>
An explanation knows what features are used, what the explaining Model is and what the original Model's prediction is.interface
TabularExplainer<T extends Output<T>>
An explainer for tabular data.interface
TextExplainer<T extends Output<T>>
An explainer for text data. -
Uses of Output in org.tribuo.classification.sgd.crf
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
SparseVector[]CRFModel.convert
(SequenceExample<T> example, ImmutableFeatureMap featureIDMap) Deprecated.CRFModel.convertToVector
(SequenceExample<T> example, ImmutableFeatureMap featureIDMap) Converts aSequenceExample
into an array ofSGDVector
s suitable for CRF prediction. -
Uses of Output in org.tribuo.clustering
-
Uses of Output in org.tribuo.common.liblinear
Modifier and TypeClassDescriptionclass
LibLinearModel<T extends Output<T>>
AModel
which wraps a LibLinear-java model.class
LibLinearTrainer<T extends Output<T>>
ATrainer
which wraps a liblinear-java trainer.interface
LibLinearType<T extends Output<T>>
A carrier type for the liblinear algorithm type.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
de.bwaldvogel.liblinear.FeatureNode[]LibLinearTrainer.exampleToNodes
(Example<T> example, ImmutableFeatureMap featureIDMap, List<de.bwaldvogel.liblinear.FeatureNode> features) Converts a TribuoExample
into a liblinearFeatureNode
array, including a bias feature. -
Uses of Output in org.tribuo.common.libsvm
Modifier and TypeClassDescriptionclass
LibSVMModel<T extends Output<T>>
A model that uses an underlying libSVM model to make the predictions.class
LibSVMTrainer<T extends Output<T>>
A trainer that will train using libsvm's Java implementation.class
SVMParameters<T extends Output<T>>
A container for SVM parameters and the kernel.interface
A carrier type for the SVM type.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
libsvm.svm_node[]LibSVMTrainer.exampleToNodes
(Example<T> example, ImmutableFeatureMap featureIDMap, List<libsvm.svm_node> features) Convert the example into an array of svm_node which represents a sparse feature vector. -
Uses of Output in org.tribuo.common.nearest
Modifier and TypeClassDescriptionclass
A k-nearest neighbours model.class
KNNTrainer<T extends Output<T>>
ATrainer
for k-nearest neighbour models. -
Uses of Output in org.tribuo.common.sgd
Modifier and TypeClassDescriptionclass
AbstractFMModel<T extends Output<T>>
A quadratic factorization machine model trained using SGD.class
AbstractFMTrainer<T extends Output<T>,
U, V extends AbstractFMModel<T>> A trainer for a quadratic factorization machine model which uses SGD.class
AbstractLinearSGDModel<T extends Output<T>>
A linear model trained using SGD.class
AbstractLinearSGDTrainer<T extends Output<T>,
U, V extends AbstractLinearSGDModel<T>> A trainer for a linear model which uses SGD.class
AbstractSGDModel<T extends Output<T>>
A model trained using SGD.class
AbstractSGDTrainer<T extends Output<T>,
U, V extends Model<T>, X extends FeedForwardParameters> A trainer for a model which uses SGD. -
Uses of Output in org.tribuo.common.tree
Modifier and TypeClassDescriptionclass
AbstractCARTTrainer<T extends Output<T>>
Base class forTrainer
's that use an approximation of the CART algorithm to build a decision tree.class
AbstractTrainingNode<T extends Output<T>>
Base class for decision tree nodes used at training time.interface
DecisionTreeTrainer<T extends Output<T>>
A tag interface for aTrainer
so the random forests trainer can check if it's actually a tree.class
ExtraTreesTrainer<T extends Output<T>>
A trainer which produces an Extremely Randomized Tree Ensemble.class
An immutable leafNode
that can create a prediction.interface
A node in a decision tree.class
RandomForestTrainer<T extends Output<T>>
A trainer which produces a random forest.class
An immutableNode
with a split and two child nodes.class
Modifier and TypeMethodDescriptionprotected static <T extends Output<T>>
intTreeModel.computeDepth
(int initialDepth, Node<T> root) Computes the depth of the tree.TreeModel.deserializeFromProtos
(List<org.tribuo.common.tree.protos.TreeNodeProto> nodeProtos, Class<U> outputClass) We will start off with a list of node builders that we will replace item-by-item with the nodes that they built. -
Uses of Output in org.tribuo.common.xgboost
Modifier and TypeClassDescriptionfinal class
XGBoostExternalModel<T extends Output<T>>
