Package | Description |
---|---|
org.tribuo |
Provides the core interfaces and classes for using Tribuo.
|
org.tribuo.anomaly.liblinear |
Provides an interface to LibLinear-java for anomaly detection problems.
|
org.tribuo.anomaly.libsvm |
Provides an interface to LibSVM for anomaly detection problems.
|
org.tribuo.classification.explanations.lime |
Provides an implementation of LIME (Locally Interpretable Model Explanations).
|
org.tribuo.classification.liblinear |
Provides an interface to LibLinear-java for classification problems.
|
org.tribuo.classification.libsvm |
Provides an interface to LibSVM for classification problems.
|
org.tribuo.classification.sequence |
Provides infrastructure for
SequenceModel s which
emit Label s at each step of the sequence. |
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.classification.sgd.linear |
Provides an implementation of a classification linear model using Stochastic Gradient Descent.
|
org.tribuo.common.liblinear |
Provides base classes for using liblinear from Tribuo.
|
org.tribuo.common.libsvm |
The base interface to LibSVM.
|
org.tribuo.common.sgd |
Provides the base classes for models trained with stochastic gradient descent.
|
org.tribuo.common.tree |
Provides common functionality for building decision trees, irrespective
of the predicted
Output . |
org.tribuo.common.xgboost |
Provides abstract classes for interfacing with XGBoost abstracting away all the
Output
dependent parts. |
org.tribuo.data.columnar |
Provides classes for processing columnar data and generating
Example s. |
org.tribuo.dataset |
Provides utility datasets which subsample or otherwise
transform the wrapped dataset.
|
org.tribuo.ensemble |
Provides an interface for model prediction combinations,
two base classes for ensemble models, a base class for
ensemble excuses, and a Bagging implementation.
|
org.tribuo.hash |
Provides the base interface and implementations of the
Model hashing
which obscures the feature names stored in a model. |
org.tribuo.impl |
Provides implementations of base classes and interfaces from
org.tribuo . |
org.tribuo.interop |
This package contains the abstract implementation of an external model
trained by something outside of Tribuo.
|
org.tribuo.interop.tensorflow |
Provides an interface to TensorFlow, allowing the training of non-sequential models using any supported
Tribuo output type.
|
org.tribuo.interop.tensorflow.sequence |
Provides an interface for working with TensorFlow sequence models, using Tribuo's
SequenceModel abstraction. |
org.tribuo.math.la |
Provides a linear algebra system used for numerical operations in Tribuo.
|
org.tribuo.multilabel.sgd.linear |
Provides an implementation of a multi-label classification linear model using Stochastic Gradient Descent.
|
org.tribuo.regression.impl | |
org.tribuo.regression.liblinear |
Provides an interface to liblinear for regression problems.
|
org.tribuo.regression.libsvm |
Provides an interface to LibSVM for regression problems.
|
org.tribuo.regression.rtree.impl |
Provides internal implementation classes for the regression trees.
|
org.tribuo.regression.sgd.linear |
Provides an implementation of linear regression using Stochastic Gradient Descent.
|
org.tribuo.sequence |
Provides core classes for working with sequences of
Example s. |
Modifier and Type | Field and Description |
---|---|
protected ImmutableFeatureMap |
Model.featureIDMap
The features this model knows about.
|
protected ImmutableFeatureMap |
ImmutableDataset.featureIDMap
A map from feature names to IDs for the features found in this dataset.
|
Modifier and Type | Method and Description |
---|---|
ImmutableFeatureMap |
MutableDataset.getFeatureIDMap() |
ImmutableFeatureMap |
Model.getFeatureIDMap()
Gets the feature domain.
|
ImmutableFeatureMap |
ImmutableDataset.getFeatureIDMap() |
abstract ImmutableFeatureMap |
Dataset.getFeatureIDMap()
Returns or generates an
ImmutableFeatureMap . |
ImmutableFeatureMap |
ImmutableDataset.getFeatureMap() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableDataset.copyDataset(Dataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
Constructor and Description |
---|
ImmutableDataset(DataProvenance description,
OutputFactory<T> outputFactory,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
This is dangerous, and should not be used unless you've overridden everything in ImmutableDataset.
|
ImmutableDataset(Iterable<Example<T>> dataSource,
DataProvenance description,
OutputFactory<T> outputFactory,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean dropInvalidExamples)
Creates a dataset from a data source.
|
Model(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities)
Constructs a new model, storing the supplied fields.
|
SparseModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,List<String>> activeFeatures)
Constructs a sparse model from the supplied arguments.
