Package | Description |
---|---|
org.tribuo.classification.sgd.crf |
Provides an implementation of a linear chain CRF trained using Stochastic Gradient Descent.
|
org.tribuo.math |
Contains the implementation of Tribuo's math library, it's gradient descent optimisers, kernels and a set of
math related utils.
|
org.tribuo.math.optimisers |
Provides implementations of
StochasticGradientOptimiser . |
Modifier and Type | Class and Description |
---|---|
class |
CRFParameters
A
Parameters for training a CRF using SGD. |
Modifier and Type | Interface and Description |
---|---|
interface |
FeedForwardParameters
A Parameters for models which make a single prediction like logistic regressions and neural networks.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearParameters
A
Parameters for producing linear models. |
Modifier and Type | Method and Description |
---|---|
default void |
StochasticGradientOptimiser.initialise(Parameters parameters)
Initialises the gradient optimiser.
|
Modifier and Type | Method and Description |
---|---|
void |
SGD.initialise(Parameters parameters) |
void |
RMSProp.initialise(Parameters parameters) |
void |
Pegasos.initialise(Parameters parameters) |
void |
ParameterAveraging.initialise(Parameters parameters) |
void |
Adam.initialise(Parameters parameters) |
void |
AdaGradRDA.initialise(Parameters parameters) |
void |
AdaGrad.initialise(Parameters parameters) |
void |
AdaDelta.initialise(Parameters parameters) |
Copyright © 2015–2021 Oracle and/or its affiliates. All rights reserved.