AModel
which wraps around a XGBoost.Booster which was trained by a system other than Tribuo.final class
XGBoostModel<T extends Output<T>>
AModel
which wraps around a XGBoost.Booster.interface
XGBoostOutputConverter<T extends Output<T>>
Converts the output of XGBoost into the appropriate prediction type.class
XGBoostTrainer<T extends Output<T>>
ATrainer
which wraps the XGBoost training procedure.protected static class
XGBoostTrainer.DMatrixTuple<T extends Output<T>>
Tuple of a DMatrix, the number of valid features in each example, and the examples themselves.Modifier and TypeMethodDescriptionprotected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertDataset
(Dataset<T> examples) Converts a dataset into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertDataset
(Dataset<T> examples, Function<T, Float> responseExtractor) Converts a dataset into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertExample
(Example<T> example, ImmutableFeatureMap featureMap) Converts an example into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertExample
(Example<T> example, ImmutableFeatureMap featureMap, Function<T, Float> responseExtractor) Converts an example into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertExamples
(Iterable<Example<T>> examples, ImmutableFeatureMap featureMap) Converts an iterable of examples into a DMatrix.protected static <T extends Output<T>>
XGBoostTrainer.DMatrixTuple<T>XGBoostTrainer.convertExamples
(Iterable<Example<T>> examples, ImmutableFeatureMap featureMap, Function<T, Float> responseExtractor) Converts an iterable of examples into a DMatrix.protected static <T extends Output<T>>
longXGBoostTrainer.convertSingleExample
(Example<T> example, ImmutableFeatureMap featureMap, ArrayList<Float> dataList, ArrayList<Integer> indicesList, ArrayList<Long> headersList, long header) Writes out the features from an example into the three suppliedArrayList
s.static <T extends Output<T>>
XGBoostExternalModel<T>XGBoostExternalModel.createXGBoostModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, String path) Creates anXGBoostExternalModel
from the supplied model on disk.static <T extends Output<T>>
XGBoostExternalModel<T>XGBoostExternalModel.createXGBoostModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, Path path) Creates anXGBoostExternalModel
from the supplied model on disk.static <T extends Output<T>>
XGBoostExternalModel<T>XGBoostExternalModel.createXGBoostModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, ml.dmlc.xgboost4j.java.Booster model, URL provenanceLocation) Deprecated.As the URL argument must always be valid.static <T extends Output<T>>
XGBoostExternalModel<T>XGBoostExternalModel.createXGBoostModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, XGBoostOutputConverter<T> outputFunc, ml.dmlc.xgboost4j.java.Booster model, Map<String, com.oracle.labs.mlrg.olcut.provenance.Provenance> instanceProvenance) Creates anXGBoostExternalModel
from the supplied in-memory XGBoostBooster
. -
Uses of Output in org.tribuo.data
Modifier and TypeFieldDescriptionConfigurableDataSource<? extends Output<?>>
PreprocessAndSerialize.PreprocessAndSerializeOptions.dataSource
Datasource to load from a config fileModifier and TypeMethodDescriptionDataOptions.load
(OutputFactory<T> outputFactory) Loads the training and testing data fromDataOptions.trainingPath
andDataOptions.testingPath
according to the other parameters specified in this class.static <T extends Output<T>>
voidstatic <T extends Output<T>>
void<T extends Output<T>>
voidSaves the model out to the path inDataOptions.outputPath
. -
Uses of Output in org.tribuo.data.columnar
Modifier and TypeClassDescriptionclass
ColumnarDataSource<T extends Output<T>>
AConfigurableDataSource
base class which takes columnar data (e.g., csv or DB table rows) and generatesExample
s.interface
ResponseProcessor<T extends Output<T>>
An interface that will take the response field and produce anOutput
.class
RowProcessor<T extends Output<T>>
A processor which takes a Map of String to String and returns anExample
.static class
RowProcessor.Builder<T extends Output<T>>
Builder forRowProcessor
. -
Uses of Output in org.tribuo.data.columnar.processors.response
Modifier and TypeClassDescriptionclass
BinaryResponseProcessor<T extends Output<T>>
AResponseProcessor