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Event> |
LibLinearAnomalyTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Event> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Event> |
LibSVMAnomalyTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Event> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMAnomalyTrainer.extractData(Dataset<Event> data,
ImmutableOutputInfo<Event> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
static double |
LIMEBase.measureDistance(ImmutableFeatureMap fMap,
long numTrainingExamples,
SparseVector input,
SparseVector sample)
Measures the distance between an input point and a sampled point.
|
static Example<Label> |
LIMEBase.samplePoint(Random rng,
ImmutableFeatureMap fMap,
long numTrainingExamples,
SparseVector input)
Samples a single example from the supplied feature map and input vector.
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Label> |
LibLinearClassificationTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Label> |
LibSVMClassificationTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMClassificationTrainer.extractData(Dataset<Label> data,
ImmutableOutputInfo<Label> outputInfo,
ImmutableFeatureMap featureMap) |
Constructor and Description |
---|
ConfidencePredictingSequenceModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap) |
Modifier and Type | Method and Description |
---|---|
static com.oracle.labs.mlrg.olcut.util.Pair<int[],SparseVector[]> |
CRFModel.convert(SequenceExample<Label> example,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap)
Deprecated.
As it's replaced with
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap) which is more flexible. |
static <T extends Output<T>> |
CRFModel.convert(SequenceExample<T> example,
ImmutableFeatureMap featureIDMap)
Deprecated.
As it's replaced with
CRFModel.convertToVector(org.tribuo.sequence.SequenceExample<T>, org.tribuo.ImmutableFeatureMap) which is more flexible. |
static com.oracle.labs.mlrg.olcut.util.Pair<int[],SGDVector[]> |
CRFModel.convertToVector(SequenceExample<Label> example,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Label> labelIDMap)
Converts a
SequenceExample into an array of SGDVector s and labels suitable for CRF prediction. |
static <T extends Output<T>> |
CRFModel.convertToVector(SequenceExample<T> example,
ImmutableFeatureMap featureIDMap)
Converts a
SequenceExample into an array of SGDVector s suitable for CRF prediction. |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Label> outputInfo,
LinearParameters parameters) |
Modifier and Type | Method and Description |
---|---|
protected abstract LibLinearModel<T> |
LibLinearTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models)
Construct the appropriate subtype of LibLinearModel for the prediction task.
|
static <T extends Output<T>> |
LibLinearTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<de.bwaldvogel.liblinear.FeatureNode> features)
Converts a Tribuo
Example into a liblinear FeatureNode array, including a bias feature. |
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibLinear's format. |
Constructor and Description |
---|
LibLinearModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> labelIDMap,
boolean generatesProbabilities,
List<de.bwaldvogel.liblinear.Model> models)
Constructs a LibLinear model from the supplied arguments.
|
Modifier and Type | Method and Description |
---|---|
protected abstract LibSVMModel<T> |
LibSVMTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<libsvm.svm_model> models)
Construct the appropriate subtype of LibSVMModel for the prediction task.
|
static <T extends Output<T>> |
LibSVMTrainer.exampleToNodes(Example<T> example,
ImmutableFeatureMap featureIDMap,
List<libsvm.svm_node> features)
Convert the example into an array of svm_node which represents a sparse feature vector.
|
protected abstract com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMTrainer.extractData(Dataset<T> data,
ImmutableOutputInfo<T> outputInfo,
ImmutableFeatureMap featureMap)
Extracts the features and
Output s in LibSVM's format. |
Constructor and Description |
---|
LibSVMModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
List<libsvm.svm_model> models)
Constructs a LibSVMModel from the supplied arguments.
|
Modifier and Type | Method and Description |
---|---|
protected abstract V |
AbstractSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<T> outputInfo,
X parameters)
Creates the appropriate model subclass for this subclass of AbstractSGDTrainer.
|
Constructor and Description |
---|
AbstractLinearSGDModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
LinearParameters parameters,
boolean generatesProbabilities)
Constructs a linear model trained via SGD.
|
AbstractSGDModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
FeedForwardParameters weights,
boolean generatesProbabilities,
boolean addBias)
Constructs a linear model trained via SGD.
|
Constructor and Description |
---|
TreeModel(String name,
ModelProvenance description,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,List<String>> activeFeatures)
Constructs a trained decision tree model.
|
Modifier and Type | Method and Description |
---|---|
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExample(Example<T> example,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an examples into a DMatrix.