that takes a single value of the field as the positive class and all other values as the negative class.final class
EmptyResponseProcessor<T extends Output<T>>
AResponseProcessor
that always emits an empty optional.class
FieldResponseProcessor<T extends Output<T>>
A response processor that returns the value(s) in a given (set of) fields.class
QuartileResponseProcessor<T extends Output<T>>
Processes the response into quartiles and emits them as classification outputs. -
Uses of Output in org.tribuo.data.csv
Modifier and TypeClassDescriptionclass
CSVDataSource<T extends Output<T>>
ADataSource
for loading separable data from a text file (e.g., CSV, TSV) and applyingFieldProcessor
s to it.class
Load a DataSource/Dataset from a CSV file. -
Uses of Output in org.tribuo.data.sql
Modifier and TypeClassDescriptionclass
SQLDataSource<T extends Output<T>>
ADataSource
for loading columnar data from a database and applyingFieldProcessor
s to it. -
Uses of Output in org.tribuo.data.text
Modifier and TypeClassDescriptionclass
DirectoryFileSource<T extends Output<T>>
A data source for a somewhat-common format for text classification datasets: a top level directory that contains a number of subdirectories.class
TextDataSource<T extends Output<T>>
A base class for textual data sets.interface
TextFeatureExtractor<T extends Output<T>>
An interface for things that take text and turn them into examples that we can use to train or evaluate a classifier. -
Uses of Output in org.tribuo.data.text.impl
Modifier and TypeClassDescriptionclass
SimpleStringDataSource<T extends Output<T>>
A version ofSimpleTextDataSource
that accepts aList
of Strings.class
SimpleTextDataSource<T extends Output<T>>
A dataset for a simple data format for text classification experiments.class
TextFeatureExtractorImpl<T extends Output<T>>
-
Uses of Output in org.tribuo.dataset
Modifier and TypeClassDescriptionfinal class
DatasetView<T extends Output<T>>
DatasetView provides an immutable view on anotherDataset
that only exposes selected examples.class
MinimumCardinalityDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.final class
SelectedFeatureDataset<T extends Output<T>>
This class creates a pruned dataset which only contains the selected features.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
DatasetView<T>DatasetView.createBootstrapView
(Dataset<T> dataset, int size, long seed) Generates a DatasetView bootstrapped from the supplied Dataset.static <T extends Output<T>>
DatasetView<T>DatasetView.createBootstrapView
(Dataset<T> dataset, int size, long seed, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset.static <T extends Output<T>>
DatasetView<T>DatasetView.createView
(Dataset<T> dataset, Predicate<Example<T>> predicate, String tag) Creates a view from the supplied dataset, using the specified predicate to test if each example should be in this view.static <T extends Output<T>>
DatasetView<T>DatasetView.createWeightedBootstrapView
(Dataset<T> dataset, int size, long seed, float[] exampleWeights) Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights.static <T extends Output<T>>
DatasetView<T>DatasetView.createWeightedBootstrapView
(Dataset<T> dataset, int size, long seed, float[] exampleWeights, ImmutableFeatureMap featureIDs, ImmutableOutputInfo<T> outputIDs) Generates a DatasetView bootstrapped from the supplied Dataset using the supplied example weights. -
Uses of Output in org.tribuo.datasource
Modifier and TypeClassDescriptionclass
AggregateConfigurableDataSource<T extends Output<T>>
Aggregates multipleConfigurableDataSource
s, usesAggregateDataSource.IterationOrder
to control the iteration order.class
AggregateDataSource<T extends Output<T>>
Aggregates multipleDataSource
s, usesAggregateDataSource.IterationOrder
to control the iteration order.final class
IDXDataSource<T extends Output<T>>
A DataSource which can read IDX formatted data (i.e., MNIST).final class
LibSVMDataSource<T extends Output<T>>
A DataSource which can read LibSVM formatted data.class
ListDataSource<T extends Output<T>>
A data source which wraps up a list ofExample
s along with theirDataSourceProvenance
and anOutputFactory
.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
voidLibSVMDataSource.writeLibSVMFormat
(Dataset<T> dataset, PrintStream out, boolean zeroIndexed, Function<T, Number> transformationFunc) Writes out a dataset in LibSVM format. -
Uses of Output in org.tribuo.ensemble
Modifier and TypeClassDescriptionclass
BaggingTrainer<T extends Output<T>>
A Trainer that wraps another trainer and produces a bagged ensemble.interface
EnsembleCombiner<T extends Output<T>>
An interface for combining predictions.class
EnsembleExcuse<T extends Output<T>>
AnExcuse
which has a List of excuses for each of the ensemble members.class
EnsembleModel<T extends Output<T>>
A model which contains a list of otherModel
s.final class
WeightedEnsembleModel<T extends Output<T>>
An ensemble model that uses weights to combine the ensemble member predictions.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner) Creates an ensemble from existing models.static <T extends Output<T>>
WeightedEnsembleModel<T>WeightedEnsembleModel.createEnsembleFromExistingModels
(String name, List<Model<T>> models, EnsembleCombiner<T> combiner, float[] weights) Creates an ensemble from existing models. -
Uses of Output in org.tribuo.evaluation
Modifier and TypeClassDescriptionclass
AbstractEvaluator<T extends Output<T>,
C extends MetricContext<T>, E extends Evaluation<T>, M extends EvaluationMetric<T, C>> Base class for evaluators.class
CrossValidation<T extends Output<T>,
E extends Evaluation<T>> A class that does k-fold cross-validation.interface
Evaluation<T extends Output<T>>
An immutable evaluation of a specific model and dataset.interface
EvaluationRenderer<T extends Output<T>,
E extends Evaluation<T>> Renders anEvaluation
into a String.interface
Evaluator<T extends Output<T>,
E extends Evaluation<T>> An evaluation factory which produces immutableEvaluation
s of a givenDataset
using the givenModel
.class
KFoldSplitter<T extends Output<T>>
A k-fold splitter to be used in cross-validation.static class
KFoldSplitter.TrainTestFold<T extends Output<T>>
Stores a train/test split for a dataset.final class
OnlineEvaluator<T extends Output<T>,
E extends Evaluation<T>> An evaluator which aggregates predictions and producesEvaluation
s covering all thePrediction
s it has seen or created.class
TrainTestSplitter<T extends Output<T>>
Splits data into training and testing sets.Modifier and TypeMethodDescriptionstatic <T extends Output<T>,
R extends Evaluation<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer,Double> Calculates the argmax of a metric across the supplied evaluations.static <T extends Output<T>,
C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer,Double> EvaluationAggregator.argmax
(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Calculates the argmax of a metric across the supplied models (i.e., the index of the model which performed the best).static <T extends Output<T>,
C extends MetricContext<T>>
com.oracle.labs.mlrg.olcut.util.Pair<Integer,Double> EvaluationAggregator.argmax
(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Calculates the argmax of a metric across the supplied datasets.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, List<Prediction<T>> predictions) Summarize model performance on dataset across several metrics.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(List<? extends EvaluationMetric<T, C>> metrics, Model<T> model, Dataset<T> dataset) Summarize model performance on dataset across several metrics.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> Summarize all fields of a list of evaluations.static <T extends Output<T>,
R extends Evaluation<T>>
DescriptiveStatsEvaluationAggregator.summarize
(List<R> evaluations, ToDoubleFunction<R> fieldGetter) Summarize a single field of an evaluation across several evaluations.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarize
(Evaluator<T, R> evaluator, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance using the supplied evaluator across several models on one dataset.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarize
(Evaluator<T, R> evaluator, Model<T> model, List<? extends Dataset<T>> datasets) Summarize performance according to evaluator for a single model across several datasets.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(EvaluationMetric<T, C> metric, List<? extends Model<T>> models, Dataset<T> dataset) Summarize performance w.r.t.static <T extends Output<T>,
C extends MetricContext<T>>
DescriptiveStatsEvaluationAggregator.summarize
(EvaluationMetric<T, C> metric, Model<T> model, List<? extends Dataset<T>> datasets) Summarize a model's performance w.r.t.static <T extends Output<T>,