|
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap) |
protected static <T extends Output<T>> |
XGBoostTrainer.convertExamples(Iterable<Example<T>> examples,
ImmutableFeatureMap featureMap,
Function<T,Float> responseExtractor)
Converts an iterable of examples into a DMatrix.
|
protected static <T extends Output<T>> |
XGBoostTrainer.convertSingleExample(Example<T> example,
ImmutableFeatureMap featureMap,
ArrayList<Float> dataList,
ArrayList<Integer> indicesList,
ArrayList<Long> headersList,
long header)
Writes out the features from an example into the three supplied
ArrayList s. |
protected XGBoostModel<T> |
XGBoostTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<ml.dmlc.xgboost4j.java.Booster> models,
XGBoostOutputConverter<T> converter) |
Modifier and Type | Method and Description |
---|---|
void |
RowProcessor.expandRegexMapping(ImmutableFeatureMap featureMap)
Uses similar logic to
TransformationMap.validateTransformations(org.tribuo.FeatureMap) to check the regexes
against the supplied feature map. |
Modifier and Type | Method and Description |
---|---|
ImmutableFeatureMap |
DatasetView.getFeatureMap() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DatasetView.createBootstrapView(Dataset<T> dataset,
int size,
long seed,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset.
|
static <T extends Output<T>> |
DatasetView.createWeightedBootstrapView(Dataset<T> dataset,
int size,
long seed,
float[] exampleWeights,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> outputIDs)
Generates a DatasetView bootstrapped from the supplied Dataset using the supplied
example weights.
|
Constructor and Description |
---|
DatasetView(Dataset<T> dataset,
int[] exampleIndices,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
String tag)
Creates a DatasetView which includes the supplied indices from the dataset.
|
Modifier and Type | Method and Description |
---|---|
protected Model<T> |
BaggingTrainer.trainSingleModel(Dataset<T> examples,
ImmutableFeatureMap featureIDs,
ImmutableOutputInfo<T> labelIDs,
SplittableRandom localRNG,
Map<String,com.oracle.labs.mlrg.olcut.provenance.Provenance> runProvenance) |
Constructor and Description |
---|
EnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels)
Builds an EnsembleModel from the supplied model list.
|
WeightedEnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner)
Unless you are implementing a
Trainer you should
not use this constructor directly. |
WeightedEnsembleModel(String name,
EnsembleModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
List<Model<T>> newModels,
EnsembleCombiner<T> combiner,
float[] weights)
Unless you are implementing a
Trainer you should
not use this constructor directly. |
Modifier and Type | Class and Description |
---|---|
class |
HashedFeatureMap
A
FeatureMap used by the HashingTrainer to
provide feature name hashing and guarantee that the Model
does not contain feature name information, but still works
with unhashed features names. |
Constructor and Description |
---|
IndexedArrayExample(Example<T> other,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<T> outputMap)
This constructor removes unknown features.
|
Modifier and Type | Method and Description |
---|---|
protected static ImmutableFeatureMap |
ExternalModel.createFeatureMap(Set<String> featureNames)
Creates an immutable feature map from a set of feature names.
|
Constructor and Description |
---|
ExternalModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
boolean generatesProbabilities,
Map<String,Integer> featureMapping) |
ExternalModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
int[] featureForwardMapping,
int[] featureBackwardMapping,
boolean generatesProbabilities) |
Modifier and Type | Method and Description |
---|---|
TensorMap |
ImageConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap)
Transform implicitly pads unseen values with zero.
|
TensorMap |
FeatureConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap)
|
TensorMap |
DenseFeatureConverter.convert(Example<?> example,
ImmutableFeatureMap featureIDMap) |
TensorMap |
ImageConverter.convert(List<? extends Example<?>> examples,
ImmutableFeatureMap featureIDMap)
Transform implicitly pads unseen values with zero.
|
TensorMap |
FeatureConverter.convert(List<? extends Example<?>> example,
ImmutableFeatureMap featureIDMap)
|
TensorMap |
DenseFeatureConverter.convert(List<? extends Example<?>> examples,
ImmutableFeatureMap featureIDMap) |
Constructor and Description |
---|
TensorFlowModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
org.tensorflow.proto.framework.GraphDef trainedGraphDef,
int batchSize,
String outputName,
FeatureConverter featureConverter,
OutputConverter<T> outputConverter)
Builds a TFModel.
|
Modifier and Type | Method and Description |
---|---|
TensorMap |
SequenceFeatureConverter.encode(List<? extends SequenceExample<?>> batch,
ImmutableFeatureMap featureMap)
Encodes a batch of examples as a feed dict.