R extends Evaluation<T>>
Map<MetricID<T>,DescriptiveStats> EvaluationAggregator.summarizeCrossValidation
(List<com.oracle.labs.mlrg.olcut.util.Pair<R, Model<T>>> evaluations) Summarize all fields of a list of evaluations produced byCrossValidation
. -
Uses of Output in org.tribuo.evaluation.metrics
Modifier and TypeInterfaceDescriptioninterface
EvaluationMetric<T extends Output<T>,
C extends MetricContext<T>> A metric that can be calculated for the specified output type.class
MetricContext<T extends Output<T>>
The context for a metric or set of metrics.final class
Just an easier-to-read alias forPair<MetricTarget<T>, String>
.class
MetricTarget<T extends Output<T>>
Used by a givenEvaluationMetric
to determine whether it should compute its value for a specificOutput
value or whether it should average them.Modifier and TypeMethodDescriptionstatic <U extends Output<U>>
MetricTarget<U>MetricTarget.macroAverageTarget()
Get the singletonMetricTarget
which contains theEvaluationMetric.Average.MACRO
.static <U extends Output<U>>
MetricTarget<U>MetricTarget.microAverageTarget()
Get the singletonMetricTarget
which contains theEvaluationMetric.Average.MICRO
. -
Uses of Output in org.tribuo.hash
Modifier and TypeMethodDescriptionHashingOptions.getHashedTrainer
(Trainer<T> innerTrainer) Gets the trainer wrapped in a hashing trainer. -
Uses of Output in org.tribuo.impl
Modifier and TypeClassDescriptionclass
ArrayExample<T extends Output<T>>
AnExample
backed by two arrays, one of String and one of double.final class
BinaryFeaturesExample<T extends Output<T>>
AnExample
backed by a single array of feature names.final class
DatasetDataCarrier<T extends Output<T>>
Serialization carrier for common fields in Dataset.class
IndexedArrayExample<T extends Output<T>>
A version of ArrayExample which also has the id numbers.class
ListExample<T extends Output<T>>
This class will not be performant until value types are available in Java.final class
ModelDataCarrier<T extends Output<T>>
Serialization carrier for common fields in Model and SequenceModel. -
Uses of Output in org.tribuo.interop
Modifier and TypeClassDescriptionclass
ExternalModel<T extends Output<T>,
U, V> This is the base class for third party models which are trained externally and loaded into Tribuo for prediction.Modifier and TypeMethodDescriptionprotected static <T extends Output<T>>
ImmutableOutputInfo<T>ExternalModel.createOutputInfo
(OutputFactory<T> factory, Map<T, Integer> outputs) Creates an output info from a set of outputs. -
Uses of Output in org.tribuo.interop.oci
Modifier and TypeClassDescriptionfinal class
A wrapper class around an OCI Data Science Model Deployment endpoint which sends off inputs for scoring and converts the output into a Tribuo prediction.interface
OCIOutputConverter<T extends Output<T>>
Converter for aDenseMatrix
received from OCI Data Science Model Deployment.Modifier and TypeMethodDescriptionstatic <T extends Output<T>,
U extends Model<T> & ONNXExportable>
StringOCIUtil.createModel
(U model, com.oracle.bmc.datascience.DataScienceClient client, com.fasterxml.jackson.databind.ObjectMapper mapper, OCIUtil.OCIModelArtifactConfig config) Creates an OCI DS model and uploads the model artifact.OCIModel.createOCIModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, Path configFile, String profileName, String endpointURL, OCIOutputConverter<T> outputConverter) Creates anOCIModel
by wrapping an OCI DS Model Deployment endpoint.OCIModel.createOCIModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, Path configFile, String endpointURL, OCIOutputConverter<T> outputConverter) Creates anOCIModel
by wrapping an OCI DS Model Deployment endpoint. -
Uses of Output in org.tribuo.interop.onnx
Modifier and TypeClassDescriptionfinal class
ONNXExternalModel<T extends Output<T>>
A Tribuo wrapper around a ONNX model.interface
OutputTransformer<T extends Output<T>>
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
ONNXExternalModel<T>ONNXExternalModel.createOnnxModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, ExampleTransformer featureTransformer, OutputTransformer<T> outputTransformer, ai.onnxruntime.OrtSession.SessionOptions opts, String filename, String inputName) Creates anONNXExternalModel
by loading the model from disk.static <T extends Output<T>>