|
TensorMap |
SequenceFeatureConverter.encode(SequenceExample<?> example,
ImmutableFeatureMap featureMap)
Encodes an example as a feed dict.
|
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
DenseVector.createDenseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
DenseVector from an Example . |
static <T extends Output<T>> |
SparseVector.createSparseVector(Example<T> example,
ImmutableFeatureMap featureInfo,
boolean addBias)
Builds a
SparseVector from an Example . |
static <T extends Output<T>> |
SparseVector.transpose(Dataset<T> dataset,
ImmutableFeatureMap fMap)
Converts a dataset of row-major examples into an array of column-major
sparse vectors.
|
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<MultiLabel> outputInfo,
LinearParameters parameters) |
Modifier and Type | Method and Description |
---|---|
protected abstract SkeletalIndependentRegressionModel |
SkeletalIndependentRegressionTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
protected abstract SkeletalIndependentRegressionSparseModel |
SkeletalIndependentRegressionSparseTrainer.createModel(Map<String,T> models,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
Constructs the appropriate subclass of
SkeletalIndependentRegressionModel for this trainer. |
Constructor and Description |
---|
SkeletalIndependentRegressionModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo)
models.size() must equal labelInfo.getDomain().size()
|
SkeletalIndependentRegressionSparseModel(String name,
String[] dimensions,
ModelProvenance modelProvenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
Map<String,List<String>> activeFeatures)
models.size() must equal labelInfo.getDomain().size()
|
Modifier and Type | Method and Description |
---|---|
protected LibLinearModel<Regressor> |
LibLinearRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<de.bwaldvogel.liblinear.Model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<de.bwaldvogel.liblinear.FeatureNode[][],double[][]> |
LibLinearRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Modifier and Type | Method and Description |
---|---|
protected LibSVMModel<Regressor> |
LibSVMRegressionTrainer.createModel(ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputIDInfo,
List<libsvm.svm_model> models) |
protected com.oracle.labs.mlrg.olcut.util.Pair<libsvm.svm_node[][],double[][]> |
LibSVMRegressionTrainer.extractData(Dataset<Regressor> data,
ImmutableOutputInfo<Regressor> outputInfo,
ImmutableFeatureMap featureMap) |
Constructor and Description |
---|
RegressorTrainingNode(RegressorImpurity impurity,
RegressorTrainingNode.InvertedData tuple,
int dimIndex,
String dimName,
int numExamples,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<Regressor> outputInfo,
AbstractTrainingNode.LeafDeterminer leafDeterminer) |
Modifier and Type | Method and Description |
---|---|
protected LinearSGDModel |
LinearSGDTrainer.createModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureMap,
ImmutableOutputInfo<Regressor> outputInfo,
LinearParameters parameters) |
Modifier and Type | Field and Description |
---|---|
protected ImmutableFeatureMap |
SequenceModel.featureIDMap |
protected ImmutableFeatureMap |
ImmutableSequenceDataset.featureIDMap
A map from feature names to IDs for the features found in this dataset.
|
Modifier and Type | Method and Description |
---|---|
ImmutableFeatureMap |
SequenceModel.getFeatureIDMap()
Gets the feature domain.
|
abstract ImmutableFeatureMap |
SequenceDataset.getFeatureIDMap()
An immutable view on the feature map.
|
ImmutableFeatureMap |
MutableSequenceDataset.getFeatureIDMap() |
ImmutableFeatureMap |
ImmutableSequenceDataset.getFeatureIDMap() |
ImmutableFeatureMap |
ImmutableSequenceDataset.getFeatureMap() |
Modifier and Type | Method and Description |
---|---|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
Creates an immutable deep copy of the supplied dataset, using a different feature and output map.
|
static <T extends Output<T>> |
ImmutableSequenceDataset.copyDataset(SequenceDataset<T> dataset,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
Merger merger)
Creates an immutable deep copy of the supplied dataset.
|
Constructor and Description |
---|
ImmutableSequenceDataset(DataProvenance sourceProvenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo)
This is dangerous, and should not be used unless you've overridden everything in ImmutableSequenceDataset.
|
ImmutableSequenceDataset(Iterable<SequenceExample<T>> dataSource,
DataProvenance sourceProvenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDInfo,
OutputFactory<T> outputFactory)
Creates a dataset from a data source.
|
SequenceModel(String name,
ModelProvenance provenance,
ImmutableFeatureMap featureIDMap,
ImmutableOutputInfo<T> outputIDMap) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.