ONNXExternalModel<T>ONNXExternalModel.createOnnxModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, ExampleTransformer featureTransformer, OutputTransformer<T> outputTransformer, ai.onnxruntime.OrtSession.SessionOptions opts, Path path, String inputName) Creates anONNXExternalModel
by loading the model from disk. -
Uses of Output in org.tribuo.interop.onnx.extractors
Modifier and TypeClassDescriptionclass
BERTFeatureExtractor<T extends Output<T>>
Builds examples and sequence examples using features from BERT. -
Uses of Output in org.tribuo.interop.tensorflow
Modifier and TypeInterfaceDescriptioninterface
OutputConverter<T extends Output<T>>
Converts theOutput
into aTensor
and vice versa.final class
TensorFlowCheckpointModel<T extends Output<T>>
This model encapsulates a simple model with an input feed dict, and produces a single output tensor.final class
TensorFlowFrozenExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow frozen model.class
TensorFlowModel<T extends Output<T>>
Base class for a TensorFlow model that operates onExample
s.final class
TensorFlowNativeModel<T extends Output<T>>
This model encapsulates a TensorFlow model running in graph mode with a single tensor output.final class
TensorFlowSavedModelExternalModel<T extends Output<T>>
A Tribuo wrapper around a TensorFlow saved model bundle.final class
TensorFlowTrainer<T extends Output<T>>
Trainer for TensorFlow.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
TensorFlowFrozenExternalModel<T>TensorFlowFrozenExternalModel.createTensorflowModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, String outputName, FeatureConverter featureConverter, OutputConverter<T> outputConverter, String filename) Creates a TensorflowFrozenExternalModel by loading in a frozen graph.static <T extends Output<T>>
TensorFlowSavedModelExternalModel<T>TensorFlowSavedModelExternalModel.createTensorflowModel
(OutputFactory<T> factory, Map<String, Integer> featureMapping, Map<T, Integer> outputMapping, String outputName, FeatureConverter featureConverter, OutputConverter<T> outputConverter, String bundleDirectory) Creates a TensorflowSavedModelExternalModel by loading in aSavedModelBundle
. -
Uses of Output in org.tribuo.interop.tensorflow.sequence
Modifier and TypeInterfaceDescriptioninterface
SequenceOutputConverter<T extends Output<T>>
Converts a TensorFlow output tensor into a list of predictions, and a Tribuo sequence example into a Tensorflow tensor suitable for training.class
TensorFlowSequenceModel<T extends Output<T>>
A TensorFlow model which implements SequenceModel, suitable for use in sequential prediction tasks.class
TensorFlowSequenceTrainer<T extends Output<T>>
A trainer for SequenceModels which use an underlying TensorFlow graph. -
Uses of Output in org.tribuo.json
Modifier and TypeClassDescriptionclass
JsonDataSource<T extends Output<T>>
ADataSource
for loading data from a JSON text file and applyingFieldProcessor
s to it. -
Uses of Output in org.tribuo.math.la
Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
DenseVectorDenseVector.createDenseVector
(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aDenseVector
from anExample
.static <T extends Output<T>>
SparseVectorSparseVector.createSparseVector
(Example<T> example, ImmutableFeatureMap featureInfo, boolean addBias) Builds aSparseVector
from anExample
.static <T extends Output<T>>
SparseVector[]Converts a dataset of row-major examples into an array of column-major sparse vectors.static <T extends Output<T>>
SparseVector[]SparseVector.transpose
(Dataset<T> dataset, ImmutableFeatureMap fMap) Converts a dataset of row-major examples into an array of column-major sparse vectors. -
Uses of Output in org.tribuo.multilabel
-
Uses of Output in org.tribuo.regression
-
Uses of Output in org.tribuo.reproducibility
Modifier and TypeClassDescriptionfinal class
Reproducibility utility based on Tribuo's provenance objects.static final record
ReproUtil.ModelReproduction<T extends Output<T>>
Record for a model reproduction.static final record
ReproUtil.OutputDiff<T extends Output<T>>
Record for any differences between output domains. -
Uses of Output in org.tribuo.sequence
Modifier and TypeClassDescriptionclass
AbstractSequenceEvaluator<T extends Output<T>,
C extends MetricContext<T>, E extends SequenceEvaluation<T>, M extends EvaluationMetric<T, C>> Base class for sequence evaluators.final class
HashingSequenceTrainer<T extends Output<T>>
A SequenceTrainer that hashes all the feature names on the way in.class
ImmutableSequenceDataset<T extends Output<T>>
This is aSequenceDataset
which has anImmutableFeatureMap
to store the feature information.class
IndependentSequenceModel<T extends Output<T>>
A SequenceModel which independently predicts each element of the sequence.class
IndependentSequenceTrainer<T extends Output<T>>
Trains a sequence model by training a regular model to independently predict every example in each sequence.class
MinimumCardinalitySequenceDataset<T extends Output<T>>
This class creates a pruned dataset in which low frequency features that occur less than the provided minimum cardinality have been removed.class
MutableSequenceDataset<T extends Output<T>>
A MutableSequenceDataset is aSequenceDataset
with aMutableFeatureMap
which grows over time.class
SequenceDataset<T extends Output<T>>
A class for sets of data, which are used to train and evaluate classifiers.interface
SequenceDataSource<T extends Output<T>>
A interface for things that can be given to a SequenceDataset's constructor.interface
SequenceEvaluation<T extends Output<T>>
An immutable evaluation of a specific sequence model and dataset.interface
SequenceEvaluator<T extends Output<T>,
E extends SequenceEvaluation<T>> An evaluation factory which produces immutableSequenceEvaluation
s of a givenSequenceDataset
using the givenSequenceModel
.class
SequenceExample<T extends Output<T>>
A sequence of examples, used for sequence classification.class
SequenceModel<T extends Output<T>>
A prediction model, which is used to predict outputs for unseen instances.interface
SequenceTrainer<T extends Output<T>>
An interface for things that can train sequence prediction models.Modifier and TypeMethodDescriptionstatic <T extends Output<T>>
SequenceDataset<T>SequenceDataset.castDataset
(SequenceDataset<?> inputDataset, Class<T> outputType) Casts the dataset to the specified output type, assuming it is valid.<U extends Output<U>>
SequenceModel<U>Casts the model to the specified output type, assuming it is valid.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo) Creates an immutable deep copy of the supplied dataset, using a different feature and output map.static <T extends Output<T>>
ImmutableSequenceDataset<T>ImmutableSequenceDataset.copyDataset
(SequenceDataset<T> dataset, ImmutableFeatureMap featureIDMap, ImmutableOutputInfo<T> outputIDInfo, Merger merger) Creates an immutable deep copy of the supplied dataset.static <T extends Output<T>>
SequenceExample<T>SequenceExample.createWithEmptyOutputs
(List<? extends List<? extends Feature>> features, OutputFactory<T> outputFactory) Creates a SequenceExample usingOutputFactory.getUnknownOutput()
as the output for each sequence element.SequenceModel.toMaxLabels
(List<Prediction<T>> predictions) Extracts a list of the predicted outputs from the list of prediction objects.Modifier and TypeMethodDescriptionboolean
Validates that this SequenceDataset does in fact contain the supplied output type.boolean
Validates that this Model does in fact support the supplied output type. -
Uses of Output in org.tribuo.transform
Modifier and TypeClassDescriptionclass
TransformedModel<T extends Output<T>>
Wraps aModel
with it'sTransformerMap
so allExample
s are transformed appropriately before the model makes predictions.final class
TransformTrainer<T extends Output<T>>
ATrainer
which encapsulates another trainer plus aTransformationMap
object to apply to eachDataset
before training eachModel
.Modifier and TypeMethodDescription<T extends Output<T>>
MutableDataset<T>TransformerMap.transformDataset
(Dataset<T> dataset) Copies the supplied dataset and applies the transformers to each example in it.<T extends Output<T>>
MutableDataset<T>TransformerMap.transformDataset
(Dataset<T> dataset, boolean densify) Copies the supplied dataset and applies the transformers to each example in it.TransformerMap.transformExample
(Example<T> example) Copies the supplied example and applies the transformers to it.TransformerMap.transformExample
(Example<T> example, List<String> featureNames) Copies the supplied example and applies the transformers to it.
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap)
which is more flexible.